blob: ec440da0109ec2a0f82b9d9c01f97b5984bf6a78 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
//
// Definition of the in-memory high-level intermediate representation
// of shaders. This is a tree that parser creates.
//
// Nodes in the tree are defined as a hierarchy of classes derived from
// TIntermNode. Each is a node in a tree. There is no preset branching factor;
// each node can have it's own type of list of children.
//
#ifndef COMPILER_TRANSLATOR_INTERMEDIATE_H_
#define COMPILER_TRANSLATOR_INTERMEDIATE_H_
#include "GLSLANG/ShaderLang.h"
#include <algorithm>
#include <queue>
#include "compiler/translator/Common.h"
#include "compiler/translator/Types.h"
#include "compiler/translator/ConstantUnion.h"
//
// Operators used by the high-level (parse tree) representation.
//
enum TOperator
{
EOpNull, // if in a node, should only mean a node is still being built
EOpSequence, // denotes a list of statements, or parameters, etc.
EOpFunctionCall,
EOpFunction, // For function definition
EOpParameters, // an aggregate listing the parameters to a function
EOpDeclaration,
EOpInvariantDeclaration, // Specialized declarations for attributing invariance
EOpPrototype,
//
// Unary operators
//
EOpNegative,
EOpLogicalNot,
EOpVectorLogicalNot,
EOpPostIncrement,
EOpPostDecrement,
EOpPreIncrement,
EOpPreDecrement,
//
// binary operations
//
EOpAdd,
EOpSub,
EOpMul,
EOpDiv,
EOpEqual,
EOpNotEqual,
EOpVectorEqual,
EOpVectorNotEqual,
EOpLessThan,
EOpGreaterThan,
EOpLessThanEqual,
EOpGreaterThanEqual,
EOpComma,
EOpVectorTimesScalar,
EOpVectorTimesMatrix,
EOpMatrixTimesVector,
EOpMatrixTimesScalar,
EOpLogicalOr,
EOpLogicalXor,
EOpLogicalAnd,
EOpIndexDirect,
EOpIndexIndirect,
EOpIndexDirectStruct,
EOpIndexDirectInterfaceBlock,
EOpVectorSwizzle,
//
// Built-in functions potentially mapped to operators
//
EOpRadians,
EOpDegrees,
EOpSin,
EOpCos,
EOpTan,
EOpAsin,
EOpAcos,
EOpAtan,
EOpPow,
EOpExp,
EOpLog,
EOpExp2,
EOpLog2,
EOpSqrt,
EOpInverseSqrt,
EOpAbs,
EOpSign,
EOpFloor,
EOpCeil,
EOpFract,
EOpMod,
EOpMin,
EOpMax,
EOpClamp,
EOpMix,
EOpStep,
EOpSmoothStep,
EOpLength,
EOpDistance,
EOpDot,
EOpCross,
EOpNormalize,
EOpFaceForward,
EOpReflect,
EOpRefract,
EOpDFdx, // Fragment only, OES_standard_derivatives extension
EOpDFdy, // Fragment only, OES_standard_derivatives extension
EOpFwidth, // Fragment only, OES_standard_derivatives extension
EOpMatrixTimesMatrix,
EOpAny,
EOpAll,
//
// Branch
//
EOpKill, // Fragment only
EOpReturn,
EOpBreak,
EOpContinue,
//
// Constructors
//
EOpConstructInt,
EOpConstructUInt,
EOpConstructBool,
EOpConstructFloat,
EOpConstructVec2,
EOpConstructVec3,
EOpConstructVec4,
EOpConstructBVec2,
EOpConstructBVec3,
EOpConstructBVec4,
EOpConstructIVec2,
EOpConstructIVec3,
EOpConstructIVec4,
EOpConstructUVec2,
EOpConstructUVec3,
EOpConstructUVec4,
EOpConstructMat2,
EOpConstructMat3,
EOpConstructMat4,
EOpConstructStruct,
//
// moves
//
EOpAssign,
EOpInitialize,
EOpAddAssign,
EOpSubAssign,
EOpMulAssign,
EOpVectorTimesMatrixAssign,
EOpVectorTimesScalarAssign,
EOpMatrixTimesScalarAssign,
EOpMatrixTimesMatrixAssign,
EOpDivAssign
};
class TIntermTraverser;
class TIntermAggregate;
class TIntermBinary;
class TIntermUnary;
class TIntermConstantUnion;
class TIntermSelection;
class TIntermTyped;
class TIntermSymbol;
class TIntermLoop;
class TInfoSink;
class TIntermRaw;
//
// Base class for the tree nodes
//
class TIntermNode
{
public:
POOL_ALLOCATOR_NEW_DELETE();
TIntermNode()
{
// TODO: Move this to TSourceLoc constructor
// after getting rid of TPublicType.
mLine.first_file = mLine.last_file = 0;
mLine.first_line = mLine.last_line = 0;
}
virtual ~TIntermNode() { }
const TSourceLoc &getLine() const { return mLine; }
void setLine(const TSourceLoc &l) { mLine = l; }
virtual void traverse(TIntermTraverser *) = 0;
virtual TIntermTyped *getAsTyped() { return 0; }
virtual TIntermConstantUnion *getAsConstantUnion() { return 0; }
virtual TIntermAggregate *getAsAggregate() { return 0; }
virtual TIntermBinary *getAsBinaryNode() { return 0; }
virtual TIntermUnary *getAsUnaryNode() { return 0; }
virtual TIntermSelection *getAsSelectionNode() { return 0; }
virtual TIntermSymbol *getAsSymbolNode() { return 0; }
virtual TIntermLoop *getAsLoopNode() { return 0; }
virtual TIntermRaw *getAsRawNode() { return 0; }
// Replace a child node. Return true if |original| is a child
// node and it is replaced; otherwise, return false.
virtual bool replaceChildNode(
TIntermNode *original, TIntermNode *replacement) = 0;
// For traversing a tree in no particular order, but using
// heap memory.
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const = 0;
protected:
TSourceLoc mLine;
};
//
// This is just to help yacc.
//
struct TIntermNodePair
{
TIntermNode *node1;
TIntermNode *node2;
};
//
// Intermediate class for nodes that have a type.
//
class TIntermTyped : public TIntermNode
{
public:
TIntermTyped(const TType &t) : mType(t) { }
virtual TIntermTyped *getAsTyped() { return this; }
virtual bool hasSideEffects() const = 0;
void setType(const TType &t) { mType = t; }
const TType &getType() const { return mType; }
TType *getTypePointer() { return &mType; }
TBasicType getBasicType() const { return mType.getBasicType(); }
TQualifier getQualifier() const { return mType.getQualifier(); }
TPrecision getPrecision() const { return mType.getPrecision(); }
int getCols() const { return mType.getCols(); }
int getRows() const { return mType.getRows(); }
int getNominalSize() const { return mType.getNominalSize(); }
int getSecondarySize() const { return mType.getSecondarySize(); }
bool isInterfaceBlock() const { return mType.isInterfaceBlock(); }
bool isMatrix() const { return mType.isMatrix(); }
bool isArray() const { return mType.isArray(); }
bool isVector() const { return mType.isVector(); }
bool isScalar() const { return mType.isScalar(); }
bool isScalarInt() const { return mType.isScalarInt(); }
const char *getBasicString() const { return mType.getBasicString(); }
const char *getQualifierString() const { return mType.getQualifierString(); }
TString getCompleteString() const { return mType.getCompleteString(); }
int getArraySize() const { return mType.getArraySize(); }
protected:
TType mType;
};
//
// Handle for, do-while, and while loops.
//
enum TLoopType
{
ELoopFor,
ELoopWhile,
ELoopDoWhile
};
class TIntermLoop : public TIntermNode
{
public:
TIntermLoop(TLoopType type,
TIntermNode *init, TIntermTyped *cond, TIntermTyped *expr,
TIntermNode *body)
: mType(type),
mInit(init),
mCond(cond),
mExpr(expr),
mBody(body),
mUnrollFlag(false) { }
virtual TIntermLoop *getAsLoopNode() { return this; }
virtual void traverse(TIntermTraverser *);
virtual bool replaceChildNode(
TIntermNode *original, TIntermNode *replacement);
TLoopType getType() const { return mType; }
TIntermNode *getInit() { return mInit; }
TIntermTyped *getCondition() { return mCond; }
TIntermTyped *getExpression() { return mExpr; }
TIntermNode *getBody() { return mBody; }
void setUnrollFlag(bool flag) { mUnrollFlag = flag; }
bool getUnrollFlag() const { return mUnrollFlag; }
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const;
protected:
TLoopType mType;
TIntermNode *mInit; // for-loop initialization
TIntermTyped *mCond; // loop exit condition
TIntermTyped *mExpr; // for-loop expression
TIntermNode *mBody; // loop body
bool mUnrollFlag; // Whether the loop should be unrolled or not.
};
//
// Handle break, continue, return, and kill.
//
class TIntermBranch : public TIntermNode
{
public:
TIntermBranch(TOperator op, TIntermTyped *e)
: mFlowOp(op),
mExpression(e) { }
virtual void traverse(TIntermTraverser *);
virtual bool replaceChildNode(
TIntermNode *original, TIntermNode *replacement);
TOperator getFlowOp() { return mFlowOp; }
TIntermTyped* getExpression() { return mExpression; }
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const;
protected:
TOperator mFlowOp;
TIntermTyped *mExpression; // non-zero except for "return exp;" statements
};
//
// Nodes that correspond to symbols or constants in the source code.
//
class TIntermSymbol : public TIntermTyped
{
public:
// if symbol is initialized as symbol(sym), the memory comes from the poolallocator of sym.
// If sym comes from per process globalpoolallocator, then it causes increased memory usage
// per compile it is essential to use "symbol = sym" to assign to symbol
TIntermSymbol(int id, const TString &symbol, const TType &type)
: TIntermTyped(type),
mId(id)
{
mSymbol = symbol;
}
virtual bool hasSideEffects() const { return false; }
int getId() const { return mId; }
const TString &getSymbol() const { return mSymbol; }
void setId(int newId) { mId = newId; }
virtual void traverse(TIntermTraverser *);
virtual TIntermSymbol *getAsSymbolNode() { return this; }
virtual bool replaceChildNode(TIntermNode *, TIntermNode *) { return false; }
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const {}
protected:
int mId;
TString mSymbol;
};
// A Raw node stores raw code, that the translator will insert verbatim
// into the output stream. Useful for transformation operations that make
// complex code that might not fit naturally into the GLSL model.
class TIntermRaw : public TIntermTyped
{
public:
TIntermRaw(const TType &type, const TString &rawText)
: TIntermTyped(type),
mRawText(rawText) { }
virtual bool hasSideEffects() const { return false; }
TString getRawText() const { return mRawText; }
virtual void traverse(TIntermTraverser *);
virtual TIntermRaw *getAsRawNode() { return this; }
virtual bool replaceChildNode(TIntermNode *, TIntermNode *) { return false; }
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const {}
protected:
TString mRawText;
};
class TIntermConstantUnion : public TIntermTyped
{
public:
TIntermConstantUnion(ConstantUnion *unionPointer, const TType &type)
: TIntermTyped(type),
mUnionArrayPointer(unionPointer) { }
virtual bool hasSideEffects() const { return false; }
ConstantUnion *getUnionArrayPointer() const { return mUnionArrayPointer; }
int getIConst(size_t index) const
{
return mUnionArrayPointer ? mUnionArrayPointer[index].getIConst() : 0;
}
unsigned int getUConst(size_t index) const
{
return mUnionArrayPointer ? mUnionArrayPointer[index].getUConst() : 0;
}
float getFConst(size_t index) const
{
return mUnionArrayPointer ? mUnionArrayPointer[index].getFConst() : 0.0f;
}
bool getBConst(size_t index) const
{
return mUnionArrayPointer ? mUnionArrayPointer[index].getBConst() : false;
}
virtual TIntermConstantUnion *getAsConstantUnion() { return this; }
virtual void traverse(TIntermTraverser *);
virtual bool replaceChildNode(TIntermNode *, TIntermNode *) { return false; }
TIntermTyped *fold(TOperator, TIntermTyped *, TInfoSink &);
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const {}
protected:
ConstantUnion *mUnionArrayPointer;
};
//
// Intermediate class for node types that hold operators.
//
class TIntermOperator : public TIntermTyped
{
public:
TOperator getOp() const { return mOp; }
void setOp(TOperator op) { mOp = op; }
bool isAssignment() const;
bool isConstructor() const;
virtual bool hasSideEffects() const { return isAssignment(); }
protected:
TIntermOperator(TOperator op)
: TIntermTyped(TType(EbtFloat, EbpUndefined)),
mOp(op) {}
TIntermOperator(TOperator op, const TType &type)
: TIntermTyped(type),
mOp(op) {}
TOperator mOp;
};
//
// Nodes for all the basic binary math operators.
//
class TIntermBinary : public TIntermOperator
{
public:
TIntermBinary(TOperator op)
: TIntermOperator(op),
mAddIndexClamp(false) {}
virtual TIntermBinary *getAsBinaryNode() { return this; }
virtual void traverse(TIntermTraverser *);
virtual bool replaceChildNode(
TIntermNode *original, TIntermNode *replacement);
virtual bool hasSideEffects() const
{
return isAssignment() || mLeft->hasSideEffects() || mRight->hasSideEffects();
}
void setLeft(TIntermTyped *node) { mLeft = node; }
void setRight(TIntermTyped *node) { mRight = node; }
TIntermTyped *getLeft() const { return mLeft; }
TIntermTyped *getRight() const { return mRight; }
bool promote(TInfoSink &);
void setAddIndexClamp() { mAddIndexClamp = true; }
bool getAddIndexClamp() { return mAddIndexClamp; }
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const;
protected:
TIntermTyped* mLeft;
TIntermTyped* mRight;
// If set to true, wrap any EOpIndexIndirect with a clamp to bounds.
bool mAddIndexClamp;
};
//
// Nodes for unary math operators.
//
class TIntermUnary : public TIntermOperator
{
public:
TIntermUnary(TOperator op, const TType &type)
: TIntermOperator(op, type),
mOperand(NULL),
mUseEmulatedFunction(false) {}
TIntermUnary(TOperator op)
: TIntermOperator(op),
mOperand(NULL),
mUseEmulatedFunction(false) {}
virtual void traverse(TIntermTraverser *);
virtual TIntermUnary *getAsUnaryNode() { return this; }
virtual bool replaceChildNode(
TIntermNode *original, TIntermNode *replacement);
virtual bool hasSideEffects() const
{
return isAssignment() || mOperand->hasSideEffects();
}
void setOperand(TIntermTyped *operand) { mOperand = operand; }
TIntermTyped *getOperand() { return mOperand; }
bool promote(TInfoSink &);
void setUseEmulatedFunction() { mUseEmulatedFunction = true; }
bool getUseEmulatedFunction() { return mUseEmulatedFunction; }
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const;
protected:
TIntermTyped *mOperand;
// If set to true, replace the built-in function call with an emulated one
// to work around driver bugs.
bool mUseEmulatedFunction;
};
typedef TVector<TIntermNode *> TIntermSequence;
typedef TVector<int> TQualifierList;
//
// Nodes that operate on an arbitrary sized set of children.
//
class TIntermAggregate : public TIntermOperator
{
public:
TIntermAggregate()
: TIntermOperator(EOpNull),
mUserDefined(false),
mUseEmulatedFunction(false) { }
TIntermAggregate(TOperator op)
: TIntermOperator(op),
mUseEmulatedFunction(false) { }
~TIntermAggregate() { }
virtual TIntermAggregate *getAsAggregate() { return this; }
virtual void traverse(TIntermTraverser *);
virtual bool replaceChildNode(
TIntermNode *original, TIntermNode *replacement);
// Conservatively assume function calls and other aggregate operators have side-effects
virtual bool hasSideEffects() const { return true; }
TIntermSequence *getSequence() { return &mSequence; }
void setName(const TString &name) { mName = name; }
const TString &getName() const { return mName; }
void setUserDefined() { mUserDefined = true; }
bool isUserDefined() const { return mUserDefined; }
void setOptimize(bool optimize) { mOptimize = optimize; }
bool getOptimize() const { return mOptimize; }
void setDebug(bool debug) { mDebug = debug; }
bool getDebug() const { return mDebug; }
void setUseEmulatedFunction() { mUseEmulatedFunction = true; }
bool getUseEmulatedFunction() { return mUseEmulatedFunction; }
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const;
protected:
TIntermAggregate(const TIntermAggregate &); // disallow copy constructor
TIntermAggregate &operator=(const TIntermAggregate &); // disallow assignment operator
TIntermSequence mSequence;
TString mName;
bool mUserDefined; // used for user defined function names
bool mOptimize;
bool mDebug;
// If set to true, replace the built-in function call with an emulated one
// to work around driver bugs.
bool mUseEmulatedFunction;
};
//
// For if tests. Simplified since there is no switch statement.
//
class TIntermSelection : public TIntermTyped
{
public:
TIntermSelection(TIntermTyped *cond, TIntermNode *trueB, TIntermNode *falseB)
: TIntermTyped(TType(EbtVoid, EbpUndefined)),
mCondition(cond),
mTrueBlock(trueB),
mFalseBlock(falseB) {}
TIntermSelection(TIntermTyped *cond, TIntermNode *trueB, TIntermNode *falseB,
const TType &type)
: TIntermTyped(type),
mCondition(cond),
mTrueBlock(trueB),
mFalseBlock(falseB) {}
virtual void traverse(TIntermTraverser *);
virtual bool replaceChildNode(
TIntermNode *original, TIntermNode *replacement);
// Conservatively assume selections have side-effects
virtual bool hasSideEffects() const { return true; }
bool usesTernaryOperator() const { return getBasicType() != EbtVoid; }
TIntermNode *getCondition() const { return mCondition; }
TIntermNode *getTrueBlock() const { return mTrueBlock; }
TIntermNode *getFalseBlock() const { return mFalseBlock; }
TIntermSelection *getAsSelectionNode() { return this; }
virtual void enqueueChildren(std::queue<TIntermNode *> *nodeQueue) const;
protected:
TIntermTyped *mCondition;
TIntermNode *mTrueBlock;
TIntermNode *mFalseBlock;
};
enum Visit
{
PreVisit,
InVisit,
PostVisit
};
//
// For traversing the tree. User should derive from this,
// put their traversal specific data in it, and then pass
// it to a Traverse method.
//
// When using this, just fill in the methods for nodes you want visited.
// Return false from a pre-visit to skip visiting that node's subtree.
//
class TIntermTraverser
{
public:
POOL_ALLOCATOR_NEW_DELETE();
// TODO(zmo): remove default values.
TIntermTraverser(bool preVisit = true, bool inVisit = false, bool postVisit = false,
bool rightToLeft = false)
: preVisit(preVisit),
inVisit(inVisit),
postVisit(postVisit),
rightToLeft(rightToLeft),
mDepth(0),
mMaxDepth(0) {}
virtual ~TIntermTraverser() {}
virtual void visitSymbol(TIntermSymbol *) {}
virtual void visitRaw(TIntermRaw *) {}
virtual void visitConstantUnion(TIntermConstantUnion *) {}
virtual bool visitBinary(Visit, TIntermBinary *) { return true; }
virtual bool visitUnary(Visit, TIntermUnary *) { return true; }
virtual bool visitSelection(Visit, TIntermSelection *) { return true; }
virtual bool visitAggregate(Visit, TIntermAggregate *) { return true; }
virtual bool visitLoop(Visit, TIntermLoop *) { return true; }
virtual bool visitBranch(Visit, TIntermBranch *) { return true; }
int getMaxDepth() const { return mMaxDepth; }
void incrementDepth(TIntermNode *current)
{
mDepth++;
mMaxDepth = std::max(mMaxDepth, mDepth);
mPath.push_back(current);
}
void decrementDepth()
{
mDepth--;
mPath.pop_back();
}
TIntermNode *getParentNode()
{
return mPath.size() == 0 ? NULL : mPath.back();
}
// Return the original name if hash function pointer is NULL;
// otherwise return the hashed name.
static TString hash(const TString& name, ShHashFunction64 hashFunction);
const bool preVisit;
const bool inVisit;
const bool postVisit;
const bool rightToLeft;
protected:
int mDepth;
int mMaxDepth;
// All the nodes from root to the current node's parent during traversing.
TVector<TIntermNode *> mPath;
};
//
// For traversing the tree, and computing max depth.
// Takes a maximum depth limit to prevent stack overflow.
//
class TMaxDepthTraverser : public TIntermTraverser
{
public:
POOL_ALLOCATOR_NEW_DELETE();
TMaxDepthTraverser(int depthLimit)
: TIntermTraverser(true, true, false, false),
mDepthLimit(depthLimit) { }
virtual bool visitBinary(Visit, TIntermBinary *) { return depthCheck(); }
virtual bool visitUnary(Visit, TIntermUnary *) { return depthCheck(); }
virtual bool visitSelection(Visit, TIntermSelection *) { return depthCheck(); }
virtual bool visitAggregate(Visit, TIntermAggregate *) { return depthCheck(); }
virtual bool visitLoop(Visit, TIntermLoop *) { return depthCheck(); }
virtual bool visitBranch(Visit, TIntermBranch *) { return depthCheck(); }
protected:
bool depthCheck() const { return mMaxDepth < mDepthLimit; }
int mDepthLimit;
};
#endif // COMPILER_TRANSLATOR_INTERMEDIATE_H_