blob: 8857ad59bdeeeeccfd6f94730b529ae6a2b486ff [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ScalarizeVecAndMatConstructorArgs.h"
#include "compiler/translator/compilerdebug.h"
#include <algorithm>
#include "angle_gl.h"
#include "common/angleutils.h"
namespace
{
bool ContainsMatrixNode(const TIntermSequence &sequence)
{
for (size_t ii = 0; ii < sequence.size(); ++ii)
{
TIntermTyped *node = sequence[ii]->getAsTyped();
if (node && node->isMatrix())
return true;
}
return false;
}
bool ContainsVectorNode(const TIntermSequence &sequence)
{
for (size_t ii = 0; ii < sequence.size(); ++ii)
{
TIntermTyped *node = sequence[ii]->getAsTyped();
if (node && node->isVector())
return true;
}
return false;
}
TIntermConstantUnion *ConstructIndexNode(int index)
{
ConstantUnion *u = new ConstantUnion[1];
u[0].setIConst(index);
TType type(EbtInt, EbpUndefined, EvqConst, 1);
TIntermConstantUnion *node = new TIntermConstantUnion(u, type);
return node;
}
TIntermBinary *ConstructVectorIndexBinaryNode(TIntermSymbol *symbolNode, int index)
{
TIntermBinary *binary = new TIntermBinary(EOpIndexDirect);
binary->setLeft(symbolNode);
TIntermConstantUnion *indexNode = ConstructIndexNode(index);
binary->setRight(indexNode);
return binary;
}
TIntermBinary *ConstructMatrixIndexBinaryNode(
TIntermSymbol *symbolNode, int colIndex, int rowIndex)
{
TIntermBinary *colVectorNode =
ConstructVectorIndexBinaryNode(symbolNode, colIndex);
TIntermBinary *binary = new TIntermBinary(EOpIndexDirect);
binary->setLeft(colVectorNode);
TIntermConstantUnion *rowIndexNode = ConstructIndexNode(rowIndex);
binary->setRight(rowIndexNode);
return binary;
}
} // namespace anonymous
bool ScalarizeVecAndMatConstructorArgs::visitAggregate(Visit visit, TIntermAggregate *node)
{
if (visit == PreVisit)
{
switch (node->getOp())
{
case EOpSequence:
mSequenceStack.push_back(TIntermSequence());
{
for (TIntermSequence::const_iterator iter = node->getSequence()->begin();
iter != node->getSequence()->end(); ++iter)
{
TIntermNode *child = *iter;
ASSERT(child != NULL);
child->traverse(this);
mSequenceStack.back().push_back(child);
}
}
if (mSequenceStack.back().size() > node->getSequence()->size())
{
node->getSequence()->clear();
*(node->getSequence()) = mSequenceStack.back();
}
mSequenceStack.pop_back();
return false;
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
if (ContainsMatrixNode(*(node->getSequence())))
scalarizeArgs(node, false, true);
break;
case EOpConstructMat2:
case EOpConstructMat3:
case EOpConstructMat4:
if (ContainsVectorNode(*(node->getSequence())))
scalarizeArgs(node, true, false);
break;
default:
break;
}
}
return true;
}
void ScalarizeVecAndMatConstructorArgs::scalarizeArgs(
TIntermAggregate *aggregate, bool scalarizeVector, bool scalarizeMatrix)
{
ASSERT(aggregate);
int size = 0;
switch (aggregate->getOp())
{
case EOpConstructVec2:
case EOpConstructBVec2:
case EOpConstructIVec2:
size = 2;
break;
case EOpConstructVec3:
case EOpConstructBVec3:
case EOpConstructIVec3:
size = 3;
break;
case EOpConstructVec4:
case EOpConstructBVec4:
case EOpConstructIVec4:
case EOpConstructMat2:
size = 4;
break;
case EOpConstructMat3:
size = 9;
break;
case EOpConstructMat4:
size = 16;
break;
default:
break;
}
TIntermSequence *sequence = aggregate->getSequence();
TIntermSequence original(*sequence);
sequence->clear();
for (size_t ii = 0; ii < original.size(); ++ii)
{
ASSERT(size > 0);
TIntermTyped *node = original[ii]->getAsTyped();
ASSERT(node);
TString varName = createTempVariable(node);
if (node->isScalar())
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
sequence->push_back(symbolNode);
size--;
}
else if (node->isVector())
{
if (scalarizeVector)
{
int repeat = std::min(size, node->getNominalSize());
size -= repeat;
for (int index = 0; index < repeat; ++index)
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
TIntermBinary *newNode = ConstructVectorIndexBinaryNode(
symbolNode, index);
sequence->push_back(newNode);
}
}
else
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
sequence->push_back(symbolNode);
size -= node->getNominalSize();
}
}
else
{
ASSERT(node->isMatrix());
if (scalarizeMatrix)
{
int colIndex = 0, rowIndex = 0;
int repeat = std::min(size, node->getCols() * node->getRows());
size -= repeat;
while (repeat > 0)
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
TIntermBinary *newNode = ConstructMatrixIndexBinaryNode(
symbolNode, colIndex, rowIndex);
sequence->push_back(newNode);
rowIndex++;
if (rowIndex >= node->getRows())
{
rowIndex = 0;
colIndex++;
}
repeat--;
}
}
else
{
TIntermSymbol *symbolNode =
new TIntermSymbol(-1, varName, node->getType());
sequence->push_back(symbolNode);
size -= node->getCols() * node->getRows();
}
}
}
}
TString ScalarizeVecAndMatConstructorArgs::createTempVariable(TIntermTyped *original)
{
TString tempVarName = "_webgl_tmp_";
if (original->isScalar())
{
tempVarName += "scalar_";
}
else if (original->isVector())
{
tempVarName += "vec_";
}
else
{
ASSERT(original->isMatrix());
tempVarName += "mat_";
}
tempVarName += Str(mTempVarCount).c_str();
mTempVarCount++;
ASSERT(original);
TType type = original->getType();
type.setQualifier(EvqTemporary);
if (mShaderType == GL_FRAGMENT_SHADER &&
type.getBasicType() == EbtFloat &&
type.getPrecision() == EbpUndefined)
{
// We use the highest available precision for the temporary variable
// to avoid computing the actual precision using the rules defined
// in GLSL ES 1.0 Section 4.5.2.
type.setPrecision(mFragmentPrecisionHigh ? EbpHigh : EbpMedium);
}
TIntermBinary *init = new TIntermBinary(EOpInitialize);
TIntermSymbol *symbolNode = new TIntermSymbol(-1, tempVarName, type);
init->setLeft(symbolNode);
init->setRight(original);
init->setType(type);
TIntermAggregate *decl = new TIntermAggregate(EOpDeclaration);
decl->getSequence()->push_back(init);
ASSERT(mSequenceStack.size() > 0);
TIntermSequence &sequence = mSequenceStack.back();
sequence.push_back(decl);
return tempVarName;
}