| /* vi: set sw=4 ts=4: */ |
| /* |
| * Based on shasum from http://www.netsw.org/crypto/hash/ |
| * Majorly hacked up to use Dr Brian Gladman's sha1 code |
| * |
| * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. |
| * Copyright (C) 2003 Glenn L. McGrath |
| * Copyright (C) 2003 Erik Andersen |
| * |
| * Licensed under GPLv2 or later, see file LICENSE in this tarball for details. |
| * |
| * --------------------------------------------------------------------------- |
| * Issue Date: 10/11/2002 |
| * |
| * This is a byte oriented version of SHA1 that operates on arrays of bytes |
| * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor |
| */ |
| |
| #include "libbb.h" |
| |
| #define SHA1_BLOCK_SIZE 64 |
| #define SHA1_DIGEST_SIZE 20 |
| #define SHA1_HASH_SIZE SHA1_DIGEST_SIZE |
| #define SHA2_GOOD 0 |
| #define SHA2_BAD 1 |
| |
| #define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) |
| |
| #define SHA1_MASK (SHA1_BLOCK_SIZE - 1) |
| |
| /* reverse byte order in 32-bit words */ |
| #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) |
| #define parity(x,y,z) ((x) ^ (y) ^ (z)) |
| #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) |
| |
| /* A normal version as set out in the FIPS. This version uses */ |
| /* partial loop unrolling and is optimised for the Pentium 4 */ |
| #define rnd(f,k) \ |
| do { \ |
| t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \ |
| e = d; d = c; c = rotl32(b, 30); b = t; \ |
| } while (0) |
| |
| static void sha1_compile(sha1_ctx_t *ctx) |
| { |
| uint32_t w[80], i, a, b, c, d, e, t; |
| |
| /* note that words are compiled from the buffer into 32-bit */ |
| /* words in big-endian order so an order reversal is needed */ |
| /* here on little endian machines */ |
| for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i) |
| w[i] = htonl(ctx->wbuf[i]); |
| |
| for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i) |
| w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1); |
| |
| a = ctx->hash[0]; |
| b = ctx->hash[1]; |
| c = ctx->hash[2]; |
| d = ctx->hash[3]; |
| e = ctx->hash[4]; |
| |
| for (i = 0; i < 20; ++i) { |
| rnd(ch, 0x5a827999); |
| } |
| |
| for (i = 20; i < 40; ++i) { |
| rnd(parity, 0x6ed9eba1); |
| } |
| |
| for (i = 40; i < 60; ++i) { |
| rnd(maj, 0x8f1bbcdc); |
| } |
| |
| for (i = 60; i < 80; ++i) { |
| rnd(parity, 0xca62c1d6); |
| } |
| |
| ctx->hash[0] += a; |
| ctx->hash[1] += b; |
| ctx->hash[2] += c; |
| ctx->hash[3] += d; |
| ctx->hash[4] += e; |
| } |
| |
| void sha1_begin(sha1_ctx_t *ctx) |
| { |
| ctx->count[0] = ctx->count[1] = 0; |
| ctx->hash[0] = 0x67452301; |
| ctx->hash[1] = 0xefcdab89; |
| ctx->hash[2] = 0x98badcfe; |
| ctx->hash[3] = 0x10325476; |
| ctx->hash[4] = 0xc3d2e1f0; |
| } |
| |
| /* SHA1 hash data in an array of bytes into hash buffer and call the */ |
| /* hash_compile function as required. */ |
| void sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx) |
| { |
| uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK); |
| uint32_t freeb = SHA1_BLOCK_SIZE - pos; |
| const unsigned char *sp = data; |
| |
| if ((ctx->count[0] += length) < length) |
| ++(ctx->count[1]); |
| |
| while (length >= freeb) { /* tranfer whole blocks while possible */ |
| memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb); |
| sp += freeb; |
| length -= freeb; |
| freeb = SHA1_BLOCK_SIZE; |
| pos = 0; |
| sha1_compile(ctx); |
| } |
| |
| memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length); |
| } |
| |
| void *sha1_end(void *resbuf, sha1_ctx_t *ctx) |
| { |
| /* SHA1 Final padding and digest calculation */ |
| #if BB_BIG_ENDIAN |
| static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 }; |
| static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 }; |
| #else |
| static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff }; |
| static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 }; |
| #endif |
| |
| uint8_t *hval = resbuf; |
| uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK); |
| |
| /* mask out the rest of any partial 32-bit word and then set */ |
| /* the next byte to 0x80. On big-endian machines any bytes in */ |
| /* the buffer will be at the top end of 32 bit words, on little */ |
| /* endian machines they will be at the bottom. Hence the AND */ |
| /* and OR masks above are reversed for little endian systems */ |
| ctx->wbuf[cnt >> 2] = |
| (ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3]; |
| |
| /* we need 9 or more empty positions, one for the padding byte */ |
| /* (above) and eight for the length count. If there is not */ |
| /* enough space pad and empty the buffer */ |
| if (cnt > SHA1_BLOCK_SIZE - 9) { |
| if (cnt < 60) |
| ctx->wbuf[15] = 0; |
| sha1_compile(ctx); |
| cnt = 0; |
| } else /* compute a word index for the empty buffer positions */ |
| cnt = (cnt >> 2) + 1; |
| |
| while (cnt < 14) /* and zero pad all but last two positions */ |
| ctx->wbuf[cnt++] = 0; |
| |
| /* assemble the eight byte counter in the buffer in big-endian */ |
| /* format */ |
| |
| ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29)); |
| ctx->wbuf[15] = htonl(ctx->count[0] << 3); |
| |
| sha1_compile(ctx); |
| |
| /* extract the hash value as bytes in case the hash buffer is */ |
| /* misaligned for 32-bit words */ |
| |
| for (i = 0; i < SHA1_DIGEST_SIZE; ++i) |
| hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3)); |
| |
| return resbuf; |
| } |