blob: f25ba83c870049713f6e080b487dedd79f66cdb4 [file] [log] [blame]
Raymonddee08492015-04-02 10:43:13 -07001/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package org.apache.commons.math.analysis.interpolation;
18
19import org.apache.commons.math.exception.DimensionMismatchException;
20import org.apache.commons.math.exception.util.LocalizedFormats;
21import org.apache.commons.math.exception.NumberIsTooSmallException;
22import org.apache.commons.math.analysis.polynomials.PolynomialFunction;
23import org.apache.commons.math.analysis.polynomials.PolynomialSplineFunction;
24import org.apache.commons.math.util.MathUtils;
25
26/**
27 * Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set.
28 * <p>
29 * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction}
30 * consisting of n cubic polynomials, defined over the subintervals determined by the x values,
31 * x[0] < x[i] ... < x[n]. The x values are referred to as "knot points."</p>
32 * <p>
33 * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest
34 * knot point and strictly less than the largest knot point is computed by finding the subinterval to which
35 * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where
36 * <code>i</code> is the index of the subinterval. See {@link PolynomialSplineFunction} for more details.
37 * </p>
38 * <p>
39 * The interpolating polynomials satisfy: <ol>
40 * <li>The value of the PolynomialSplineFunction at each of the input x values equals the
41 * corresponding y value.</li>
42 * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials
43 * "match up" at the knot points, as do their first and second derivatives).</li>
44 * </ol></p>
45 * <p>
46 * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires,
47 * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
48 * </p>
49 *
50 * @version $Revision: 983921 $ $Date: 2010-08-10 12:46:06 +0200 (mar. 10 août 2010) $
51 *
52 */
53public class SplineInterpolator implements UnivariateRealInterpolator {
54
55 /**
56 * Computes an interpolating function for the data set.
57 * @param x the arguments for the interpolation points
58 * @param y the values for the interpolation points
59 * @return a function which interpolates the data set
60 * @throws DimensionMismatchException if {@code x} and {@code y}
61 * have different sizes.
62 * @throws org.apache.commons.math.exception.NonMonotonousSequenceException
63 * if {@code x} is not sorted in strict increasing order.
64 * @throws NumberIsTooSmallException if the size of {@code x} is smaller
65 * than 3.
66 */
67 public PolynomialSplineFunction interpolate(double x[], double y[]) {
68 if (x.length != y.length) {
69 throw new DimensionMismatchException(x.length, y.length);
70 }
71
72 if (x.length < 3) {
73 throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS,
74 x.length, 3, true);
75 }
76
77 // Number of intervals. The number of data points is n + 1.
78 int n = x.length - 1;
79
80 MathUtils.checkOrder(x);
81
82 // Differences between knot points
83 double h[] = new double[n];
84 for (int i = 0; i < n; i++) {
85 h[i] = x[i + 1] - x[i];
86 }
87
88 double mu[] = new double[n];
89 double z[] = new double[n + 1];
90 mu[0] = 0d;
91 z[0] = 0d;
92 double g = 0;
93 for (int i = 1; i < n; i++) {
94 g = 2d * (x[i+1] - x[i - 1]) - h[i - 1] * mu[i -1];
95 mu[i] = h[i] / g;
96 z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) /
97 (h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g;
98 }
99
100 // cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants)
101 double b[] = new double[n];
102 double c[] = new double[n + 1];
103 double d[] = new double[n];
104
105 z[n] = 0d;
106 c[n] = 0d;
107
108 for (int j = n -1; j >=0; j--) {
109 c[j] = z[j] - mu[j] * c[j + 1];
110 b[j] = (y[j + 1] - y[j]) / h[j] - h[j] * (c[j + 1] + 2d * c[j]) / 3d;
111 d[j] = (c[j + 1] - c[j]) / (3d * h[j]);
112 }
113
114 PolynomialFunction polynomials[] = new PolynomialFunction[n];
115 double coefficients[] = new double[4];
116 for (int i = 0; i < n; i++) {
117 coefficients[0] = y[i];
118 coefficients[1] = b[i];
119 coefficients[2] = c[i];
120 coefficients[3] = d[i];
121 polynomials[i] = new PolynomialFunction(coefficients);
122 }
123
124 return new PolynomialSplineFunction(x, polynomials);
125 }
126
127}