blob: 78a4661b4324760335bec6bfb422002c7c0938c4 [file] [log] [blame]
Raymonddee08492015-04-02 10:43:13 -07001/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package org.apache.commons.math.estimation;
18
19import java.io.Serializable;
20import java.util.Arrays;
21
22import org.apache.commons.math.exception.util.LocalizedFormats;
23import org.apache.commons.math.util.FastMath;
24
25
26/**
27 * This class solves a least squares problem.
28 *
29 * <p>This implementation <em>should</em> work even for over-determined systems
30 * (i.e. systems having more variables than equations). Over-determined systems
31 * are solved by ignoring the variables which have the smallest impact according
32 * to their jacobian column norm. Only the rank of the matrix and some loop bounds
33 * are changed to implement this.</p>
34 *
35 * <p>The resolution engine is a simple translation of the MINPACK <a
36 * href="http://www.netlib.org/minpack/lmder.f">lmder</a> routine with minor
37 * changes. The changes include the over-determined resolution and the Q.R.
38 * decomposition which has been rewritten following the algorithm described in the
39 * P. Lascaux and R. Theodor book <i>Analyse num&eacute;rique matricielle
40 * appliqu&eacute;e &agrave; l'art de l'ing&eacute;nieur</i>, Masson 1986.</p>
41 * <p>The authors of the original fortran version are:
42 * <ul>
43 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
44 * <li>Burton S. Garbow</li>
45 * <li>Kenneth E. Hillstrom</li>
46 * <li>Jorge J. More</li>
47 * </ul>
48 * The redistribution policy for MINPACK is available <a
49 * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
50 * is reproduced below.</p>
51 *
52 * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
53 * <tr><td>
54 * Minpack Copyright Notice (1999) University of Chicago.
55 * All rights reserved
56 * </td></tr>
57 * <tr><td>
58 * Redistribution and use in source and binary forms, with or without
59 * modification, are permitted provided that the following conditions
60 * are met:
61 * <ol>
62 * <li>Redistributions of source code must retain the above copyright
63 * notice, this list of conditions and the following disclaimer.</li>
64 * <li>Redistributions in binary form must reproduce the above
65 * copyright notice, this list of conditions and the following
66 * disclaimer in the documentation and/or other materials provided
67 * with the distribution.</li>
68 * <li>The end-user documentation included with the redistribution, if any,
69 * must include the following acknowledgment:
70 * <code>This product includes software developed by the University of
71 * Chicago, as Operator of Argonne National Laboratory.</code>
72 * Alternately, this acknowledgment may appear in the software itself,
73 * if and wherever such third-party acknowledgments normally appear.</li>
74 * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
75 * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
76 * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
77 * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
78 * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
79 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
80 * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
81 * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
82 * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
83 * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
84 * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
85 * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
86 * BE CORRECTED.</strong></li>
87 * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
88 * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
89 * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
90 * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
91 * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
92 * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
93 * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
94 * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
95 * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
96 * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
97 * <ol></td></tr>
98 * </table>
99
100 * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
101 * @since 1.2
102 * @deprecated as of 2.0, everything in package org.apache.commons.math.estimation has
103 * been deprecated and replaced by package org.apache.commons.math.optimization.general
104 *
105 */
106@Deprecated
107public class LevenbergMarquardtEstimator extends AbstractEstimator implements Serializable {
108
109 /** Serializable version identifier */
110 private static final long serialVersionUID = -5705952631533171019L;
111
112 /** Number of solved variables. */
113 private int solvedCols;
114
115 /** Diagonal elements of the R matrix in the Q.R. decomposition. */
116 private double[] diagR;
117
118 /** Norms of the columns of the jacobian matrix. */
119 private double[] jacNorm;
120
121 /** Coefficients of the Householder transforms vectors. */
122 private double[] beta;
123
124 /** Columns permutation array. */
125 private int[] permutation;
126
127 /** Rank of the jacobian matrix. */
128 private int rank;
129
130 /** Levenberg-Marquardt parameter. */
131 private double lmPar;
132
133 /** Parameters evolution direction associated with lmPar. */
134 private double[] lmDir;
135
136 /** Positive input variable used in determining the initial step bound. */
137 private double initialStepBoundFactor;
138
139 /** Desired relative error in the sum of squares. */
140 private double costRelativeTolerance;
141
142 /** Desired relative error in the approximate solution parameters. */
143 private double parRelativeTolerance;
144
145 /** Desired max cosine on the orthogonality between the function vector
146 * and the columns of the jacobian. */
147 private double orthoTolerance;
148
149 /**
150 * Build an estimator for least squares problems.
151 * <p>The default values for the algorithm settings are:
152 * <ul>
153 * <li>{@link #setInitialStepBoundFactor initial step bound factor}: 100.0</li>
154 * <li>{@link #setMaxCostEval maximal cost evaluations}: 1000</li>
155 * <li>{@link #setCostRelativeTolerance cost relative tolerance}: 1.0e-10</li>
156 * <li>{@link #setParRelativeTolerance parameters relative tolerance}: 1.0e-10</li>
157 * <li>{@link #setOrthoTolerance orthogonality tolerance}: 1.0e-10</li>
158 * </ul>
159 * </p>
160 */
161 public LevenbergMarquardtEstimator() {
162
163 // set up the superclass with a default max cost evaluations setting
164 setMaxCostEval(1000);
165
166 // default values for the tuning parameters
167 setInitialStepBoundFactor(100.0);
168 setCostRelativeTolerance(1.0e-10);
169 setParRelativeTolerance(1.0e-10);
170 setOrthoTolerance(1.0e-10);
171
172 }
173
174 /**
175 * Set the positive input variable used in determining the initial step bound.
176 * This bound is set to the product of initialStepBoundFactor and the euclidean norm of diag*x if nonzero,
177 * or else to initialStepBoundFactor itself. In most cases factor should lie
178 * in the interval (0.1, 100.0). 100.0 is a generally recommended value
179 *
180 * @param initialStepBoundFactor initial step bound factor
181 * @see #estimate
182 */
183 public void setInitialStepBoundFactor(double initialStepBoundFactor) {
184 this.initialStepBoundFactor = initialStepBoundFactor;
185 }
186
187 /**
188 * Set the desired relative error in the sum of squares.
189 *
190 * @param costRelativeTolerance desired relative error in the sum of squares
191 * @see #estimate
192 */
193 public void setCostRelativeTolerance(double costRelativeTolerance) {
194 this.costRelativeTolerance = costRelativeTolerance;
195 }
196
197 /**
198 * Set the desired relative error in the approximate solution parameters.
199 *
200 * @param parRelativeTolerance desired relative error
201 * in the approximate solution parameters
202 * @see #estimate
203 */
204 public void setParRelativeTolerance(double parRelativeTolerance) {
205 this.parRelativeTolerance = parRelativeTolerance;
206 }
207
208 /**
209 * Set the desired max cosine on the orthogonality.
210 *
211 * @param orthoTolerance desired max cosine on the orthogonality
212 * between the function vector and the columns of the jacobian
213 * @see #estimate
214 */
215 public void setOrthoTolerance(double orthoTolerance) {
216 this.orthoTolerance = orthoTolerance;
217 }
218
219 /**
220 * Solve an estimation problem using the Levenberg-Marquardt algorithm.
221 * <p>The algorithm used is a modified Levenberg-Marquardt one, based
222 * on the MINPACK <a href="http://www.netlib.org/minpack/lmder.f">lmder</a>
223 * routine. The algorithm settings must have been set up before this method
224 * is called with the {@link #setInitialStepBoundFactor},
225 * {@link #setMaxCostEval}, {@link #setCostRelativeTolerance},
226 * {@link #setParRelativeTolerance} and {@link #setOrthoTolerance} methods.
227 * If these methods have not been called, the default values set up by the
228 * {@link #LevenbergMarquardtEstimator() constructor} will be used.</p>
229 * <p>The authors of the original fortran function are:</p>
230 * <ul>
231 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
232 * <li>Burton S. Garbow</li>
233 * <li>Kenneth E. Hillstrom</li>
234 * <li>Jorge J. More</li>
235 * </ul>
236 * <p>Luc Maisonobe did the Java translation.</p>
237 *
238 * @param problem estimation problem to solve
239 * @exception EstimationException if convergence cannot be
240 * reached with the specified algorithm settings or if there are more variables
241 * than equations
242 * @see #setInitialStepBoundFactor
243 * @see #setCostRelativeTolerance
244 * @see #setParRelativeTolerance
245 * @see #setOrthoTolerance
246 */
247 @Override
248 public void estimate(EstimationProblem problem)
249 throws EstimationException {
250
251 initializeEstimate(problem);
252
253 // arrays shared with the other private methods
254 solvedCols = FastMath.min(rows, cols);
255 diagR = new double[cols];
256 jacNorm = new double[cols];
257 beta = new double[cols];
258 permutation = new int[cols];
259 lmDir = new double[cols];
260
261 // local variables
262 double delta = 0;
263 double xNorm = 0;
264 double[] diag = new double[cols];
265 double[] oldX = new double[cols];
266 double[] oldRes = new double[rows];
267 double[] work1 = new double[cols];
268 double[] work2 = new double[cols];
269 double[] work3 = new double[cols];
270
271 // evaluate the function at the starting point and calculate its norm
272 updateResidualsAndCost();
273
274 // outer loop
275 lmPar = 0;
276 boolean firstIteration = true;
277 while (true) {
278
279 // compute the Q.R. decomposition of the jacobian matrix
280 updateJacobian();
281 qrDecomposition();
282
283 // compute Qt.res
284 qTy(residuals);
285
286 // now we don't need Q anymore,
287 // so let jacobian contain the R matrix with its diagonal elements
288 for (int k = 0; k < solvedCols; ++k) {
289 int pk = permutation[k];
290 jacobian[k * cols + pk] = diagR[pk];
291 }
292
293 if (firstIteration) {
294
295 // scale the variables according to the norms of the columns
296 // of the initial jacobian
297 xNorm = 0;
298 for (int k = 0; k < cols; ++k) {
299 double dk = jacNorm[k];
300 if (dk == 0) {
301 dk = 1.0;
302 }
303 double xk = dk * parameters[k].getEstimate();
304 xNorm += xk * xk;
305 diag[k] = dk;
306 }
307 xNorm = FastMath.sqrt(xNorm);
308
309 // initialize the step bound delta
310 delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
311
312 }
313
314 // check orthogonality between function vector and jacobian columns
315 double maxCosine = 0;
316 if (cost != 0) {
317 for (int j = 0; j < solvedCols; ++j) {
318 int pj = permutation[j];
319 double s = jacNorm[pj];
320 if (s != 0) {
321 double sum = 0;
322 int index = pj;
323 for (int i = 0; i <= j; ++i) {
324 sum += jacobian[index] * residuals[i];
325 index += cols;
326 }
327 maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * cost));
328 }
329 }
330 }
331 if (maxCosine <= orthoTolerance) {
332 return;
333 }
334
335 // rescale if necessary
336 for (int j = 0; j < cols; ++j) {
337 diag[j] = FastMath.max(diag[j], jacNorm[j]);
338 }
339
340 // inner loop
341 for (double ratio = 0; ratio < 1.0e-4;) {
342
343 // save the state
344 for (int j = 0; j < solvedCols; ++j) {
345 int pj = permutation[j];
346 oldX[pj] = parameters[pj].getEstimate();
347 }
348 double previousCost = cost;
349 double[] tmpVec = residuals;
350 residuals = oldRes;
351 oldRes = tmpVec;
352
353 // determine the Levenberg-Marquardt parameter
354 determineLMParameter(oldRes, delta, diag, work1, work2, work3);
355
356 // compute the new point and the norm of the evolution direction
357 double lmNorm = 0;
358 for (int j = 0; j < solvedCols; ++j) {
359 int pj = permutation[j];
360 lmDir[pj] = -lmDir[pj];
361 parameters[pj].setEstimate(oldX[pj] + lmDir[pj]);
362 double s = diag[pj] * lmDir[pj];
363 lmNorm += s * s;
364 }
365 lmNorm = FastMath.sqrt(lmNorm);
366
367 // on the first iteration, adjust the initial step bound.
368 if (firstIteration) {
369 delta = FastMath.min(delta, lmNorm);
370 }
371
372 // evaluate the function at x + p and calculate its norm
373 updateResidualsAndCost();
374
375 // compute the scaled actual reduction
376 double actRed = -1.0;
377 if (0.1 * cost < previousCost) {
378 double r = cost / previousCost;
379 actRed = 1.0 - r * r;
380 }
381
382 // compute the scaled predicted reduction
383 // and the scaled directional derivative
384 for (int j = 0; j < solvedCols; ++j) {
385 int pj = permutation[j];
386 double dirJ = lmDir[pj];
387 work1[j] = 0;
388 int index = pj;
389 for (int i = 0; i <= j; ++i) {
390 work1[i] += jacobian[index] * dirJ;
391 index += cols;
392 }
393 }
394 double coeff1 = 0;
395 for (int j = 0; j < solvedCols; ++j) {
396 coeff1 += work1[j] * work1[j];
397 }
398 double pc2 = previousCost * previousCost;
399 coeff1 = coeff1 / pc2;
400 double coeff2 = lmPar * lmNorm * lmNorm / pc2;
401 double preRed = coeff1 + 2 * coeff2;
402 double dirDer = -(coeff1 + coeff2);
403
404 // ratio of the actual to the predicted reduction
405 ratio = (preRed == 0) ? 0 : (actRed / preRed);
406
407 // update the step bound
408 if (ratio <= 0.25) {
409 double tmp =
410 (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
411 if ((0.1 * cost >= previousCost) || (tmp < 0.1)) {
412 tmp = 0.1;
413 }
414 delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
415 lmPar /= tmp;
416 } else if ((lmPar == 0) || (ratio >= 0.75)) {
417 delta = 2 * lmNorm;
418 lmPar *= 0.5;
419 }
420
421 // test for successful iteration.
422 if (ratio >= 1.0e-4) {
423 // successful iteration, update the norm
424 firstIteration = false;
425 xNorm = 0;
426 for (int k = 0; k < cols; ++k) {
427 double xK = diag[k] * parameters[k].getEstimate();
428 xNorm += xK * xK;
429 }
430 xNorm = FastMath.sqrt(xNorm);
431 } else {
432 // failed iteration, reset the previous values
433 cost = previousCost;
434 for (int j = 0; j < solvedCols; ++j) {
435 int pj = permutation[j];
436 parameters[pj].setEstimate(oldX[pj]);
437 }
438 tmpVec = residuals;
439 residuals = oldRes;
440 oldRes = tmpVec;
441 }
442
443 // tests for convergence.
444 if (((FastMath.abs(actRed) <= costRelativeTolerance) &&
445 (preRed <= costRelativeTolerance) &&
446 (ratio <= 2.0)) ||
447 (delta <= parRelativeTolerance * xNorm)) {
448 return;
449 }
450
451 // tests for termination and stringent tolerances
452 // (2.2204e-16 is the machine epsilon for IEEE754)
453 if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
454 throw new EstimationException("cost relative tolerance is too small ({0})," +
455 " no further reduction in the" +
456 " sum of squares is possible",
457 costRelativeTolerance);
458 } else if (delta <= 2.2204e-16 * xNorm) {
459 throw new EstimationException("parameters relative tolerance is too small" +
460 " ({0}), no further improvement in" +
461 " the approximate solution is possible",
462 parRelativeTolerance);
463 } else if (maxCosine <= 2.2204e-16) {
464 throw new EstimationException("orthogonality tolerance is too small ({0})," +
465 " solution is orthogonal to the jacobian",
466 orthoTolerance);
467 }
468
469 }
470
471 }
472
473 }
474
475 /**
476 * Determine the Levenberg-Marquardt parameter.
477 * <p>This implementation is a translation in Java of the MINPACK
478 * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar</a>
479 * routine.</p>
480 * <p>This method sets the lmPar and lmDir attributes.</p>
481 * <p>The authors of the original fortran function are:</p>
482 * <ul>
483 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
484 * <li>Burton S. Garbow</li>
485 * <li>Kenneth E. Hillstrom</li>
486 * <li>Jorge J. More</li>
487 * </ul>
488 * <p>Luc Maisonobe did the Java translation.</p>
489 *
490 * @param qy array containing qTy
491 * @param delta upper bound on the euclidean norm of diagR * lmDir
492 * @param diag diagonal matrix
493 * @param work1 work array
494 * @param work2 work array
495 * @param work3 work array
496 */
497 private void determineLMParameter(double[] qy, double delta, double[] diag,
498 double[] work1, double[] work2, double[] work3) {
499
500 // compute and store in x the gauss-newton direction, if the
501 // jacobian is rank-deficient, obtain a least squares solution
502 for (int j = 0; j < rank; ++j) {
503 lmDir[permutation[j]] = qy[j];
504 }
505 for (int j = rank; j < cols; ++j) {
506 lmDir[permutation[j]] = 0;
507 }
508 for (int k = rank - 1; k >= 0; --k) {
509 int pk = permutation[k];
510 double ypk = lmDir[pk] / diagR[pk];
511 int index = pk;
512 for (int i = 0; i < k; ++i) {
513 lmDir[permutation[i]] -= ypk * jacobian[index];
514 index += cols;
515 }
516 lmDir[pk] = ypk;
517 }
518
519 // evaluate the function at the origin, and test
520 // for acceptance of the Gauss-Newton direction
521 double dxNorm = 0;
522 for (int j = 0; j < solvedCols; ++j) {
523 int pj = permutation[j];
524 double s = diag[pj] * lmDir[pj];
525 work1[pj] = s;
526 dxNorm += s * s;
527 }
528 dxNorm = FastMath.sqrt(dxNorm);
529 double fp = dxNorm - delta;
530 if (fp <= 0.1 * delta) {
531 lmPar = 0;
532 return;
533 }
534
535 // if the jacobian is not rank deficient, the Newton step provides
536 // a lower bound, parl, for the zero of the function,
537 // otherwise set this bound to zero
538 double sum2;
539 double parl = 0;
540 if (rank == solvedCols) {
541 for (int j = 0; j < solvedCols; ++j) {
542 int pj = permutation[j];
543 work1[pj] *= diag[pj] / dxNorm;
544 }
545 sum2 = 0;
546 for (int j = 0; j < solvedCols; ++j) {
547 int pj = permutation[j];
548 double sum = 0;
549 int index = pj;
550 for (int i = 0; i < j; ++i) {
551 sum += jacobian[index] * work1[permutation[i]];
552 index += cols;
553 }
554 double s = (work1[pj] - sum) / diagR[pj];
555 work1[pj] = s;
556 sum2 += s * s;
557 }
558 parl = fp / (delta * sum2);
559 }
560
561 // calculate an upper bound, paru, for the zero of the function
562 sum2 = 0;
563 for (int j = 0; j < solvedCols; ++j) {
564 int pj = permutation[j];
565 double sum = 0;
566 int index = pj;
567 for (int i = 0; i <= j; ++i) {
568 sum += jacobian[index] * qy[i];
569 index += cols;
570 }
571 sum /= diag[pj];
572 sum2 += sum * sum;
573 }
574 double gNorm = FastMath.sqrt(sum2);
575 double paru = gNorm / delta;
576 if (paru == 0) {
577 // 2.2251e-308 is the smallest positive real for IEE754
578 paru = 2.2251e-308 / FastMath.min(delta, 0.1);
579 }
580
581 // if the input par lies outside of the interval (parl,paru),
582 // set par to the closer endpoint
583 lmPar = FastMath.min(paru, FastMath.max(lmPar, parl));
584 if (lmPar == 0) {
585 lmPar = gNorm / dxNorm;
586 }
587
588 for (int countdown = 10; countdown >= 0; --countdown) {
589
590 // evaluate the function at the current value of lmPar
591 if (lmPar == 0) {
592 lmPar = FastMath.max(2.2251e-308, 0.001 * paru);
593 }
594 double sPar = FastMath.sqrt(lmPar);
595 for (int j = 0; j < solvedCols; ++j) {
596 int pj = permutation[j];
597 work1[pj] = sPar * diag[pj];
598 }
599 determineLMDirection(qy, work1, work2, work3);
600
601 dxNorm = 0;
602 for (int j = 0; j < solvedCols; ++j) {
603 int pj = permutation[j];
604 double s = diag[pj] * lmDir[pj];
605 work3[pj] = s;
606 dxNorm += s * s;
607 }
608 dxNorm = FastMath.sqrt(dxNorm);
609 double previousFP = fp;
610 fp = dxNorm - delta;
611
612 // if the function is small enough, accept the current value
613 // of lmPar, also test for the exceptional cases where parl is zero
614 if ((FastMath.abs(fp) <= 0.1 * delta) ||
615 ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) {
616 return;
617 }
618
619 // compute the Newton correction
620 for (int j = 0; j < solvedCols; ++j) {
621 int pj = permutation[j];
622 work1[pj] = work3[pj] * diag[pj] / dxNorm;
623 }
624 for (int j = 0; j < solvedCols; ++j) {
625 int pj = permutation[j];
626 work1[pj] /= work2[j];
627 double tmp = work1[pj];
628 for (int i = j + 1; i < solvedCols; ++i) {
629 work1[permutation[i]] -= jacobian[i * cols + pj] * tmp;
630 }
631 }
632 sum2 = 0;
633 for (int j = 0; j < solvedCols; ++j) {
634 double s = work1[permutation[j]];
635 sum2 += s * s;
636 }
637 double correction = fp / (delta * sum2);
638
639 // depending on the sign of the function, update parl or paru.
640 if (fp > 0) {
641 parl = FastMath.max(parl, lmPar);
642 } else if (fp < 0) {
643 paru = FastMath.min(paru, lmPar);
644 }
645
646 // compute an improved estimate for lmPar
647 lmPar = FastMath.max(parl, lmPar + correction);
648
649 }
650 }
651
652 /**
653 * Solve a*x = b and d*x = 0 in the least squares sense.
654 * <p>This implementation is a translation in Java of the MINPACK
655 * <a href="http://www.netlib.org/minpack/qrsolv.f">qrsolv</a>
656 * routine.</p>
657 * <p>This method sets the lmDir and lmDiag attributes.</p>
658 * <p>The authors of the original fortran function are:</p>
659 * <ul>
660 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
661 * <li>Burton S. Garbow</li>
662 * <li>Kenneth E. Hillstrom</li>
663 * <li>Jorge J. More</li>
664 * </ul>
665 * <p>Luc Maisonobe did the Java translation.</p>
666 *
667 * @param qy array containing qTy
668 * @param diag diagonal matrix
669 * @param lmDiag diagonal elements associated with lmDir
670 * @param work work array
671 */
672 private void determineLMDirection(double[] qy, double[] diag,
673 double[] lmDiag, double[] work) {
674
675 // copy R and Qty to preserve input and initialize s
676 // in particular, save the diagonal elements of R in lmDir
677 for (int j = 0; j < solvedCols; ++j) {
678 int pj = permutation[j];
679 for (int i = j + 1; i < solvedCols; ++i) {
680 jacobian[i * cols + pj] = jacobian[j * cols + permutation[i]];
681 }
682 lmDir[j] = diagR[pj];
683 work[j] = qy[j];
684 }
685
686 // eliminate the diagonal matrix d using a Givens rotation
687 for (int j = 0; j < solvedCols; ++j) {
688
689 // prepare the row of d to be eliminated, locating the
690 // diagonal element using p from the Q.R. factorization
691 int pj = permutation[j];
692 double dpj = diag[pj];
693 if (dpj != 0) {
694 Arrays.fill(lmDiag, j + 1, lmDiag.length, 0);
695 }
696 lmDiag[j] = dpj;
697
698 // the transformations to eliminate the row of d
699 // modify only a single element of Qty
700 // beyond the first n, which is initially zero.
701 double qtbpj = 0;
702 for (int k = j; k < solvedCols; ++k) {
703 int pk = permutation[k];
704
705 // determine a Givens rotation which eliminates the
706 // appropriate element in the current row of d
707 if (lmDiag[k] != 0) {
708
709 final double sin;
710 final double cos;
711 double rkk = jacobian[k * cols + pk];
712 if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) {
713 final double cotan = rkk / lmDiag[k];
714 sin = 1.0 / FastMath.sqrt(1.0 + cotan * cotan);
715 cos = sin * cotan;
716 } else {
717 final double tan = lmDiag[k] / rkk;
718 cos = 1.0 / FastMath.sqrt(1.0 + tan * tan);
719 sin = cos * tan;
720 }
721
722 // compute the modified diagonal element of R and
723 // the modified element of (Qty,0)
724 jacobian[k * cols + pk] = cos * rkk + sin * lmDiag[k];
725 final double temp = cos * work[k] + sin * qtbpj;
726 qtbpj = -sin * work[k] + cos * qtbpj;
727 work[k] = temp;
728
729 // accumulate the tranformation in the row of s
730 for (int i = k + 1; i < solvedCols; ++i) {
731 double rik = jacobian[i * cols + pk];
732 final double temp2 = cos * rik + sin * lmDiag[i];
733 lmDiag[i] = -sin * rik + cos * lmDiag[i];
734 jacobian[i * cols + pk] = temp2;
735 }
736
737 }
738 }
739
740 // store the diagonal element of s and restore
741 // the corresponding diagonal element of R
742 int index = j * cols + permutation[j];
743 lmDiag[j] = jacobian[index];
744 jacobian[index] = lmDir[j];
745
746 }
747
748 // solve the triangular system for z, if the system is
749 // singular, then obtain a least squares solution
750 int nSing = solvedCols;
751 for (int j = 0; j < solvedCols; ++j) {
752 if ((lmDiag[j] == 0) && (nSing == solvedCols)) {
753 nSing = j;
754 }
755 if (nSing < solvedCols) {
756 work[j] = 0;
757 }
758 }
759 if (nSing > 0) {
760 for (int j = nSing - 1; j >= 0; --j) {
761 int pj = permutation[j];
762 double sum = 0;
763 for (int i = j + 1; i < nSing; ++i) {
764 sum += jacobian[i * cols + pj] * work[i];
765 }
766 work[j] = (work[j] - sum) / lmDiag[j];
767 }
768 }
769
770 // permute the components of z back to components of lmDir
771 for (int j = 0; j < lmDir.length; ++j) {
772 lmDir[permutation[j]] = work[j];
773 }
774
775 }
776
777 /**
778 * Decompose a matrix A as A.P = Q.R using Householder transforms.
779 * <p>As suggested in the P. Lascaux and R. Theodor book
780 * <i>Analyse num&eacute;rique matricielle appliqu&eacute;e &agrave;
781 * l'art de l'ing&eacute;nieur</i> (Masson, 1986), instead of representing
782 * the Householder transforms with u<sub>k</sub> unit vectors such that:
783 * <pre>
784 * H<sub>k</sub> = I - 2u<sub>k</sub>.u<sub>k</sub><sup>t</sup>
785 * </pre>
786 * we use <sub>k</sub> non-unit vectors such that:
787 * <pre>
788 * H<sub>k</sub> = I - beta<sub>k</sub>v<sub>k</sub>.v<sub>k</sub><sup>t</sup>
789 * </pre>
790 * where v<sub>k</sub> = a<sub>k</sub> - alpha<sub>k</sub> e<sub>k</sub>.
791 * The beta<sub>k</sub> coefficients are provided upon exit as recomputing
792 * them from the v<sub>k</sub> vectors would be costly.</p>
793 * <p>This decomposition handles rank deficient cases since the tranformations
794 * are performed in non-increasing columns norms order thanks to columns
795 * pivoting. The diagonal elements of the R matrix are therefore also in
796 * non-increasing absolute values order.</p>
797 * @exception EstimationException if the decomposition cannot be performed
798 */
799 private void qrDecomposition() throws EstimationException {
800
801 // initializations
802 for (int k = 0; k < cols; ++k) {
803 permutation[k] = k;
804 double norm2 = 0;
805 for (int index = k; index < jacobian.length; index += cols) {
806 double akk = jacobian[index];
807 norm2 += akk * akk;
808 }
809 jacNorm[k] = FastMath.sqrt(norm2);
810 }
811
812 // transform the matrix column after column
813 for (int k = 0; k < cols; ++k) {
814
815 // select the column with the greatest norm on active components
816 int nextColumn = -1;
817 double ak2 = Double.NEGATIVE_INFINITY;
818 for (int i = k; i < cols; ++i) {
819 double norm2 = 0;
820 int iDiag = k * cols + permutation[i];
821 for (int index = iDiag; index < jacobian.length; index += cols) {
822 double aki = jacobian[index];
823 norm2 += aki * aki;
824 }
825 if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
826 throw new EstimationException(
827 LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
828 rows, cols);
829 }
830 if (norm2 > ak2) {
831 nextColumn = i;
832 ak2 = norm2;
833 }
834 }
835 if (ak2 == 0) {
836 rank = k;
837 return;
838 }
839 int pk = permutation[nextColumn];
840 permutation[nextColumn] = permutation[k];
841 permutation[k] = pk;
842
843 // choose alpha such that Hk.u = alpha ek
844 int kDiag = k * cols + pk;
845 double akk = jacobian[kDiag];
846 double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2);
847 double betak = 1.0 / (ak2 - akk * alpha);
848 beta[pk] = betak;
849
850 // transform the current column
851 diagR[pk] = alpha;
852 jacobian[kDiag] -= alpha;
853
854 // transform the remaining columns
855 for (int dk = cols - 1 - k; dk > 0; --dk) {
856 int dkp = permutation[k + dk] - pk;
857 double gamma = 0;
858 for (int index = kDiag; index < jacobian.length; index += cols) {
859 gamma += jacobian[index] * jacobian[index + dkp];
860 }
861 gamma *= betak;
862 for (int index = kDiag; index < jacobian.length; index += cols) {
863 jacobian[index + dkp] -= gamma * jacobian[index];
864 }
865 }
866
867 }
868
869 rank = solvedCols;
870
871 }
872
873 /**
874 * Compute the product Qt.y for some Q.R. decomposition.
875 *
876 * @param y vector to multiply (will be overwritten with the result)
877 */
878 private void qTy(double[] y) {
879 for (int k = 0; k < cols; ++k) {
880 int pk = permutation[k];
881 int kDiag = k * cols + pk;
882 double gamma = 0;
883 int index = kDiag;
884 for (int i = k; i < rows; ++i) {
885 gamma += jacobian[index] * y[i];
886 index += cols;
887 }
888 gamma *= beta[pk];
889 index = kDiag;
890 for (int i = k; i < rows; ++i) {
891 y[i] -= gamma * jacobian[index];
892 index += cols;
893 }
894 }
895 }
896
897}