blob: f9342cdbab93131ab3fd89bece70481320b3136d [file] [log] [blame]
Sascha Haeberling1d2624a2013-07-23 19:00:21 -07001// Ceres Solver - A fast non-linear least squares minimizer
Carlos Hernandez79397c22014-08-07 17:51:38 -07002// Copyright 2013 Google Inc. All rights reserved.
Sascha Haeberling1d2624a2013-07-23 19:00:21 -07003// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
Carlos Hernandez79397c22014-08-07 17:51:38 -070029// Author: sameeragarwal@google.com (Sameer Agarwal)
30// mierle@gmail.com (Keir Mierle)
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070031//
32// This autodiff implementation differs from the one found in
Carlos Hernandez79397c22014-08-07 17:51:38 -070033// autodiff_cost_function.h by supporting autodiff on cost functions
34// with variable numbers of parameters with variable sizes. With the
35// other implementation, all the sizes (both the number of parameter
36// blocks and the size of each block) must be fixed at compile time.
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070037//
Carlos Hernandez79397c22014-08-07 17:51:38 -070038// The functor API differs slightly from the API for fixed size
39// autodiff; the expected interface for the cost functors is:
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070040//
41// struct MyCostFunctor {
42// template<typename T>
43// bool operator()(T const* const* parameters, T* residuals) const {
44// // Use parameters[i] to access the i'th parameter block.
45// }
46// }
47//
Carlos Hernandez79397c22014-08-07 17:51:38 -070048// Since the sizing of the parameters is done at runtime, you must
49// also specify the sizes after creating the dynamic autodiff cost
50// function. For example:
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070051//
52// DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
53// new MyCostFunctor());
54// cost_function.AddParameterBlock(5);
55// cost_function.AddParameterBlock(10);
56// cost_function.SetNumResiduals(21);
57//
Carlos Hernandez79397c22014-08-07 17:51:38 -070058// Under the hood, the implementation evaluates the cost function
59// multiple times, computing a small set of the derivatives (four by
60// default, controlled by the Stride template parameter) with each
61// pass. There is a tradeoff with the size of the passes; you may want
62// to experiment with the stride.
Sascha Haeberling1d2624a2013-07-23 19:00:21 -070063
64#ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
65#define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
66
67#include <cmath>
68#include <numeric>
69#include <vector>
70
71#include "ceres/cost_function.h"
72#include "ceres/internal/scoped_ptr.h"
73#include "ceres/jet.h"
74#include "glog/logging.h"
75
76namespace ceres {
77
78template <typename CostFunctor, int Stride = 4>
79class DynamicAutoDiffCostFunction : public CostFunction {
80 public:
81 explicit DynamicAutoDiffCostFunction(CostFunctor* functor)
82 : functor_(functor) {}
83
84 virtual ~DynamicAutoDiffCostFunction() {}
85
86 void AddParameterBlock(int size) {
87 mutable_parameter_block_sizes()->push_back(size);
88 }
89
90 void SetNumResiduals(int num_residuals) {
91 set_num_residuals(num_residuals);
92 }
93
94 virtual bool Evaluate(double const* const* parameters,
95 double* residuals,
96 double** jacobians) const {
97 CHECK_GT(num_residuals(), 0)
98 << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() "
99 << "before DynamicAutoDiffCostFunction::Evaluate().";
100
101 if (jacobians == NULL) {
102 return (*functor_)(parameters, residuals);
103 }
104
105 // The difficulty with Jets, as implemented in Ceres, is that they were
106 // originally designed for strictly compile-sized use. At this point, there
107 // is a large body of code that assumes inside a cost functor it is
108 // acceptable to do e.g. T(1.5) and get an appropriately sized jet back.
109 //
110 // Unfortunately, it is impossible to communicate the expected size of a
111 // dynamically sized jet to the static instantiations that existing code
112 // depends on.
113 //
114 // To work around this issue, the solution here is to evaluate the
115 // jacobians in a series of passes, each one computing Stripe *
116 // num_residuals() derivatives. This is done with small, fixed-size jets.
117 const int num_parameter_blocks = parameter_block_sizes().size();
118 const int num_parameters = std::accumulate(parameter_block_sizes().begin(),
119 parameter_block_sizes().end(),
120 0);
121
122 // Allocate scratch space for the strided evaluation.
123 vector<Jet<double, Stride> > input_jets(num_parameters);
124 vector<Jet<double, Stride> > output_jets(num_residuals());
125
126 // Make the parameter pack that is sent to the functor (reused).
127 vector<Jet<double, Stride>* > jet_parameters(num_parameter_blocks,
128 static_cast<Jet<double, Stride>* >(NULL));
129 int num_active_parameters = 0;
130
131 // To handle constant parameters between non-constant parameter blocks, the
132 // start position --- a raw parameter index --- of each contiguous block of
133 // non-constant parameters is recorded in start_derivative_section.
134 vector<int> start_derivative_section;
135 bool in_derivative_section = false;
136 int parameter_cursor = 0;
137
138 // Discover the derivative sections and set the parameter values.
139 for (int i = 0; i < num_parameter_blocks; ++i) {
140 jet_parameters[i] = &input_jets[parameter_cursor];
141
142 const int parameter_block_size = parameter_block_sizes()[i];
143 if (jacobians[i] != NULL) {
144 if (!in_derivative_section) {
145 start_derivative_section.push_back(parameter_cursor);
146 in_derivative_section = true;
147 }
148
149 num_active_parameters += parameter_block_size;
150 } else {
151 in_derivative_section = false;
152 }
153
154 for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) {
155 input_jets[parameter_cursor].a = parameters[i][j];
156 }
157 }
158
159 // When `num_active_parameters % Stride != 0` then it can be the case
160 // that `active_parameter_count < Stride` while parameter_cursor is less
161 // than the total number of parameters and with no remaining non-constant
162 // parameter blocks. Pushing parameter_cursor (the total number of
163 // parameters) as a final entry to start_derivative_section is required
164 // because if a constant parameter block is encountered after the
165 // last non-constant block then current_derivative_section is incremented
166 // and would otherwise index an invalid position in
167 // start_derivative_section. Setting the final element to the total number
168 // of parameters means that this can only happen at most once in the loop
169 // below.
170 start_derivative_section.push_back(parameter_cursor);
171
172 // Evaluate all of the strides. Each stride is a chunk of the derivative to
173 // evaluate, typically some size proportional to the size of the SIMD
174 // registers of the CPU.
175 int num_strides = static_cast<int>(ceil(num_active_parameters /
176 static_cast<float>(Stride)));
177
178 int current_derivative_section = 0;
179 int current_derivative_section_cursor = 0;
180
181 for (int pass = 0; pass < num_strides; ++pass) {
182 // Set most of the jet components to zero, except for
183 // non-constant #Stride parameters.
184 const int initial_derivative_section = current_derivative_section;
185 const int initial_derivative_section_cursor =
186 current_derivative_section_cursor;
187
188 int active_parameter_count = 0;
189 parameter_cursor = 0;
190
191 for (int i = 0; i < num_parameter_blocks; ++i) {
192 for (int j = 0; j < parameter_block_sizes()[i];
193 ++j, parameter_cursor++) {
194 input_jets[parameter_cursor].v.setZero();
195 if (active_parameter_count < Stride &&
196 parameter_cursor >= (
197 start_derivative_section[current_derivative_section] +
198 current_derivative_section_cursor)) {
199 if (jacobians[i] != NULL) {
200 input_jets[parameter_cursor].v[active_parameter_count] = 1.0;
201 ++active_parameter_count;
202 ++current_derivative_section_cursor;
203 } else {
204 ++current_derivative_section;
205 current_derivative_section_cursor = 0;
206 }
207 }
208 }
209 }
210
211 if (!(*functor_)(&jet_parameters[0], &output_jets[0])) {
212 return false;
213 }
214
215 // Copy the pieces of the jacobians into their final place.
216 active_parameter_count = 0;
217
218 current_derivative_section = initial_derivative_section;
219 current_derivative_section_cursor = initial_derivative_section_cursor;
220
221 for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) {
222 for (int j = 0; j < parameter_block_sizes()[i];
223 ++j, parameter_cursor++) {
224 if (active_parameter_count < Stride &&
225 parameter_cursor >= (
226 start_derivative_section[current_derivative_section] +
227 current_derivative_section_cursor)) {
228 if (jacobians[i] != NULL) {
229 for (int k = 0; k < num_residuals(); ++k) {
230 jacobians[i][k * parameter_block_sizes()[i] + j] =
231 output_jets[k].v[active_parameter_count];
232 }
233 ++active_parameter_count;
234 ++current_derivative_section_cursor;
235 } else {
236 ++current_derivative_section;
237 current_derivative_section_cursor = 0;
238 }
239 }
240 }
241 }
242
243 // Only copy the residuals over once (even though we compute them on
244 // every loop).
245 if (pass == num_strides - 1) {
246 for (int k = 0; k < num_residuals(); ++k) {
247 residuals[k] = output_jets[k].a;
248 }
249 }
250 }
251 return true;
252 }
253
254 private:
255 internal::scoped_ptr<CostFunctor> functor_;
256};
257
258} // namespace ceres
259
260#endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_