blob: f20805ca873dc80947a1f397151faaa5adf574e5 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#ifndef CERES_INTERNAL_PARAMETER_BLOCK_H_
#define CERES_INTERNAL_PARAMETER_BLOCK_H_
#include <cstdlib>
#include <string>
#include "ceres/array_utils.h"
#include "ceres/integral_types.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/local_parameterization.h"
#include "ceres/stringprintf.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
class ProblemImpl;
// The parameter block encodes the location of the user's original value, and
// also the "current state" of the parameter. The evaluator uses whatever is in
// the current state of the parameter when evaluating. This is inlined since the
// methods are performance sensitive.
//
// The class is not thread-safe, unless only const methods are called. The
// parameter block may also hold a pointer to a local parameterization; the
// parameter block does not take ownership of this pointer, so the user is
// responsible for the proper disposal of the local parameterization.
class ParameterBlock {
public:
ParameterBlock(double* user_state, int size) {
Init(user_state, size, NULL);
}
ParameterBlock(double* user_state,
int size,
LocalParameterization* local_parameterization) {
Init(user_state, size, local_parameterization);
}
// The size of the parameter block.
int Size() const { return size_; }
// Manipulate the parameter state.
bool SetState(const double* x) {
CHECK(x != NULL)
<< "Tried to set the state of constant parameter "
<< "with user location " << user_state_;
CHECK(!is_constant_)
<< "Tried to set the state of constant parameter "
<< "with user location " << user_state_;
state_ = x;
return UpdateLocalParameterizationJacobian();
}
// Copy the current parameter state out to x. This is "GetState()" rather than
// simply "state()" since it is actively copying the data into the passed
// pointer.
void GetState(double *x) const {
if (x != state_) {
memcpy(x, state_, sizeof(*state_) * size_);
}
}
// Direct pointers to the current state.
const double* state() const { return state_; }
const double* user_state() const { return user_state_; }
double* mutable_user_state() { return user_state_; }
LocalParameterization* local_parameterization() const {
return local_parameterization_;
}
LocalParameterization* mutable_local_parameterization() {
return local_parameterization_;
}
// Set this parameter block to vary or not.
void SetConstant() { is_constant_ = true; }
void SetVarying() { is_constant_ = false; }
bool IsConstant() const { return is_constant_; }
// This parameter block's index in an array.
int index() const { return index_; }
void set_index(int index) { index_ = index; }
// This parameter offset inside a larger state vector.
int state_offset() const { return state_offset_; }
void set_state_offset(int state_offset) { state_offset_ = state_offset; }
// This parameter offset inside a larger delta vector.
int delta_offset() const { return delta_offset_; }
void set_delta_offset(int delta_offset) { delta_offset_ = delta_offset; }
// Methods relating to the parameter block's parameterization.
// The local to global jacobian. Returns NULL if there is no local
// parameterization for this parameter block. The returned matrix is row-major
// and has Size() rows and LocalSize() columns.
const double* LocalParameterizationJacobian() const {
return local_parameterization_jacobian_.get();
}
int LocalSize() const {
return (local_parameterization_ == NULL)
? size_
: local_parameterization_->LocalSize();
}
// Set the parameterization. The parameterization can be set exactly once;
// multiple calls to set the parameterization to different values will crash.
// It is an error to pass NULL for the parameterization. The parameter block
// does not take ownership of the parameterization.
void SetParameterization(LocalParameterization* new_parameterization) {
CHECK(new_parameterization != NULL) << "NULL parameterization invalid.";
CHECK(new_parameterization->GlobalSize() == size_)
<< "Invalid parameterization for parameter block. The parameter block "
<< "has size " << size_ << " while the parameterization has a global "
<< "size of " << new_parameterization->GlobalSize() << ". Did you "
<< "accidentally use the wrong parameter block or parameterization?";
if (new_parameterization != local_parameterization_) {
CHECK(local_parameterization_ == NULL)
<< "Can't re-set the local parameterization; it leads to "
<< "ambiguous ownership.";
local_parameterization_ = new_parameterization;
local_parameterization_jacobian_.reset(
new double[local_parameterization_->GlobalSize() *
local_parameterization_->LocalSize()]);
CHECK(UpdateLocalParameterizationJacobian())
"Local parameterization Jacobian computation failed"
"for x: " << ConstVectorRef(state_, Size()).transpose();
} else {
// Ignore the case that the parameterizations match.
}
}
// Generalization of the addition operation. This is the same as
// LocalParameterization::Plus() but uses the parameter's current state
// instead of operating on a passed in pointer.
bool Plus(const double *x, const double* delta, double* x_plus_delta) {
if (local_parameterization_ == NULL) {
VectorRef(x_plus_delta, size_) = ConstVectorRef(x, size_) +
ConstVectorRef(delta, size_);
return true;
}
return local_parameterization_->Plus(x, delta, x_plus_delta);
}
string ToString() const {
return StringPrintf("{ user_state=%p, state=%p, size=%d, "
"constant=%d, index=%d, state_offset=%d, "
"delta_offset=%d }",
user_state_,
state_,
size_,
is_constant_,
index_,
state_offset_,
delta_offset_);
}
private:
void Init(double* user_state,
int size,
LocalParameterization* local_parameterization) {
user_state_ = user_state;
size_ = size;
is_constant_ = false;
state_ = user_state_;
local_parameterization_ = NULL;
if (local_parameterization != NULL) {
SetParameterization(local_parameterization);
}
index_ = -1;
state_offset_ = -1;
delta_offset_ = -1;
}
bool UpdateLocalParameterizationJacobian() {
if (local_parameterization_ == NULL) {
return true;
}
// Update the local to global Jacobian. In some cases this is
// wasted effort; if this is a bottleneck, we will find a solution
// at that time.
const int jacobian_size = Size() * LocalSize();
InvalidateArray(jacobian_size,
local_parameterization_jacobian_.get());
if (!local_parameterization_->ComputeJacobian(
state_,
local_parameterization_jacobian_.get())) {
LOG(WARNING) << "Local parameterization Jacobian computation failed"
"for x: " << ConstVectorRef(state_, Size()).transpose();
return false;
}
if (!IsArrayValid(jacobian_size, local_parameterization_jacobian_.get())) {
LOG(WARNING) << "Local parameterization Jacobian computation returned"
<< "an invalid matrix for x: "
<< ConstVectorRef(state_, Size()).transpose()
<< "\n Jacobian matrix : "
<< ConstMatrixRef(local_parameterization_jacobian_.get(),
Size(),
LocalSize());
return false;
}
return true;
}
double* user_state_;
int size_;
bool is_constant_;
LocalParameterization* local_parameterization_;
// The "state" of the parameter. These fields are only needed while the
// solver is running. While at first glance using mutable is a bad idea, this
// ends up simplifying the internals of Ceres enough to justify the potential
// pitfalls of using "mutable."
mutable const double* state_;
mutable scoped_array<double> local_parameterization_jacobian_;
// The index of the parameter. This is used by various other parts of Ceres to
// permit switching from a ParameterBlock* to an index in another array.
int32 index_;
// The offset of this parameter block inside a larger state vector.
int32 state_offset_;
// The offset of this parameter block inside a larger delta vector.
int32 delta_offset_;
// Necessary so ProblemImpl can clean up the parameterizations.
friend class ProblemImpl;
};
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_PARAMETER_BLOCK_H_