| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_NO_SUITESPARSE |
| #include "ceres/suitesparse.h" |
| |
| #include <vector> |
| #include "cholmod.h" |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| namespace ceres { |
| namespace internal { |
| cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) { |
| cholmod_triplet triplet; |
| |
| triplet.nrow = A->num_rows(); |
| triplet.ncol = A->num_cols(); |
| triplet.nzmax = A->max_num_nonzeros(); |
| triplet.nnz = A->num_nonzeros(); |
| triplet.i = reinterpret_cast<void*>(A->mutable_rows()); |
| triplet.j = reinterpret_cast<void*>(A->mutable_cols()); |
| triplet.x = reinterpret_cast<void*>(A->mutable_values()); |
| triplet.stype = 0; // Matrix is not symmetric. |
| triplet.itype = CHOLMOD_INT; |
| triplet.xtype = CHOLMOD_REAL; |
| triplet.dtype = CHOLMOD_DOUBLE; |
| |
| return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_); |
| } |
| |
| |
| cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose( |
| TripletSparseMatrix* A) { |
| cholmod_triplet triplet; |
| |
| triplet.ncol = A->num_rows(); // swap row and columns |
| triplet.nrow = A->num_cols(); |
| triplet.nzmax = A->max_num_nonzeros(); |
| triplet.nnz = A->num_nonzeros(); |
| |
| // swap rows and columns |
| triplet.j = reinterpret_cast<void*>(A->mutable_rows()); |
| triplet.i = reinterpret_cast<void*>(A->mutable_cols()); |
| triplet.x = reinterpret_cast<void*>(A->mutable_values()); |
| triplet.stype = 0; // Matrix is not symmetric. |
| triplet.itype = CHOLMOD_INT; |
| triplet.xtype = CHOLMOD_REAL; |
| triplet.dtype = CHOLMOD_DOUBLE; |
| |
| return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_); |
| } |
| |
| cholmod_sparse* SuiteSparse::CreateSparseMatrixTransposeView( |
| CompressedRowSparseMatrix* A) { |
| cholmod_sparse* m = new cholmod_sparse_struct; |
| m->nrow = A->num_cols(); |
| m->ncol = A->num_rows(); |
| m->nzmax = A->num_nonzeros(); |
| |
| m->p = reinterpret_cast<void*>(A->mutable_rows()); |
| m->i = reinterpret_cast<void*>(A->mutable_cols()); |
| m->x = reinterpret_cast<void*>(A->mutable_values()); |
| |
| m->stype = 0; // Matrix is not symmetric. |
| m->itype = CHOLMOD_INT; |
| m->xtype = CHOLMOD_REAL; |
| m->dtype = CHOLMOD_DOUBLE; |
| m->sorted = 1; |
| m->packed = 1; |
| |
| return m; |
| } |
| |
| cholmod_dense* SuiteSparse::CreateDenseVector(const double* x, |
| int in_size, |
| int out_size) { |
| CHECK_LE(in_size, out_size); |
| cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_); |
| if (x != NULL) { |
| memcpy(v->x, x, in_size*sizeof(*x)); |
| } |
| return v; |
| } |
| |
| cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A) { |
| // Cholmod can try multiple re-ordering strategies to find a fill |
| // reducing ordering. Here we just tell it use AMD with automatic |
| // matrix dependence choice of supernodal versus simplicial |
| // factorization. |
| cc_.nmethods = 1; |
| cc_.method[0].ordering = CHOLMOD_AMD; |
| cc_.supernodal = CHOLMOD_AUTO; |
| cholmod_factor* factor = cholmod_analyze(A, &cc_); |
| CHECK_EQ(cc_.status, CHOLMOD_OK) |
| << "Cholmod symbolic analysis failed " << cc_.status; |
| CHECK_NOTNULL(factor); |
| return factor; |
| } |
| |
| cholmod_factor* SuiteSparse::BlockAnalyzeCholesky( |
| cholmod_sparse* A, |
| const vector<int>& row_blocks, |
| const vector<int>& col_blocks) { |
| vector<int> ordering; |
| if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) { |
| return NULL; |
| } |
| return AnalyzeCholeskyWithUserOrdering(A, ordering); |
| } |
| |
| cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A, |
| const vector<int>& ordering) { |
| CHECK_EQ(ordering.size(), A->nrow); |
| cc_.nmethods = 1 ; |
| cc_.method[0].ordering = CHOLMOD_GIVEN; |
| cholmod_factor* factor = |
| cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), NULL, 0, &cc_); |
| CHECK_EQ(cc_.status, CHOLMOD_OK) |
| << "Cholmod symbolic analysis failed " << cc_.status; |
| CHECK_NOTNULL(factor); |
| return factor; |
| } |
| |
| bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A, |
| const vector<int>& row_blocks, |
| const vector<int>& col_blocks, |
| vector<int>* ordering) { |
| const int num_row_blocks = row_blocks.size(); |
| const int num_col_blocks = col_blocks.size(); |
| |
| // Arrays storing the compressed column structure of the matrix |
| // incoding the block sparsity of A. |
| vector<int> block_cols; |
| vector<int> block_rows; |
| |
| ScalarMatrixToBlockMatrix(A, |
| row_blocks, |
| col_blocks, |
| &block_rows, |
| &block_cols); |
| |
| cholmod_sparse_struct block_matrix; |
| block_matrix.nrow = num_row_blocks; |
| block_matrix.ncol = num_col_blocks; |
| block_matrix.nzmax = block_rows.size(); |
| block_matrix.p = reinterpret_cast<void*>(&block_cols[0]); |
| block_matrix.i = reinterpret_cast<void*>(&block_rows[0]); |
| block_matrix.x = NULL; |
| block_matrix.stype = A->stype; |
| block_matrix.itype = CHOLMOD_INT; |
| block_matrix.xtype = CHOLMOD_PATTERN; |
| block_matrix.dtype = CHOLMOD_DOUBLE; |
| block_matrix.sorted = 1; |
| block_matrix.packed = 1; |
| |
| vector<int> block_ordering(num_row_blocks); |
| if (!cholmod_amd(&block_matrix, NULL, 0, &block_ordering[0], &cc_)) { |
| return false; |
| } |
| |
| BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering); |
| return true; |
| } |
| |
| void SuiteSparse::ScalarMatrixToBlockMatrix(const cholmod_sparse* A, |
| const vector<int>& row_blocks, |
| const vector<int>& col_blocks, |
| vector<int>* block_rows, |
| vector<int>* block_cols) { |
| CHECK_NOTNULL(block_rows)->clear(); |
| CHECK_NOTNULL(block_cols)->clear(); |
| const int num_row_blocks = row_blocks.size(); |
| const int num_col_blocks = col_blocks.size(); |
| |
| vector<int> row_block_starts(num_row_blocks); |
| for (int i = 0, cursor = 0; i < num_row_blocks; ++i) { |
| row_block_starts[i] = cursor; |
| cursor += row_blocks[i]; |
| } |
| |
| // The reinterpret_cast is needed here because CHOLMOD stores arrays |
| // as void*. |
| const int* scalar_cols = reinterpret_cast<const int*>(A->p); |
| const int* scalar_rows = reinterpret_cast<const int*>(A->i); |
| |
| // This loop extracts the block sparsity of the scalar sparse matrix |
| // A. It does so by iterating over the columns, but only considering |
| // the columns corresponding to the first element of each column |
| // block. Within each column, the inner loop iterates over the rows, |
| // and detects the presence of a row block by checking for the |
| // presence of a non-zero entry corresponding to its first element. |
| block_cols->push_back(0); |
| int c = 0; |
| for (int col_block = 0; col_block < num_col_blocks; ++col_block) { |
| int column_size = 0; |
| for (int idx = scalar_cols[c]; idx < scalar_cols[c + 1]; ++idx) { |
| vector<int>::const_iterator it = lower_bound(row_block_starts.begin(), |
| row_block_starts.end(), |
| scalar_rows[idx]); |
| // Since we are using lower_bound, it will return the row id |
| // where the row block starts. For everything but the first row |
| // of the block, where these values will be the same, we can |
| // skip, as we only need the first row to detect the presence of |
| // the block. |
| // |
| // For rows all but the first row in the last row block, |
| // lower_bound will return row_block_starts.end(), but those can |
| // be skipped like the rows in other row blocks too. |
| if (it == row_block_starts.end() || *it != scalar_rows[idx]) { |
| continue; |
| } |
| |
| block_rows->push_back(it - row_block_starts.begin()); |
| ++column_size; |
| } |
| block_cols->push_back(block_cols->back() + column_size); |
| c += col_blocks[col_block]; |
| } |
| } |
| |
| void SuiteSparse::BlockOrderingToScalarOrdering( |
| const vector<int>& blocks, |
| const vector<int>& block_ordering, |
| vector<int>* scalar_ordering) { |
| CHECK_EQ(blocks.size(), block_ordering.size()); |
| const int num_blocks = blocks.size(); |
| |
| // block_starts = [0, block1, block1 + block2 ..] |
| vector<int> block_starts(num_blocks); |
| for (int i = 0, cursor = 0; i < num_blocks ; ++i) { |
| block_starts[i] = cursor; |
| cursor += blocks[i]; |
| } |
| |
| scalar_ordering->resize(block_starts.back() + blocks.back()); |
| int cursor = 0; |
| for (int i = 0; i < num_blocks; ++i) { |
| const int block_id = block_ordering[i]; |
| const int block_size = blocks[block_id]; |
| int block_position = block_starts[block_id]; |
| for (int j = 0; j < block_size; ++j) { |
| (*scalar_ordering)[cursor++] = block_position++; |
| } |
| } |
| } |
| |
| bool SuiteSparse::Cholesky(cholmod_sparse* A, cholmod_factor* L) { |
| CHECK_NOTNULL(A); |
| CHECK_NOTNULL(L); |
| |
| cc_.quick_return_if_not_posdef = 1; |
| int status = cholmod_factorize(A, L, &cc_); |
| switch (cc_.status) { |
| case CHOLMOD_NOT_INSTALLED: |
| LOG(WARNING) << "Cholmod failure: method not installed."; |
| return false; |
| case CHOLMOD_OUT_OF_MEMORY: |
| LOG(WARNING) << "Cholmod failure: out of memory."; |
| return false; |
| case CHOLMOD_TOO_LARGE: |
| LOG(WARNING) << "Cholmod failure: integer overflow occured."; |
| return false; |
| case CHOLMOD_INVALID: |
| LOG(WARNING) << "Cholmod failure: invalid input."; |
| return false; |
| case CHOLMOD_NOT_POSDEF: |
| // TODO(sameeragarwal): These two warnings require more |
| // sophisticated handling going forward. For now we will be |
| // strict and treat them as failures. |
| LOG(WARNING) << "Cholmod warning: matrix not positive definite."; |
| return false; |
| case CHOLMOD_DSMALL: |
| LOG(WARNING) << "Cholmod warning: D for LDL' or diag(L) or " |
| << "LL' has tiny absolute value."; |
| return false; |
| case CHOLMOD_OK: |
| if (status != 0) { |
| return true; |
| } |
| LOG(WARNING) << "Cholmod failure: cholmod_factorize returned zero " |
| << "but cholmod_common::status is CHOLMOD_OK." |
| << "Please report this to ceres-solver@googlegroups.com."; |
| return false; |
| default: |
| LOG(WARNING) << "Unknown cholmod return code. " |
| << "Please report this to ceres-solver@googlegroups.com."; |
| return false; |
| } |
| return false; |
| } |
| |
| cholmod_dense* SuiteSparse::Solve(cholmod_factor* L, |
| cholmod_dense* b) { |
| if (cc_.status != CHOLMOD_OK) { |
| LOG(WARNING) << "CHOLMOD status NOT OK"; |
| return NULL; |
| } |
| |
| return cholmod_solve(CHOLMOD_A, L, b, &cc_); |
| } |
| |
| cholmod_dense* SuiteSparse::SolveCholesky(cholmod_sparse* A, |
| cholmod_factor* L, |
| cholmod_dense* b) { |
| CHECK_NOTNULL(A); |
| CHECK_NOTNULL(L); |
| CHECK_NOTNULL(b); |
| |
| if (Cholesky(A, L)) { |
| return Solve(L, b); |
| } |
| |
| return NULL; |
| } |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_NO_SUITESPARSE |