blob: 56340c6f9e70c89ef8eafdbba81c31f11dd474a1 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/Intermediate.h"
#include "compiler/translator/SymbolTable.h"
namespace
{
//
// Two purposes:
// 1. Show an example of how to iterate tree. Functions can
// also directly call Traverse() on children themselves to
// have finer grained control over the process than shown here.
// See the last function for how to get started.
// 2. Print out a text based description of the tree.
//
//
// Use this class to carry along data from node to node in
// the traversal
//
class TOutputTraverser : public TIntermTraverser
{
public:
TOutputTraverser(TInfoSinkBase &i)
: sink(i) { }
TInfoSinkBase& sink;
protected:
void visitSymbol(TIntermSymbol *);
void visitConstantUnion(TIntermConstantUnion *);
bool visitBinary(Visit visit, TIntermBinary *);
bool visitUnary(Visit visit, TIntermUnary *);
bool visitSelection(Visit visit, TIntermSelection *);
bool visitAggregate(Visit visit, TIntermAggregate *);
bool visitLoop(Visit visit, TIntermLoop *);
bool visitBranch(Visit visit, TIntermBranch *);
};
//
// Helper functions for printing, not part of traversing.
//
void OutputTreeText(TInfoSinkBase &sink, TIntermNode *node, const int depth)
{
int i;
sink.location(node->getLine());
for (i = 0; i < depth; ++i)
sink << " ";
}
} // namespace anonymous
TString TType::getCompleteString() const
{
TStringStream stream;
if (qualifier != EvqTemporary && qualifier != EvqGlobal)
stream << getQualifierString() << " " << getPrecisionString() << " ";
if (array)
stream << "array[" << getArraySize() << "] of ";
if (isMatrix())
stream << getCols() << "X" << getRows() << " matrix of ";
else if (isVector())
stream << getNominalSize() << "-component vector of ";
stream << getBasicString();
return stream.str();
}
//
// The rest of the file are the traversal functions. The last one
// is the one that starts the traversal.
//
// Return true from interior nodes to have the external traversal
// continue on to children. If you process children yourself,
// return false.
//
void TOutputTraverser::visitSymbol(TIntermSymbol *node)
{
OutputTreeText(sink, node, mDepth);
sink << "'" << node->getSymbol() << "' ";
sink << "(" << node->getCompleteString() << ")\n";
}
bool TOutputTraverser::visitBinary(Visit visit, TIntermBinary *node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getOp())
{
case EOpAssign:
out << "move second child to first child";
break;
case EOpInitialize:
out << "initialize first child with second child";
break;
case EOpAddAssign:
out << "add second child into first child";
break;
case EOpSubAssign:
out << "subtract second child into first child";
break;
case EOpMulAssign:
out << "multiply second child into first child";
break;
case EOpVectorTimesMatrixAssign:
out << "matrix mult second child into first child";
break;
case EOpVectorTimesScalarAssign:
out << "vector scale second child into first child";
break;
case EOpMatrixTimesScalarAssign:
out << "matrix scale second child into first child";
break;
case EOpMatrixTimesMatrixAssign:
out << "matrix mult second child into first child";
break;
case EOpDivAssign:
out << "divide second child into first child";
break;
case EOpIndexDirect:
out << "direct index";
break;
case EOpIndexIndirect:
out << "indirect index";
break;
case EOpIndexDirectStruct:
out << "direct index for structure";
break;
case EOpIndexDirectInterfaceBlock:
out << "direct index for interface block";
break;
case EOpVectorSwizzle:
out << "vector swizzle";
break;
case EOpAdd:
out << "add";
break;
case EOpSub:
out << "subtract";
break;
case EOpMul:
out << "component-wise multiply";
break;
case EOpDiv:
out << "divide";
break;
case EOpEqual:
out << "Compare Equal";
break;
case EOpNotEqual:
out << "Compare Not Equal";
break;
case EOpLessThan:
out << "Compare Less Than";
break;
case EOpGreaterThan:
out << "Compare Greater Than";
break;
case EOpLessThanEqual:
out << "Compare Less Than or Equal";
break;
case EOpGreaterThanEqual:
out << "Compare Greater Than or Equal";
break;
case EOpVectorTimesScalar:
out << "vector-scale";
break;
case EOpVectorTimesMatrix:
out << "vector-times-matrix";
break;
case EOpMatrixTimesVector:
out << "matrix-times-vector";
break;
case EOpMatrixTimesScalar:
out << "matrix-scale";
break;
case EOpMatrixTimesMatrix:
out << "matrix-multiply";
break;
case EOpLogicalOr:
out << "logical-or";
break;
case EOpLogicalXor:
out << "logical-xor";
break;
case EOpLogicalAnd:
out << "logical-and";
break;
default:
out << "<unknown op>";
}
out << " (" << node->getCompleteString() << ")";
out << "\n";
return true;
}
bool TOutputTraverser::visitUnary(Visit visit, TIntermUnary *node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getOp())
{
case EOpNegative: out << "Negate value"; break;
case EOpVectorLogicalNot:
case EOpLogicalNot: out << "Negate conditional"; break;
case EOpPostIncrement: out << "Post-Increment"; break;
case EOpPostDecrement: out << "Post-Decrement"; break;
case EOpPreIncrement: out << "Pre-Increment"; break;
case EOpPreDecrement: out << "Pre-Decrement"; break;
case EOpRadians: out << "radians"; break;
case EOpDegrees: out << "degrees"; break;
case EOpSin: out << "sine"; break;
case EOpCos: out << "cosine"; break;
case EOpTan: out << "tangent"; break;
case EOpAsin: out << "arc sine"; break;
case EOpAcos: out << "arc cosine"; break;
case EOpAtan: out << "arc tangent"; break;
case EOpExp: out << "exp"; break;
case EOpLog: out << "log"; break;
case EOpExp2: out << "exp2"; break;
case EOpLog2: out << "log2"; break;
case EOpSqrt: out << "sqrt"; break;
case EOpInverseSqrt: out << "inverse sqrt"; break;
case EOpAbs: out << "Absolute value"; break;
case EOpSign: out << "Sign"; break;
case EOpFloor: out << "Floor"; break;
case EOpCeil: out << "Ceiling"; break;
case EOpFract: out << "Fraction"; break;
case EOpLength: out << "length"; break;
case EOpNormalize: out << "normalize"; break;
// case EOpDPdx: out << "dPdx"; break;
// case EOpDPdy: out << "dPdy"; break;
// case EOpFwidth: out << "fwidth"; break;
case EOpAny: out << "any"; break;
case EOpAll: out << "all"; break;
default:
out.prefix(EPrefixError);
out << "Bad unary op";
}
out << " (" << node->getCompleteString() << ")";
out << "\n";
return true;
}
bool TOutputTraverser::visitAggregate(Visit visit, TIntermAggregate *node)
{
TInfoSinkBase &out = sink;
if (node->getOp() == EOpNull)
{
out.prefix(EPrefixError);
out << "node is still EOpNull!";
return true;
}
OutputTreeText(out, node, mDepth);
switch (node->getOp())
{
case EOpSequence: out << "Sequence\n"; return true;
case EOpComma: out << "Comma\n"; return true;
case EOpFunction: out << "Function Definition: " << node->getName(); break;
case EOpFunctionCall: out << "Function Call: " << node->getName(); break;
case EOpParameters: out << "Function Parameters: "; break;
case EOpConstructFloat: out << "Construct float"; break;
case EOpConstructVec2: out << "Construct vec2"; break;
case EOpConstructVec3: out << "Construct vec3"; break;
case EOpConstructVec4: out << "Construct vec4"; break;
case EOpConstructBool: out << "Construct bool"; break;
case EOpConstructBVec2: out << "Construct bvec2"; break;
case EOpConstructBVec3: out << "Construct bvec3"; break;
case EOpConstructBVec4: out << "Construct bvec4"; break;
case EOpConstructInt: out << "Construct int"; break;
case EOpConstructIVec2: out << "Construct ivec2"; break;
case EOpConstructIVec3: out << "Construct ivec3"; break;
case EOpConstructIVec4: out << "Construct ivec4"; break;
case EOpConstructUInt: out << "Construct uint"; break;
case EOpConstructUVec2: out << "Construct uvec2"; break;
case EOpConstructUVec3: out << "Construct uvec3"; break;
case EOpConstructUVec4: out << "Construct uvec4"; break;
case EOpConstructMat2: out << "Construct mat2"; break;
case EOpConstructMat3: out << "Construct mat3"; break;
case EOpConstructMat4: out << "Construct mat4"; break;
case EOpConstructStruct: out << "Construct structure"; break;
case EOpLessThan: out << "Compare Less Than"; break;
case EOpGreaterThan: out << "Compare Greater Than"; break;
case EOpLessThanEqual: out << "Compare Less Than or Equal"; break;
case EOpGreaterThanEqual: out << "Compare Greater Than or Equal"; break;
case EOpVectorEqual: out << "Equal"; break;
case EOpVectorNotEqual: out << "NotEqual"; break;
case EOpMod: out << "mod"; break;
case EOpPow: out << "pow"; break;
case EOpAtan: out << "arc tangent"; break;
case EOpMin: out << "min"; break;
case EOpMax: out << "max"; break;
case EOpClamp: out << "clamp"; break;
case EOpMix: out << "mix"; break;
case EOpStep: out << "step"; break;
case EOpSmoothStep: out << "smoothstep"; break;
case EOpDistance: out << "distance"; break;
case EOpDot: out << "dot-product"; break;
case EOpCross: out << "cross-product"; break;
case EOpFaceForward: out << "face-forward"; break;
case EOpReflect: out << "reflect"; break;
case EOpRefract: out << "refract"; break;
case EOpMul: out << "component-wise multiply"; break;
case EOpDeclaration: out << "Declaration: "; break;
case EOpInvariantDeclaration: out << "Invariant Declaration: "; break;
default:
out.prefix(EPrefixError);
out << "Bad aggregation op";
}
if (node->getOp() != EOpSequence && node->getOp() != EOpParameters)
out << " (" << node->getCompleteString() << ")";
out << "\n";
return true;
}
bool TOutputTraverser::visitSelection(Visit visit, TIntermSelection *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
out << "Test condition and select";
out << " (" << node->getCompleteString() << ")\n";
++mDepth;
OutputTreeText(sink, node, mDepth);
out << "Condition\n";
node->getCondition()->traverse(this);
OutputTreeText(sink, node, mDepth);
if (node->getTrueBlock())
{
out << "true case\n";
node->getTrueBlock()->traverse(this);
}
else
{
out << "true case is null\n";
}
if (node->getFalseBlock())
{
OutputTreeText(sink, node, mDepth);
out << "false case\n";
node->getFalseBlock()->traverse(this);
}
--mDepth;
return false;
}
void TOutputTraverser::visitConstantUnion(TIntermConstantUnion *node)
{
TInfoSinkBase &out = sink;
size_t size = node->getType().getObjectSize();
for (size_t i = 0; i < size; i++)
{
OutputTreeText(out, node, mDepth);
switch (node->getUnionArrayPointer()[i].getType())
{
case EbtBool:
if (node->getUnionArrayPointer()[i].getBConst())
out << "true";
else
out << "false";
out << " (" << "const bool" << ")";
out << "\n";
break;
case EbtFloat:
out << node->getUnionArrayPointer()[i].getFConst();
out << " (const float)\n";
break;
case EbtInt:
out << node->getUnionArrayPointer()[i].getIConst();
out << " (const int)\n";
break;
case EbtUInt:
out << node->getUnionArrayPointer()[i].getUConst();
out << " (const uint)\n";
break;
default:
out.message(EPrefixInternalError, node->getLine(), "Unknown constant");
break;
}
}
}
bool TOutputTraverser::visitLoop(Visit visit, TIntermLoop *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
out << "Loop with condition ";
if (node->getType() == ELoopDoWhile)
out << "not ";
out << "tested first\n";
++mDepth;
OutputTreeText(sink, node, mDepth);
if (node->getCondition())
{
out << "Loop Condition\n";
node->getCondition()->traverse(this);
}
else
{
out << "No loop condition\n";
}
OutputTreeText(sink, node, mDepth);
if (node->getBody())
{
out << "Loop Body\n";
node->getBody()->traverse(this);
}
else
{
out << "No loop body\n";
}
if (node->getExpression())
{
OutputTreeText(sink, node, mDepth);
out << "Loop Terminal Expression\n";
node->getExpression()->traverse(this);
}
--mDepth;
return false;
}
bool TOutputTraverser::visitBranch(Visit visit, TIntermBranch *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getFlowOp())
{
case EOpKill: out << "Branch: Kill"; break;
case EOpBreak: out << "Branch: Break"; break;
case EOpContinue: out << "Branch: Continue"; break;
case EOpReturn: out << "Branch: Return"; break;
default: out << "Branch: Unknown Branch"; break;
}
if (node->getExpression())
{
out << " with expression\n";
++mDepth;
node->getExpression()->traverse(this);
--mDepth;
}
else
{
out << "\n";
}
return false;
}
//
// This function is the one to call externally to start the traversal.
// Individual functions can be initialized to 0 to skip processing of that
// type of node. It's children will still be processed.
//
void TIntermediate::outputTree(TIntermNode *root)
{
if (root == NULL)
return;
TOutputTraverser it(mInfoSink.info);
root->traverse(&it);
}