blob: 87503d06c99dce3d10320a737e2ae1b197f9b0cf [file] [log] [blame]
Angus Kong0ae28bd2013-02-13 14:56:04 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: strandmark@google.com (Petter Strandmark)
30
Carlos Hernandez79397c22014-08-07 17:51:38 -070031// This include must come before any #ifndef check on Ceres compile options.
32#include "ceres/internal/port.h"
33
Angus Kong0ae28bd2013-02-13 14:56:04 -080034#ifndef CERES_NO_CXSPARSE
35
36#include "ceres/cxsparse.h"
37
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070038#include <vector>
39#include "ceres/compressed_col_sparse_matrix_utils.h"
Angus Kong0ae28bd2013-02-13 14:56:04 -080040#include "ceres/compressed_row_sparse_matrix.h"
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070041#include "ceres/internal/port.h"
Angus Kong0ae28bd2013-02-13 14:56:04 -080042#include "ceres/triplet_sparse_matrix.h"
43#include "glog/logging.h"
44
45namespace ceres {
46namespace internal {
47
48CXSparse::CXSparse() : scratch_(NULL), scratch_size_(0) {
49}
50
51CXSparse::~CXSparse() {
52 if (scratch_size_ > 0) {
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070053 cs_di_free(scratch_);
Angus Kong0ae28bd2013-02-13 14:56:04 -080054 }
55}
56
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070057
Angus Kong0ae28bd2013-02-13 14:56:04 -080058bool CXSparse::SolveCholesky(cs_di* A,
59 cs_dis* symbolic_factorization,
60 double* b) {
61 // Make sure we have enough scratch space available.
62 if (scratch_size_ < A->n) {
63 if (scratch_size_ > 0) {
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070064 cs_di_free(scratch_);
Angus Kong0ae28bd2013-02-13 14:56:04 -080065 }
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070066 scratch_ =
67 reinterpret_cast<CS_ENTRY*>(cs_di_malloc(A->n, sizeof(CS_ENTRY)));
68 scratch_size_ = A->n;
Angus Kong0ae28bd2013-02-13 14:56:04 -080069 }
70
71 // Solve using Cholesky factorization
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070072 csn* numeric_factorization = cs_di_chol(A, symbolic_factorization);
Angus Kong0ae28bd2013-02-13 14:56:04 -080073 if (numeric_factorization == NULL) {
74 LOG(WARNING) << "Cholesky factorization failed.";
75 return false;
76 }
77
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070078 // When the Cholesky factorization succeeded, these methods are
79 // guaranteed to succeeded as well. In the comments below, "x"
80 // refers to the scratch space.
Angus Kong0ae28bd2013-02-13 14:56:04 -080081 //
82 // Set x = P * b.
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070083 cs_di_ipvec(symbolic_factorization->pinv, b, scratch_, A->n);
Angus Kong0ae28bd2013-02-13 14:56:04 -080084 // Set x = L \ x.
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070085 cs_di_lsolve(numeric_factorization->L, scratch_);
Angus Kong0ae28bd2013-02-13 14:56:04 -080086 // Set x = L' \ x.
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070087 cs_di_ltsolve(numeric_factorization->L, scratch_);
Angus Kong0ae28bd2013-02-13 14:56:04 -080088 // Set b = P' * x.
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070089 cs_di_pvec(symbolic_factorization->pinv, scratch_, b, A->n);
Angus Kong0ae28bd2013-02-13 14:56:04 -080090
91 // Free Cholesky factorization.
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070092 cs_di_nfree(numeric_factorization);
Angus Kong0ae28bd2013-02-13 14:56:04 -080093 return true;
94}
95
96cs_dis* CXSparse::AnalyzeCholesky(cs_di* A) {
97 // order = 1 for Cholesky factorization.
98 return cs_schol(1, A);
99}
100
Sascha Haeberling1d2624a2013-07-23 19:00:21 -0700101cs_dis* CXSparse::AnalyzeCholeskyWithNaturalOrdering(cs_di* A) {
102 // order = 0 for Natural ordering.
103 return cs_schol(0, A);
104}
105
106cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A,
107 const vector<int>& row_blocks,
108 const vector<int>& col_blocks) {
109 const int num_row_blocks = row_blocks.size();
110 const int num_col_blocks = col_blocks.size();
111
112 vector<int> block_rows;
113 vector<int> block_cols;
114 CompressedColumnScalarMatrixToBlockMatrix(A->i,
115 A->p,
116 row_blocks,
117 col_blocks,
118 &block_rows,
119 &block_cols);
120 cs_di block_matrix;
121 block_matrix.m = num_row_blocks;
122 block_matrix.n = num_col_blocks;
123 block_matrix.nz = -1;
124 block_matrix.nzmax = block_rows.size();
125 block_matrix.p = &block_cols[0];
126 block_matrix.i = &block_rows[0];
127 block_matrix.x = NULL;
128
129 int* ordering = cs_amd(1, &block_matrix);
130 vector<int> block_ordering(num_row_blocks, -1);
131 copy(ordering, ordering + num_row_blocks, &block_ordering[0]);
132 cs_free(ordering);
133
134 vector<int> scalar_ordering;
135 BlockOrderingToScalarOrdering(row_blocks, block_ordering, &scalar_ordering);
136
137 cs_dis* symbolic_factorization =
138 reinterpret_cast<cs_dis*>(cs_calloc(1, sizeof(cs_dis)));
139 symbolic_factorization->pinv = cs_pinv(&scalar_ordering[0], A->n);
140 cs* permuted_A = cs_symperm(A, symbolic_factorization->pinv, 0);
141
142 symbolic_factorization->parent = cs_etree(permuted_A, 0);
143 int* postordering = cs_post(symbolic_factorization->parent, A->n);
144 int* column_counts = cs_counts(permuted_A,
145 symbolic_factorization->parent,
146 postordering,
147 0);
148 cs_free(postordering);
149 cs_spfree(permuted_A);
150
151 symbolic_factorization->cp = (int*) cs_malloc(A->n+1, sizeof(int));
152 symbolic_factorization->lnz = cs_cumsum(symbolic_factorization->cp,
153 column_counts,
154 A->n);
155 symbolic_factorization->unz = symbolic_factorization->lnz;
156
157 cs_free(column_counts);
158
159 if (symbolic_factorization->lnz < 0) {
160 cs_sfree(symbolic_factorization);
161 symbolic_factorization = NULL;
162 }
163
164 return symbolic_factorization;
165}
166
Angus Kong0ae28bd2013-02-13 14:56:04 -0800167cs_di CXSparse::CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A) {
168 cs_di At;
169 At.m = A->num_cols();
170 At.n = A->num_rows();
171 At.nz = -1;
172 At.nzmax = A->num_nonzeros();
173 At.p = A->mutable_rows();
174 At.i = A->mutable_cols();
175 At.x = A->mutable_values();
176 return At;
177}
178
179cs_di* CXSparse::CreateSparseMatrix(TripletSparseMatrix* tsm) {
180 cs_di_sparse tsm_wrapper;
Carlos Hernandez79397c22014-08-07 17:51:38 -0700181 tsm_wrapper.nzmax = tsm->num_nonzeros();
182 tsm_wrapper.nz = tsm->num_nonzeros();
Angus Kong0ae28bd2013-02-13 14:56:04 -0800183 tsm_wrapper.m = tsm->num_rows();
184 tsm_wrapper.n = tsm->num_cols();
185 tsm_wrapper.p = tsm->mutable_cols();
186 tsm_wrapper.i = tsm->mutable_rows();
187 tsm_wrapper.x = tsm->mutable_values();
188
189 return cs_compress(&tsm_wrapper);
190}
191
Sascha Haeberling1d2624a2013-07-23 19:00:21 -0700192void CXSparse::ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering) {
193 int* cs_ordering = cs_amd(1, A);
194 copy(cs_ordering, cs_ordering + A->m, ordering);
195 cs_free(cs_ordering);
Angus Kong0ae28bd2013-02-13 14:56:04 -0800196}
197
Sascha Haeberling1d2624a2013-07-23 19:00:21 -0700198cs_di* CXSparse::TransposeMatrix(cs_di* A) {
199 return cs_di_transpose(A, 1);
200}
201
202cs_di* CXSparse::MatrixMatrixMultiply(cs_di* A, cs_di* B) {
203 return cs_di_multiply(A, B);
204}
205
206void CXSparse::Free(cs_di* sparse_matrix) {
207 cs_di_spfree(sparse_matrix);
208}
209
210void CXSparse::Free(cs_dis* symbolic_factorization) {
211 cs_di_sfree(symbolic_factorization);
Angus Kong0ae28bd2013-02-13 14:56:04 -0800212}
213
214} // namespace internal
215} // namespace ceres
216
217#endif // CERES_NO_CXSPARSE