blob: aec264d4c53cb0a96b730b82ba5ba7ff3cbee28a [file] [log] [blame]
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/animation/KeyframeEffectModel.h"
#include "core/animation/TimedItem.h"
#include "wtf/text/StringHash.h"
namespace {
using namespace WebCore;
class AddCompositableValue FINAL : public AnimationEffect::CompositableValue {
public:
static PassRefPtr<AddCompositableValue> create(const AnimatableValue* value)
{
return adoptRef(new AddCompositableValue(value));
}
virtual bool dependsOnUnderlyingValue() const OVERRIDE
{
return true;
}
virtual PassRefPtr<AnimatableValue> compositeOnto(const AnimatableValue* underlyingValue) const OVERRIDE
{
return AnimatableValue::add(underlyingValue, m_value.get());
}
private:
AddCompositableValue(const AnimatableValue* value)
: m_value(const_cast<AnimatableValue*>(value))
{
}
RefPtr<AnimatableValue> m_value;
};
class BlendedCompositableValue FINAL : public AnimationEffect::CompositableValue {
public:
static PassRefPtr<BlendedCompositableValue> create(const AnimationEffect::CompositableValue* before, const AnimationEffect::CompositableValue* after, double fraction)
{
return adoptRef(new BlendedCompositableValue(before, after, fraction));
}
virtual bool dependsOnUnderlyingValue() const OVERRIDE
{
return m_dependsOnUnderlyingValue;
}
virtual PassRefPtr<AnimatableValue> compositeOnto(const AnimatableValue* underlyingValue) const OVERRIDE
{
return AnimatableValue::interpolate(m_before->compositeOnto(underlyingValue).get(), m_after->compositeOnto(underlyingValue).get(), m_fraction);
}
private:
BlendedCompositableValue(const AnimationEffect::CompositableValue* before, const AnimationEffect::CompositableValue* after, double fraction)
: m_before(const_cast<AnimationEffect::CompositableValue*>(before))
, m_after(const_cast<AnimationEffect::CompositableValue*>(after))
, m_fraction(fraction)
, m_dependsOnUnderlyingValue(before->dependsOnUnderlyingValue() || after->dependsOnUnderlyingValue())
{ }
RefPtr<AnimationEffect::CompositableValue> m_before;
RefPtr<AnimationEffect::CompositableValue> m_after;
double m_fraction;
bool m_dependsOnUnderlyingValue;
};
const double accuracyForKeyframeEasing = 0.0000001;
} // namespace
namespace WebCore {
Keyframe::Keyframe()
: m_offset(nullValue())
, m_composite(AnimationEffect::CompositeReplace)
, m_easing(LinearTimingFunction::preset())
{ }
Keyframe::Keyframe(const Keyframe& copyFrom)
: m_offset(copyFrom.m_offset)
, m_composite(copyFrom.m_composite)
, m_easing(copyFrom.m_easing)
{
ASSERT(m_easing);
for (PropertyValueMap::const_iterator iter = copyFrom.m_propertyValues.begin(); iter != copyFrom.m_propertyValues.end(); ++iter)
setPropertyValue(iter->key, iter->value.get());
}
void Keyframe::setEasing(PassRefPtr<TimingFunction> easing)
{
ASSERT(easing);
m_easing = easing;
}
void Keyframe::setPropertyValue(CSSPropertyID property, const AnimatableValue* value)
{
m_propertyValues.add(property, const_cast<AnimatableValue*>(value));
}
void Keyframe::clearPropertyValue(CSSPropertyID property)
{
m_propertyValues.remove(property);
}
const AnimatableValue* Keyframe::propertyValue(CSSPropertyID property) const
{
ASSERT(m_propertyValues.contains(property));
return m_propertyValues.get(property);
}
PropertySet Keyframe::properties() const
{
// This is not used in time-critical code, so we probably don't need to
// worry about caching this result.
PropertySet properties;
for (PropertyValueMap::const_iterator iter = m_propertyValues.begin(); iter != m_propertyValues.end(); ++iter)
properties.add(*iter.keys());
return properties;
}
PassRefPtrWillBeRawPtr<Keyframe> Keyframe::cloneWithOffset(double offset) const
{
RefPtrWillBeRawPtr<Keyframe> theClone = clone();
theClone->setOffset(offset);
return theClone.release();
}
KeyframeEffectModel::KeyframeEffectModel(const KeyframeVector& keyframes)
: m_keyframes(keyframes)
{
}
PropertySet KeyframeEffectModel::properties() const
{
PropertySet result;
if (!m_keyframes.size()) {
return result;
}
result = m_keyframes[0]->properties();
for (size_t i = 1; i < m_keyframes.size(); i++) {
PropertySet extras = m_keyframes[i]->properties();
for (PropertySet::const_iterator it = extras.begin(); it != extras.end(); ++it) {
result.add(*it);
}
}
return result;
}
PassOwnPtr<AnimationEffect::CompositableValueList> KeyframeEffectModel::sample(int iteration, double fraction) const
{
ASSERT(iteration >= 0);
ASSERT(!isNull(fraction));
const_cast<KeyframeEffectModel*>(this)->ensureKeyframeGroups();
OwnPtr<CompositableValueList> map = adoptPtr(new CompositableValueList());
for (KeyframeGroupMap::const_iterator iter = m_keyframeGroups->begin(); iter != m_keyframeGroups->end(); ++iter)
map->append(std::make_pair(iter->key, iter->value->sample(iteration, fraction)));
return map.release();
}
KeyframeEffectModel::KeyframeVector KeyframeEffectModel::normalizedKeyframes(const KeyframeVector& keyframes)
{
// keyframes [beginIndex, endIndex) will remain after removing all keyframes if they are not
// loosely sorted by offset, and after removing keyframes with positional offset outide [0, 1].
size_t beginIndex = 0;
size_t endIndex = keyframes.size();
// Becomes the most recent keyframe with an explicit offset.
size_t lastIndex = endIndex;
double lastOffset = std::numeric_limits<double>::quiet_NaN();
for (size_t i = 0; i < keyframes.size(); ++i) {
double offset = keyframes[i]->offset();
if (!isNull(offset)) {
if (lastIndex < i && offset < lastOffset) {
// The keyframes are not loosely sorted by offset. Exclude all.
endIndex = beginIndex;
break;
}
if (offset < 0) {
// Remove all keyframes up to and including this keyframe.
beginIndex = i + 1;
} else if (offset > 1) {
// Remove all keyframes from this keyframe onwards. Note we must complete our checking
// that the keyframes are loosely sorted by offset, so we can't exit the loop early.
endIndex = std::min(i, endIndex);
}
lastIndex = i;
lastOffset = offset;
}
}
KeyframeVector result;
if (beginIndex != endIndex) {
result.reserveCapacity(endIndex - beginIndex);
for (size_t i = beginIndex; i < endIndex; ++i) {
result.append(keyframes[i]->clone());
}
if (isNull(result[result.size() - 1]->offset()))
result[result.size() - 1]->setOffset(1);
if (result.size() > 1 && isNull(result[0]->offset()))
result[0]->setOffset(0);
lastIndex = 0;
lastOffset = result[0]->offset();
for (size_t i = 1; i < result.size(); ++i) {
double offset = result[i]->offset();
if (!isNull(offset)) {
if (lastIndex + 1 < i) {
for (size_t j = 1; j < i - lastIndex; ++j)
result[lastIndex + j]->setOffset(lastOffset + (offset - lastOffset) * j / (i - lastIndex));
}
lastIndex = i;
lastOffset = offset;
}
}
}
return result;
}
void KeyframeEffectModel::ensureKeyframeGroups() const
{
if (m_keyframeGroups)
return;
m_keyframeGroups = adoptPtr(new KeyframeGroupMap);
const KeyframeVector keyframes = normalizedKeyframes(getFrames());
for (KeyframeVector::const_iterator keyframeIter = keyframes.begin(); keyframeIter != keyframes.end(); ++keyframeIter) {
const Keyframe* keyframe = keyframeIter->get();
PropertySet keyframeProperties = keyframe->properties();
for (PropertySet::const_iterator propertyIter = keyframeProperties.begin(); propertyIter != keyframeProperties.end(); ++propertyIter) {
CSSPropertyID property = *propertyIter;
KeyframeGroupMap::iterator groupIter = m_keyframeGroups->find(property);
PropertySpecificKeyframeGroup* group;
if (groupIter == m_keyframeGroups->end())
group = m_keyframeGroups->add(property, adoptPtr(new PropertySpecificKeyframeGroup)).storedValue->value.get();
else
group = groupIter->value.get();
group->appendKeyframe(adoptPtr(
new PropertySpecificKeyframe(keyframe->offset(), keyframe->easing(), keyframe->propertyValue(property), keyframe->composite())));
}
}
// Add synthetic keyframes.
for (KeyframeGroupMap::iterator iter = m_keyframeGroups->begin(); iter != m_keyframeGroups->end(); ++iter) {
iter->value->addSyntheticKeyframeIfRequired();
iter->value->removeRedundantKeyframes();
}
}
KeyframeEffectModel::PropertySpecificKeyframe::PropertySpecificKeyframe(double offset, PassRefPtr<TimingFunction> easing, const AnimatableValue* value, CompositeOperation composite)
: m_offset(offset)
, m_easing(easing)
, m_value(composite == AnimationEffect::CompositeReplace ?
AnimatableValue::takeConstRef(value) :
static_cast<PassRefPtr<CompositableValue> >(AddCompositableValue::create(value)))
{
}
KeyframeEffectModel::PropertySpecificKeyframe::PropertySpecificKeyframe(double offset, PassRefPtr<TimingFunction> easing, PassRefPtr<CompositableValue> value)
: m_offset(offset)
, m_easing(easing)
, m_value(value)
{
ASSERT(!isNull(m_offset));
}
PassOwnPtr<KeyframeEffectModel::PropertySpecificKeyframe> KeyframeEffectModel::PropertySpecificKeyframe::cloneWithOffset(double offset) const
{
return adoptPtr(new PropertySpecificKeyframe(offset, m_easing, PassRefPtr<CompositableValue>(m_value)));
}
void KeyframeEffectModel::PropertySpecificKeyframeGroup::appendKeyframe(PassOwnPtr<PropertySpecificKeyframe> keyframe)
{
ASSERT(m_keyframes.isEmpty() || m_keyframes.last()->offset() <= keyframe->offset());
m_keyframes.append(keyframe);
}
void KeyframeEffectModel::PropertySpecificKeyframeGroup::removeRedundantKeyframes()
{
// As an optimization, removes keyframes in the following categories, as
// they will never be used by sample().
// - End keyframes with the same offset as their neighbor
// - Interior keyframes with the same offset as both their neighbors
// Note that synthetic keyframes must be added before this method is
// called.
ASSERT(m_keyframes.size() >= 2);
for (int i = m_keyframes.size() - 1; i >= 0; --i) {
double offset = m_keyframes[i]->offset();
bool hasSameOffsetAsPreviousNeighbor = !i || m_keyframes[i - 1]->offset() == offset;
bool hasSameOffsetAsNextNeighbor = i == static_cast<int>(m_keyframes.size() - 1) || m_keyframes[i + 1]->offset() == offset;
if (hasSameOffsetAsPreviousNeighbor && hasSameOffsetAsNextNeighbor)
m_keyframes.remove(i);
}
ASSERT(m_keyframes.size() >= 2);
}
void KeyframeEffectModel::PropertySpecificKeyframeGroup::addSyntheticKeyframeIfRequired()
{
ASSERT(!m_keyframes.isEmpty());
double offset = m_keyframes.first()->offset();
bool allOffsetsEqual = true;
for (PropertySpecificKeyframeVector::const_iterator iter = m_keyframes.begin() + 1; iter != m_keyframes.end(); ++iter) {
if ((*iter)->offset() != offset) {
allOffsetsEqual = false;
break;
}
}
if (!allOffsetsEqual)
return;
if (!offset)
appendKeyframe(m_keyframes.first()->cloneWithOffset(1.0));
else
m_keyframes.insert(0, adoptPtr(new PropertySpecificKeyframe(0.0, nullptr, AnimatableValue::neutralValue(), CompositeAdd)));
}
PassRefPtr<AnimationEffect::CompositableValue> KeyframeEffectModel::PropertySpecificKeyframeGroup::sample(int iteration, double offset) const
{
// FIXME: Implement accumulation.
ASSERT_UNUSED(iteration, iteration >= 0);
ASSERT(!isNull(offset));
// Bail if offset is null, as this can lead to buffer overflow below.
if (isNull(offset))
return const_cast<CompositableValue*>(m_keyframes.first()->value());
double minimumOffset = m_keyframes.first()->offset();
double maximumOffset = m_keyframes.last()->offset();
ASSERT(minimumOffset != maximumOffset);
PropertySpecificKeyframeVector::const_iterator before;
PropertySpecificKeyframeVector::const_iterator after;
// Note that this algorithm is simpler than that in the spec because we
// have removed keyframes with equal offsets in
// removeRedundantKeyframes().
if (offset < minimumOffset) {
before = m_keyframes.begin();
after = before + 1;
ASSERT((*before)->offset() > offset);
ASSERT((*after)->offset() > offset);
} else if (offset >= maximumOffset) {
after = m_keyframes.end() - 1;
before = after - 1;
ASSERT((*before)->offset() < offset);
ASSERT((*after)->offset() <= offset);
} else {
// FIXME: This is inefficient for large numbers of keyframes. Consider
// using binary search.
after = m_keyframes.begin();
while ((*after)->offset() <= offset)
++after;
before = after - 1;
ASSERT((*before)->offset() <= offset);
ASSERT((*after)->offset() > offset);
}
if ((*before)->offset() == offset)
return const_cast<CompositableValue*>((*before)->value());
if ((*after)->offset() == offset)
return const_cast<CompositableValue*>((*after)->value());
double fraction = (offset - (*before)->offset()) / ((*after)->offset() - (*before)->offset());
if (const TimingFunction* timingFunction = (*before)->easing())
fraction = timingFunction->evaluate(fraction, accuracyForKeyframeEasing);
return BlendedCompositableValue::create((*before)->value(), (*after)->value(), fraction);
}
void KeyframeEffectModel::trace(Visitor* visitor)
{
visitor->trace(m_keyframes);
}
} // namespace