blob: 812d9fa16e57803300e5b5743212884d63f5d24c [file] [log] [blame]
Torne (Richard Coles)58218062012-11-14 11:43:16 +00001// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "crypto/rsa_private_key.h"
6
7#include <algorithm>
8#include <list>
9
10#include "base/logging.h"
11#include "base/memory/scoped_ptr.h"
Torne (Richard Coles)868fa2f2013-06-11 10:57:03 +010012#include "base/strings/string_util.h"
Torne (Richard Coles)58218062012-11-14 11:43:16 +000013
14// This file manually encodes and decodes RSA private keys using PrivateKeyInfo
15// from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are:
16//
17// PrivateKeyInfo ::= SEQUENCE {
18// version Version,
19// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
20// privateKey PrivateKey,
21// attributes [0] IMPLICIT Attributes OPTIONAL
22// }
23//
24// RSAPrivateKey ::= SEQUENCE {
25// version Version,
26// modulus INTEGER,
27// publicExponent INTEGER,
28// privateExponent INTEGER,
29// prime1 INTEGER,
30// prime2 INTEGER,
31// exponent1 INTEGER,
32// exponent2 INTEGER,
33// coefficient INTEGER
34// }
35
36namespace {
37// Helper for error handling during key import.
38#define READ_ASSERT(truth) \
39 if (!(truth)) { \
40 NOTREACHED(); \
41 return false; \
42 }
43} // namespace
44
45namespace crypto {
46
47const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = {
48 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01,
49 0x05, 0x00
50};
51
52PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian)
53 : big_endian_(big_endian) {}
54
55PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {}
56
57bool PrivateKeyInfoCodec::Export(std::vector<uint8>* output) {
58 std::list<uint8> content;
59
60 // Version (always zero)
61 uint8 version = 0;
62
63 PrependInteger(coefficient_, &content);
64 PrependInteger(exponent2_, &content);
65 PrependInteger(exponent1_, &content);
66 PrependInteger(prime2_, &content);
67 PrependInteger(prime1_, &content);
68 PrependInteger(private_exponent_, &content);
69 PrependInteger(public_exponent_, &content);
70 PrependInteger(modulus_, &content);
71 PrependInteger(&version, 1, &content);
72 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
73 PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
74
75 // RSA algorithm OID
76 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
77 content.push_front(kRsaAlgorithmIdentifier[i - 1]);
78
79 PrependInteger(&version, 1, &content);
80 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
81
82 // Copy everying into the output.
83 output->reserve(content.size());
84 output->assign(content.begin(), content.end());
85
86 return true;
87}
88
89bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8>* output) {
90 // Create a sequence with the modulus (n) and public exponent (e).
91 std::vector<uint8> bit_string;
92 if (!ExportPublicKey(&bit_string))
93 return false;
94
95 // Add the sequence as the contents of a bit string.
96 std::list<uint8> content;
97 PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()),
98 &content);
99
100 // Add the RSA algorithm OID.
101 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
102 content.push_front(kRsaAlgorithmIdentifier[i - 1]);
103
104 // Finally, wrap everything in a sequence.
105 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
106
107 // Copy everything into the output.
108 output->reserve(content.size());
109 output->assign(content.begin(), content.end());
110
111 return true;
112}
113
114bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8>* output) {
115 // Create a sequence with the modulus (n) and public exponent (e).
116 std::list<uint8> content;
117 PrependInteger(&public_exponent_[0],
118 static_cast<int>(public_exponent_.size()),
119 &content);
120 PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content);
121 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
122
123 // Copy everything into the output.
124 output->reserve(content.size());
125 output->assign(content.begin(), content.end());
126
127 return true;
128}
129
130bool PrivateKeyInfoCodec::Import(const std::vector<uint8>& input) {
131 if (input.empty()) {
132 return false;
133 }
134
135 // Parse the private key info up to the public key values, ignoring
136 // the subsequent private key values.
137 uint8* src = const_cast<uint8*>(&input.front());
138 uint8* end = src + input.size();
139 if (!ReadSequence(&src, end) ||
140 !ReadVersion(&src, end) ||
141 !ReadAlgorithmIdentifier(&src, end) ||
142 !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
143 !ReadSequence(&src, end) ||
144 !ReadVersion(&src, end) ||
145 !ReadInteger(&src, end, &modulus_))
146 return false;
147
148 int mod_size = modulus_.size();
149 READ_ASSERT(mod_size % 2 == 0);
150 int primes_size = mod_size / 2;
151
152 if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) ||
153 !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) ||
154 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) ||
155 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) ||
156 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) ||
157 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) ||
158 !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_))
159 return false;
160
161 READ_ASSERT(src == end);
162
163
164 return true;
165}
166
167void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8>& in,
168 std::list<uint8>* out) {
169 uint8* ptr = const_cast<uint8*>(&in.front());
170 PrependIntegerImpl(ptr, in.size(), out, big_endian_);
171}
172
173// Helper to prepend an ASN.1 integer.
174void PrivateKeyInfoCodec::PrependInteger(uint8* val,
175 int num_bytes,
176 std::list<uint8>* data) {
177 PrependIntegerImpl(val, num_bytes, data, big_endian_);
178}
179
180void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val,
181 int num_bytes,
182 std::list<uint8>* data,
183 bool big_endian) {
184 // Reverse input if little-endian.
185 std::vector<uint8> tmp;
186 if (!big_endian) {
187 tmp.assign(val, val + num_bytes);
188 std::reverse(tmp.begin(), tmp.end());
189 val = &tmp.front();
190 }
191
192 // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
193 // from the most-significant end of the integer.
194 int start = 0;
195 while (start < (num_bytes - 1) && val[start] == 0x00) {
196 start++;
197 num_bytes--;
198 }
199 PrependBytes(val, start, num_bytes, data);
200
201 // ASN.1 integers are signed. To encode a positive integer whose sign bit
202 // (the most significant bit) would otherwise be set and make the number
203 // negative, ASN.1 requires a leading null byte to force the integer to be
204 // positive.
205 uint8 front = data->front();
206 if ((front & 0x80) != 0) {
207 data->push_front(0x00);
208 num_bytes++;
209 }
210
211 PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
212}
213
214bool PrivateKeyInfoCodec::ReadInteger(uint8** pos,
215 uint8* end,
216 std::vector<uint8>* out) {
217 return ReadIntegerImpl(pos, end, out, big_endian_);
218}
219
220bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos,
221 uint8* end,
222 size_t expected_size,
223 std::vector<uint8>* out) {
224 std::vector<uint8> temp;
225 if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian
226 return false;
227
228 int pad = expected_size - temp.size();
229 int index = 0;
230 if (out->size() == expected_size + 1) {
231 READ_ASSERT(out->front() == 0x00);
232 pad++;
233 index++;
234 } else {
235 READ_ASSERT(out->size() <= expected_size);
236 }
237
238 out->insert(out->end(), pad, 0x00);
239 out->insert(out->end(), temp.begin(), temp.end());
240
241 // Reverse output if little-endian.
242 if (!big_endian_)
243 std::reverse(out->begin(), out->end());
244 return true;
245}
246
247bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos,
248 uint8* end,
249 std::vector<uint8>* out,
250 bool big_endian) {
251 uint32 length = 0;
252 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length)
253 return false;
254
255 // The first byte can be zero to force positiveness. We can ignore this.
256 if (**pos == 0x00) {
257 ++(*pos);
258 --length;
259 }
260
261 if (length)
262 out->insert(out->end(), *pos, (*pos) + length);
263
264 (*pos) += length;
265
266 // Reverse output if little-endian.
267 if (!big_endian)
268 std::reverse(out->begin(), out->end());
269 return true;
270}
271
272void PrivateKeyInfoCodec::PrependBytes(uint8* val,
273 int start,
274 int num_bytes,
275 std::list<uint8>* data) {
276 while (num_bytes > 0) {
277 --num_bytes;
278 data->push_front(val[start + num_bytes]);
279 }
280}
281
282void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8>* data) {
283 // The high bit is used to indicate whether additional octets are needed to
284 // represent the length.
285 if (size < 0x80) {
286 data->push_front(static_cast<uint8>(size));
287 } else {
288 uint8 num_bytes = 0;
289 while (size > 0) {
290 data->push_front(static_cast<uint8>(size & 0xFF));
291 size >>= 8;
292 num_bytes++;
293 }
294 CHECK_LE(num_bytes, 4);
295 data->push_front(0x80 | num_bytes);
296 }
297}
298
299void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type,
300 uint32 length,
301 std::list<uint8>* output) {
302 PrependLength(length, output);
303 output->push_front(type);
304}
305
306void PrivateKeyInfoCodec::PrependBitString(uint8* val,
307 int num_bytes,
308 std::list<uint8>* output) {
309 // Start with the data.
310 PrependBytes(val, 0, num_bytes, output);
311 // Zero unused bits.
312 output->push_front(0);
313 // Add the length.
314 PrependLength(num_bytes + 1, output);
315 // Finally, add the bit string tag.
316 output->push_front((uint8) kBitStringTag);
317}
318
319bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) {
320 READ_ASSERT(*pos < end);
321 int length = 0;
322
323 // If the MSB is not set, the length is just the byte itself.
324 if (!(**pos & 0x80)) {
325 length = **pos;
326 (*pos)++;
327 } else {
328 // Otherwise, the lower 7 indicate the length of the length.
329 int length_of_length = **pos & 0x7F;
330 READ_ASSERT(length_of_length <= 4);
331 (*pos)++;
332 READ_ASSERT(*pos + length_of_length < end);
333
334 length = 0;
335 for (int i = 0; i < length_of_length; ++i) {
336 length <<= 8;
337 length |= **pos;
338 (*pos)++;
339 }
340 }
341
342 READ_ASSERT(*pos + length <= end);
343 if (result) *result = length;
344 return true;
345}
346
347bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos,
348 uint8* end,
349 uint8 expected_tag,
350 uint32* length) {
351 READ_ASSERT(*pos < end);
352 READ_ASSERT(**pos == expected_tag);
353 (*pos)++;
354
355 return ReadLength(pos, end, length);
356}
357
358bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) {
359 return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
360}
361
362bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) {
363 READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
364 READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
365 sizeof(kRsaAlgorithmIdentifier)) == 0);
366 (*pos) += sizeof(kRsaAlgorithmIdentifier);
367 return true;
368}
369
370bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) {
371 uint32 length = 0;
372 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
373 return false;
374
375 // The version should be zero.
376 for (uint32 i = 0; i < length; ++i) {
377 READ_ASSERT(**pos == 0x00);
378 (*pos)++;
379 }
380
381 return true;
382}
383
384} // namespace crypto