blob: 8f3b6005b4477b04a7b6060b828ac91a0a76078e [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process_util.h"
#import <Cocoa/Cocoa.h>
#include <crt_externs.h>
#include <errno.h>
#include <mach/mach.h>
#include <mach/mach_init.h>
#include <mach/mach_vm.h>
#include <mach/shared_region.h>
#include <mach/task.h>
#include <malloc/malloc.h>
#import <objc/runtime.h>
#include <signal.h>
#include <spawn.h>
#include <sys/event.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <new>
#include <string>
#include "base/debug/debugger.h"
#include "base/file_util.h"
#include "base/hash_tables.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/mac/mac_util.h"
#include "base/mac/scoped_mach_port.h"
#include "base/posix/eintr_wrapper.h"
#include "base/scoped_clear_errno.h"
#include "base/strings/string_util.h"
#include "base/sys_info.h"
#include "third_party/apple_apsl/CFBase.h"
#include "third_party/apple_apsl/malloc.h"
#if ARCH_CPU_32_BITS
#include <dlfcn.h>
#include <mach-o/nlist.h>
#include "base/threading/thread_local.h"
#include "third_party/mach_override/mach_override.h"
#endif // ARCH_CPU_32_BITS
namespace base {
void RestoreDefaultExceptionHandler() {
// This function is tailored to remove the Breakpad exception handler.
// exception_mask matches s_exception_mask in
// breakpad/src/client/mac/handler/exception_handler.cc
const exception_mask_t exception_mask = EXC_MASK_BAD_ACCESS |
EXC_MASK_BAD_INSTRUCTION |
EXC_MASK_ARITHMETIC |
EXC_MASK_BREAKPOINT;
// Setting the exception port to MACH_PORT_NULL may not be entirely
// kosher to restore the default exception handler, but in practice,
// it results in the exception port being set to Apple Crash Reporter,
// the desired behavior.
task_set_exception_ports(mach_task_self(), exception_mask, MACH_PORT_NULL,
EXCEPTION_DEFAULT, THREAD_STATE_NONE);
}
// These are helpers for EnableTerminationOnHeapCorruption, which is a no-op
// on 64 bit Macs.
#if ARCH_CPU_32_BITS
namespace {
// Finds the library path for malloc() and thus the libC part of libSystem,
// which in Lion is in a separate image.
const char* LookUpLibCPath() {
const void* addr = reinterpret_cast<void*>(&malloc);
Dl_info info;
if (dladdr(addr, &info))
return info.dli_fname;
DLOG(WARNING) << "Could not find image path for malloc()";
return NULL;
}
typedef void(*malloc_error_break_t)(void);
malloc_error_break_t g_original_malloc_error_break = NULL;
// Returns the function pointer for malloc_error_break. This symbol is declared
// as __private_extern__ and cannot be dlsym()ed. Instead, use nlist() to
// get it.
malloc_error_break_t LookUpMallocErrorBreak() {
const char* lib_c_path = LookUpLibCPath();
if (!lib_c_path)
return NULL;
// Only need to look up two symbols, but nlist() requires a NULL-terminated
// array and takes no count.
struct nlist nl[3];
bzero(&nl, sizeof(nl));
// The symbol to find.
nl[0].n_un.n_name = const_cast<char*>("_malloc_error_break");
// A reference symbol by which the address of the desired symbol will be
// calculated.
nl[1].n_un.n_name = const_cast<char*>("_malloc");
int rv = nlist(lib_c_path, nl);
if (rv != 0 || nl[0].n_type == N_UNDF || nl[1].n_type == N_UNDF) {
return NULL;
}
// nlist() returns addresses as offsets in the image, not the instruction
// pointer in memory. Use the known in-memory address of malloc()
// to compute the offset for malloc_error_break().
uintptr_t reference_addr = reinterpret_cast<uintptr_t>(&malloc);
reference_addr -= nl[1].n_value;
reference_addr += nl[0].n_value;
return reinterpret_cast<malloc_error_break_t>(reference_addr);
}
// Combines ThreadLocalBoolean with AutoReset. It would be convenient
// to compose ThreadLocalPointer<bool> with base::AutoReset<bool>, but that
// would require allocating some storage for the bool.
class ThreadLocalBooleanAutoReset {
public:
ThreadLocalBooleanAutoReset(ThreadLocalBoolean* tlb, bool new_value)
: scoped_tlb_(tlb),
original_value_(tlb->Get()) {
scoped_tlb_->Set(new_value);
}
~ThreadLocalBooleanAutoReset() {
scoped_tlb_->Set(original_value_);
}
private:
ThreadLocalBoolean* scoped_tlb_;
bool original_value_;
DISALLOW_COPY_AND_ASSIGN(ThreadLocalBooleanAutoReset);
};
base::LazyInstance<ThreadLocalBoolean>::Leaky
g_unchecked_malloc = LAZY_INSTANCE_INITIALIZER;
// NOTE(shess): This is called when the malloc library noticed that the heap
// is fubar. Avoid calls which will re-enter the malloc library.
void CrMallocErrorBreak() {
g_original_malloc_error_break();
// Out of memory is certainly not heap corruption, and not necessarily
// something for which the process should be terminated. Leave that decision
// to the OOM killer. The EBADF case comes up because the malloc library
// attempts to log to ASL (syslog) before calling this code, which fails
// accessing a Unix-domain socket because of sandboxing.
if (errno == ENOMEM || (errno == EBADF && g_unchecked_malloc.Get().Get()))
return;
// A unit test checks this error message, so it needs to be in release builds.
char buf[1024] =
"Terminating process due to a potential for future heap corruption: "
"errno=";
char errnobuf[] = {
'0' + ((errno / 100) % 10),
'0' + ((errno / 10) % 10),
'0' + (errno % 10),
'\000'
};
COMPILE_ASSERT(ELAST <= 999, errno_too_large_to_encode);
strlcat(buf, errnobuf, sizeof(buf));
RAW_LOG(ERROR, buf);
// Crash by writing to NULL+errno to allow analyzing errno from
// crash dump info (setting a breakpad key would re-enter the malloc
// library). Max documented errno in intro(2) is actually 102, but
// it really just needs to be "small" to stay on the right vm page.
const int kMaxErrno = 256;
char* volatile death_ptr = NULL;
death_ptr += std::min(errno, kMaxErrno);
*death_ptr = '!';
}
} // namespace
#endif // ARCH_CPU_32_BITS
void EnableTerminationOnHeapCorruption() {
#if defined(ADDRESS_SANITIZER) || ARCH_CPU_64_BITS
// AddressSanitizer handles heap corruption, and on 64 bit Macs, the malloc
// system automatically abort()s on heap corruption.
return;
#else
// Only override once, otherwise CrMallocErrorBreak() will recurse
// to itself.
if (g_original_malloc_error_break)
return;
malloc_error_break_t malloc_error_break = LookUpMallocErrorBreak();
if (!malloc_error_break) {
DLOG(WARNING) << "Could not find malloc_error_break";
return;
}
mach_error_t err = mach_override_ptr(
(void*)malloc_error_break,
(void*)&CrMallocErrorBreak,
(void**)&g_original_malloc_error_break);
if (err != err_none)
DLOG(WARNING) << "Could not override malloc_error_break; error = " << err;
#endif // defined(ADDRESS_SANITIZER) || ARCH_CPU_64_BITS
}
// ------------------------------------------------------------------------
namespace {
bool g_oom_killer_enabled;
// Starting with Mac OS X 10.7, the zone allocators set up by the system are
// read-only, to prevent them from being overwritten in an attack. However,
// blindly unprotecting and reprotecting the zone allocators fails with
// GuardMalloc because GuardMalloc sets up its zone allocator using a block of
// memory in its bss. Explicit saving/restoring of the protection is required.
//
// This function takes a pointer to a malloc zone, de-protects it if necessary,
// and returns (in the out parameters) a region of memory (if any) to be
// re-protected when modifications are complete. This approach assumes that
// there is no contention for the protection of this memory.
void DeprotectMallocZone(ChromeMallocZone* default_zone,
mach_vm_address_t* reprotection_start,
mach_vm_size_t* reprotection_length,
vm_prot_t* reprotection_value) {
mach_port_t unused;
*reprotection_start = reinterpret_cast<mach_vm_address_t>(default_zone);
struct vm_region_basic_info_64 info;
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
kern_return_t result =
mach_vm_region(mach_task_self(),
reprotection_start,
reprotection_length,
VM_REGION_BASIC_INFO_64,
reinterpret_cast<vm_region_info_t>(&info),
&count,
&unused);
CHECK(result == KERN_SUCCESS);
result = mach_port_deallocate(mach_task_self(), unused);
CHECK(result == KERN_SUCCESS);
// Does the region fully enclose the zone pointers? Possibly unwarranted
// simplification used: using the size of a full version 8 malloc zone rather
// than the actual smaller size if the passed-in zone is not version 8.
CHECK(*reprotection_start <=
reinterpret_cast<mach_vm_address_t>(default_zone));
mach_vm_size_t zone_offset = reinterpret_cast<mach_vm_size_t>(default_zone) -
reinterpret_cast<mach_vm_size_t>(*reprotection_start);
CHECK(zone_offset + sizeof(ChromeMallocZone) <= *reprotection_length);
if (info.protection & VM_PROT_WRITE) {
// No change needed; the zone is already writable.
*reprotection_start = 0;
*reprotection_length = 0;
*reprotection_value = VM_PROT_NONE;
} else {
*reprotection_value = info.protection;
result = mach_vm_protect(mach_task_self(),
*reprotection_start,
*reprotection_length,
false,
info.protection | VM_PROT_WRITE);
CHECK(result == KERN_SUCCESS);
}
}
// === C malloc/calloc/valloc/realloc/posix_memalign ===
typedef void* (*malloc_type)(struct _malloc_zone_t* zone,
size_t size);
typedef void* (*calloc_type)(struct _malloc_zone_t* zone,
size_t num_items,
size_t size);
typedef void* (*valloc_type)(struct _malloc_zone_t* zone,
size_t size);
typedef void (*free_type)(struct _malloc_zone_t* zone,
void* ptr);
typedef void* (*realloc_type)(struct _malloc_zone_t* zone,
void* ptr,
size_t size);
typedef void* (*memalign_type)(struct _malloc_zone_t* zone,
size_t alignment,
size_t size);
malloc_type g_old_malloc;
calloc_type g_old_calloc;
valloc_type g_old_valloc;
free_type g_old_free;
realloc_type g_old_realloc;
memalign_type g_old_memalign;
malloc_type g_old_malloc_purgeable;
calloc_type g_old_calloc_purgeable;
valloc_type g_old_valloc_purgeable;
free_type g_old_free_purgeable;
realloc_type g_old_realloc_purgeable;
memalign_type g_old_memalign_purgeable;
void* oom_killer_malloc(struct _malloc_zone_t* zone,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_malloc(zone, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_calloc(struct _malloc_zone_t* zone,
size_t num_items,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_calloc(zone, num_items, size);
if (!result && num_items && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_valloc(struct _malloc_zone_t* zone,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_valloc(zone, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void oom_killer_free(struct _malloc_zone_t* zone,
void* ptr) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
g_old_free(zone, ptr);
}
void* oom_killer_realloc(struct _malloc_zone_t* zone,
void* ptr,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_realloc(zone, ptr, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_memalign(struct _malloc_zone_t* zone,
size_t alignment,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_memalign(zone, alignment, size);
// Only die if posix_memalign would have returned ENOMEM, since there are
// other reasons why NULL might be returned (see
// http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
if (!result && size && alignment >= sizeof(void*)
&& (alignment & (alignment - 1)) == 0) {
debug::BreakDebugger();
}
return result;
}
void* oom_killer_malloc_purgeable(struct _malloc_zone_t* zone,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_malloc_purgeable(zone, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_calloc_purgeable(struct _malloc_zone_t* zone,
size_t num_items,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_calloc_purgeable(zone, num_items, size);
if (!result && num_items && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_valloc_purgeable(struct _malloc_zone_t* zone,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_valloc_purgeable(zone, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void oom_killer_free_purgeable(struct _malloc_zone_t* zone,
void* ptr) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
g_old_free_purgeable(zone, ptr);
}
void* oom_killer_realloc_purgeable(struct _malloc_zone_t* zone,
void* ptr,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_realloc_purgeable(zone, ptr, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_memalign_purgeable(struct _malloc_zone_t* zone,
size_t alignment,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_memalign_purgeable(zone, alignment, size);
// Only die if posix_memalign would have returned ENOMEM, since there are
// other reasons why NULL might be returned (see
// http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
if (!result && size && alignment >= sizeof(void*)
&& (alignment & (alignment - 1)) == 0) {
debug::BreakDebugger();
}
return result;
}
// === C++ operator new ===
void oom_killer_new() {
debug::BreakDebugger();
}
// === Core Foundation CFAllocators ===
bool CanGetContextForCFAllocator() {
return !base::mac::IsOSLaterThanMountainLion_DontCallThis();
}
CFAllocatorContext* ContextForCFAllocator(CFAllocatorRef allocator) {
if (base::mac::IsOSSnowLeopard()) {
ChromeCFAllocatorLeopards* our_allocator =
const_cast<ChromeCFAllocatorLeopards*>(
reinterpret_cast<const ChromeCFAllocatorLeopards*>(allocator));
return &our_allocator->_context;
} else if (base::mac::IsOSLion() || base::mac::IsOSMountainLion()) {
ChromeCFAllocatorLions* our_allocator =
const_cast<ChromeCFAllocatorLions*>(
reinterpret_cast<const ChromeCFAllocatorLions*>(allocator));
return &our_allocator->_context;
} else {
return NULL;
}
}
CFAllocatorAllocateCallBack g_old_cfallocator_system_default;
CFAllocatorAllocateCallBack g_old_cfallocator_malloc;
CFAllocatorAllocateCallBack g_old_cfallocator_malloc_zone;
void* oom_killer_cfallocator_system_default(CFIndex alloc_size,
CFOptionFlags hint,
void* info) {
void* result = g_old_cfallocator_system_default(alloc_size, hint, info);
if (!result)
debug::BreakDebugger();
return result;
}
void* oom_killer_cfallocator_malloc(CFIndex alloc_size,
CFOptionFlags hint,
void* info) {
void* result = g_old_cfallocator_malloc(alloc_size, hint, info);
if (!result)
debug::BreakDebugger();
return result;
}
void* oom_killer_cfallocator_malloc_zone(CFIndex alloc_size,
CFOptionFlags hint,
void* info) {
void* result = g_old_cfallocator_malloc_zone(alloc_size, hint, info);
if (!result)
debug::BreakDebugger();
return result;
}
// === Cocoa NSObject allocation ===
typedef id (*allocWithZone_t)(id, SEL, NSZone*);
allocWithZone_t g_old_allocWithZone;
id oom_killer_allocWithZone(id self, SEL _cmd, NSZone* zone)
{
id result = g_old_allocWithZone(self, _cmd, zone);
if (!result)
debug::BreakDebugger();
return result;
}
} // namespace
void* UncheckedMalloc(size_t size) {
if (g_old_malloc) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
ThreadLocalBooleanAutoReset flag(g_unchecked_malloc.Pointer(), true);
#endif // ARCH_CPU_32_BITS
return g_old_malloc(malloc_default_zone(), size);
}
return malloc(size);
}
void EnableTerminationOnOutOfMemory() {
if (g_oom_killer_enabled)
return;
g_oom_killer_enabled = true;
// === C malloc/calloc/valloc/realloc/posix_memalign ===
// This approach is not perfect, as requests for amounts of memory larger than
// MALLOC_ABSOLUTE_MAX_SIZE (currently SIZE_T_MAX - (2 * PAGE_SIZE)) will
// still fail with a NULL rather than dying (see
// http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c for details).
// Unfortunately, it's the best we can do. Also note that this does not affect
// allocations from non-default zones.
CHECK(!g_old_malloc && !g_old_calloc && !g_old_valloc && !g_old_realloc &&
!g_old_memalign) << "Old allocators unexpectedly non-null";
CHECK(!g_old_malloc_purgeable && !g_old_calloc_purgeable &&
!g_old_valloc_purgeable && !g_old_realloc_purgeable &&
!g_old_memalign_purgeable) << "Old allocators unexpectedly non-null";
#if !defined(ADDRESS_SANITIZER)
// Don't do anything special on OOM for the malloc zones replaced by
// AddressSanitizer, as modifying or protecting them may not work correctly.
ChromeMallocZone* default_zone =
reinterpret_cast<ChromeMallocZone*>(malloc_default_zone());
ChromeMallocZone* purgeable_zone =
reinterpret_cast<ChromeMallocZone*>(malloc_default_purgeable_zone());
mach_vm_address_t default_reprotection_start = 0;
mach_vm_size_t default_reprotection_length = 0;
vm_prot_t default_reprotection_value = VM_PROT_NONE;
DeprotectMallocZone(default_zone,
&default_reprotection_start,
&default_reprotection_length,
&default_reprotection_value);
mach_vm_address_t purgeable_reprotection_start = 0;
mach_vm_size_t purgeable_reprotection_length = 0;
vm_prot_t purgeable_reprotection_value = VM_PROT_NONE;
if (purgeable_zone) {
DeprotectMallocZone(purgeable_zone,
&purgeable_reprotection_start,
&purgeable_reprotection_length,
&purgeable_reprotection_value);
}
// Default zone
g_old_malloc = default_zone->malloc;
g_old_calloc = default_zone->calloc;
g_old_valloc = default_zone->valloc;
g_old_free = default_zone->free;
g_old_realloc = default_zone->realloc;
CHECK(g_old_malloc && g_old_calloc && g_old_valloc && g_old_free &&
g_old_realloc)
<< "Failed to get system allocation functions.";
default_zone->malloc = oom_killer_malloc;
default_zone->calloc = oom_killer_calloc;
default_zone->valloc = oom_killer_valloc;
default_zone->free = oom_killer_free;
default_zone->realloc = oom_killer_realloc;
if (default_zone->version >= 5) {
g_old_memalign = default_zone->memalign;
if (g_old_memalign)
default_zone->memalign = oom_killer_memalign;
}
// Purgeable zone (if it exists)
if (purgeable_zone) {
g_old_malloc_purgeable = purgeable_zone->malloc;
g_old_calloc_purgeable = purgeable_zone->calloc;
g_old_valloc_purgeable = purgeable_zone->valloc;
g_old_free_purgeable = purgeable_zone->free;
g_old_realloc_purgeable = purgeable_zone->realloc;
CHECK(g_old_malloc_purgeable && g_old_calloc_purgeable &&
g_old_valloc_purgeable && g_old_free_purgeable &&
g_old_realloc_purgeable)
<< "Failed to get system allocation functions.";
purgeable_zone->malloc = oom_killer_malloc_purgeable;
purgeable_zone->calloc = oom_killer_calloc_purgeable;
purgeable_zone->valloc = oom_killer_valloc_purgeable;
purgeable_zone->free = oom_killer_free_purgeable;
purgeable_zone->realloc = oom_killer_realloc_purgeable;
if (purgeable_zone->version >= 5) {
g_old_memalign_purgeable = purgeable_zone->memalign;
if (g_old_memalign_purgeable)
purgeable_zone->memalign = oom_killer_memalign_purgeable;
}
}
// Restore protection if it was active.
if (default_reprotection_start) {
kern_return_t result = mach_vm_protect(mach_task_self(),
default_reprotection_start,
default_reprotection_length,
false,
default_reprotection_value);
CHECK(result == KERN_SUCCESS);
}
if (purgeable_reprotection_start) {
kern_return_t result = mach_vm_protect(mach_task_self(),
purgeable_reprotection_start,
purgeable_reprotection_length,
false,
purgeable_reprotection_value);
CHECK(result == KERN_SUCCESS);
}
#endif
// === C malloc_zone_batch_malloc ===
// batch_malloc is omitted because the default malloc zone's implementation
// only supports batch_malloc for "tiny" allocations from the free list. It
// will fail for allocations larger than "tiny", and will only allocate as
// many blocks as it's able to from the free list. These factors mean that it
// can return less than the requested memory even in a non-out-of-memory
// situation. There's no good way to detect whether a batch_malloc failure is
// due to these other factors, or due to genuine memory or address space
// exhaustion. The fact that it only allocates space from the "tiny" free list
// means that it's likely that a failure will not be due to memory exhaustion.
// Similarly, these constraints on batch_malloc mean that callers must always
// be expecting to receive less memory than was requested, even in situations
// where memory pressure is not a concern. Finally, the only public interface
// to batch_malloc is malloc_zone_batch_malloc, which is specific to the
// system's malloc implementation. It's unlikely that anyone's even heard of
// it.
// === C++ operator new ===
// Yes, operator new does call through to malloc, but this will catch failures
// that our imperfect handling of malloc cannot.
std::set_new_handler(oom_killer_new);
#ifndef ADDRESS_SANITIZER
// === Core Foundation CFAllocators ===
// This will not catch allocation done by custom allocators, but will catch
// all allocation done by system-provided ones.
CHECK(!g_old_cfallocator_system_default && !g_old_cfallocator_malloc &&
!g_old_cfallocator_malloc_zone)
<< "Old allocators unexpectedly non-null";
bool cf_allocator_internals_known = CanGetContextForCFAllocator();
if (cf_allocator_internals_known) {
CFAllocatorContext* context =
ContextForCFAllocator(kCFAllocatorSystemDefault);
CHECK(context) << "Failed to get context for kCFAllocatorSystemDefault.";
g_old_cfallocator_system_default = context->allocate;
CHECK(g_old_cfallocator_system_default)
<< "Failed to get kCFAllocatorSystemDefault allocation function.";
context->allocate = oom_killer_cfallocator_system_default;
context = ContextForCFAllocator(kCFAllocatorMalloc);
CHECK(context) << "Failed to get context for kCFAllocatorMalloc.";
g_old_cfallocator_malloc = context->allocate;
CHECK(g_old_cfallocator_malloc)
<< "Failed to get kCFAllocatorMalloc allocation function.";
context->allocate = oom_killer_cfallocator_malloc;
context = ContextForCFAllocator(kCFAllocatorMallocZone);
CHECK(context) << "Failed to get context for kCFAllocatorMallocZone.";
g_old_cfallocator_malloc_zone = context->allocate;
CHECK(g_old_cfallocator_malloc_zone)
<< "Failed to get kCFAllocatorMallocZone allocation function.";
context->allocate = oom_killer_cfallocator_malloc_zone;
} else {
NSLog(@"Internals of CFAllocator not known; out-of-memory failures via "
"CFAllocator will not result in termination. http://crbug.com/45650");
}
#endif
// === Cocoa NSObject allocation ===
// Note that both +[NSObject new] and +[NSObject alloc] call through to
// +[NSObject allocWithZone:].
CHECK(!g_old_allocWithZone)
<< "Old allocator unexpectedly non-null";
Class nsobject_class = [NSObject class];
Method orig_method = class_getClassMethod(nsobject_class,
@selector(allocWithZone:));
g_old_allocWithZone = reinterpret_cast<allocWithZone_t>(
method_getImplementation(orig_method));
CHECK(g_old_allocWithZone)
<< "Failed to get allocWithZone allocation function.";
method_setImplementation(orig_method,
reinterpret_cast<IMP>(oom_killer_allocWithZone));
}
ProcessId GetParentProcessId(ProcessHandle process) {
struct kinfo_proc info;
size_t length = sizeof(struct kinfo_proc);
int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process };
if (sysctl(mib, 4, &info, &length, NULL, 0) < 0) {
DPLOG(ERROR) << "sysctl";
return -1;
}
if (length == 0)
return -1;
return info.kp_eproc.e_ppid;
}
namespace {
const int kWaitBeforeKillSeconds = 2;
// Reap |child| process. This call blocks until completion.
void BlockingReap(pid_t child) {
const pid_t result = HANDLE_EINTR(waitpid(child, NULL, 0));
if (result == -1) {
DPLOG(ERROR) << "waitpid(" << child << ", NULL, 0)";
}
}
// Waits for |timeout| seconds for the given |child| to exit and reap it. If
// the child doesn't exit within the time specified, kills it.
//
// This function takes two approaches: first, it tries to use kqueue to
// observe when the process exits. kevent can monitor a kqueue with a
// timeout, so this method is preferred to wait for a specified period of
// time. Once the kqueue indicates the process has exited, waitpid will reap
// the exited child. If the kqueue doesn't provide an exit event notification,
// before the timeout expires, or if the kqueue fails or misbehaves, the
// process will be mercilessly killed and reaped.
//
// A child process passed to this function may be in one of several states:
// running, terminated and not yet reaped, and (apparently, and unfortunately)
// terminated and already reaped. Normally, a process will at least have been
// asked to exit before this function is called, but this is not required.
// If a process is terminating and unreaped, there may be a window between the
// time that kqueue will no longer recognize it and when it becomes an actual
// zombie that a non-blocking (WNOHANG) waitpid can reap. This condition is
// detected when kqueue indicates that the process is not running and a
// non-blocking waitpid fails to reap the process but indicates that it is
// still running. In this event, a blocking attempt to reap the process
// collects the known-dying child, preventing zombies from congregating.
//
// In the event that the kqueue misbehaves entirely, as it might under a
// EMFILE condition ("too many open files", or out of file descriptors), this
// function will forcibly kill and reap the child without delay. This
// eliminates another potential zombie vector. (If you're out of file
// descriptors, you're probably deep into something else, but that doesn't
// mean that zombies be allowed to kick you while you're down.)
//
// The fact that this function seemingly can be called to wait on a child
// that's not only already terminated but already reaped is a bit of a
// problem: a reaped child's pid can be reclaimed and may refer to a distinct
// process in that case. The fact that this function can seemingly be called
// to wait on a process that's not even a child is also a problem: kqueue will
// work in that case, but waitpid won't, and killing a non-child might not be
// the best approach.
void WaitForChildToDie(pid_t child, int timeout) {
DCHECK(child > 0);
DCHECK(timeout > 0);
// DON'T ADD ANY EARLY RETURNS TO THIS FUNCTION without ensuring that
// |child| has been reaped. Specifically, even if a kqueue, kevent, or other
// call fails, this function should fall back to the last resort of trying
// to kill and reap the process. Not observing this rule will resurrect
// zombies.
int result;
int kq = HANDLE_EINTR(kqueue());
if (kq == -1) {
DPLOG(ERROR) << "kqueue()";
} else {
file_util::ScopedFD auto_close_kq(&kq);
struct kevent change = {0};
EV_SET(&change, child, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL);
result = HANDLE_EINTR(kevent(kq, &change, 1, NULL, 0, NULL));
if (result == -1) {
if (errno != ESRCH) {
DPLOG(ERROR) << "kevent (setup " << child << ")";
} else {
// At this point, one of the following has occurred:
// 1. The process has died but has not yet been reaped.
// 2. The process has died and has already been reaped.
// 3. The process is in the process of dying. It's no longer
// kqueueable, but it may not be waitable yet either. Mark calls
// this case the "zombie death race".
result = HANDLE_EINTR(waitpid(child, NULL, WNOHANG));
if (result != 0) {
// A positive result indicates case 1. waitpid succeeded and reaped
// the child. A result of -1 indicates case 2. The child has already
// been reaped. In both of these cases, no further action is
// necessary.
return;
}
// |result| is 0, indicating case 3. The process will be waitable in
// short order. Fall back out of the kqueue code to kill it (for good
// measure) and reap it.
}
} else {
// Keep track of the elapsed time to be able to restart kevent if it's
// interrupted.
TimeDelta remaining_delta = TimeDelta::FromSeconds(timeout);
TimeTicks deadline = TimeTicks::Now() + remaining_delta;
result = -1;
struct kevent event = {0};
while (remaining_delta.InMilliseconds() > 0) {
const struct timespec remaining_timespec = remaining_delta.ToTimeSpec();
result = kevent(kq, NULL, 0, &event, 1, &remaining_timespec);
if (result == -1 && errno == EINTR) {
remaining_delta = deadline - TimeTicks::Now();
result = 0;
} else {
break;
}
}
if (result == -1) {
DPLOG(ERROR) << "kevent (wait " << child << ")";
} else if (result > 1) {
DLOG(ERROR) << "kevent (wait " << child << "): unexpected result "
<< result;
} else if (result == 1) {
if ((event.fflags & NOTE_EXIT) &&
(event.ident == static_cast<uintptr_t>(child))) {
// The process is dead or dying. This won't block for long, if at
// all.
BlockingReap(child);
return;
} else {
DLOG(ERROR) << "kevent (wait " << child
<< "): unexpected event: fflags=" << event.fflags
<< ", ident=" << event.ident;
}
}
}
}
// The child is still alive, or is very freshly dead. Be sure by sending it
// a signal. This is safe even if it's freshly dead, because it will be a
// zombie (or on the way to zombiedom) and kill will return 0 even if the
// signal is not delivered to a live process.
result = kill(child, SIGKILL);
if (result == -1) {
DPLOG(ERROR) << "kill(" << child << ", SIGKILL)";
} else {
// The child is definitely on the way out now. BlockingReap won't need to
// wait for long, if at all.
BlockingReap(child);
}
}
} // namespace
void EnsureProcessTerminated(ProcessHandle process) {
WaitForChildToDie(process, kWaitBeforeKillSeconds);
}
} // namespace base