blob: 3c03b90e56b3bae7b5bb52e8c267cee8b68e5e3f [file] [log] [blame]
//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// State.cpp: Implements the State class, encapsulating raw GL state.
#include "libGLESv2/State.h"
#include "libGLESv2/Context.h"
#include "libGLESv2/Caps.h"
#include "libGLESv2/VertexArray.h"
#include "libGLESv2/Query.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/FramebufferAttachment.h"
#include "libGLESv2/renderer/RenderTarget.h"
#include "libGLESv2/formatutils.h"
namespace gl
{
State::State()
{
}
State::~State()
{
reset();
}
void State::initialize(const Caps& caps, GLuint clientVersion)
{
mContext = NULL;
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mDepthClearValue = 1.0f;
mStencilClearValue = 0;
mRasterizer.rasterizerDiscard = false;
mRasterizer.cullFace = false;
mRasterizer.cullMode = GL_BACK;
mRasterizer.frontFace = GL_CCW;
mRasterizer.polygonOffsetFill = false;
mRasterizer.polygonOffsetFactor = 0.0f;
mRasterizer.polygonOffsetUnits = 0.0f;
mRasterizer.pointDrawMode = false;
mRasterizer.multiSample = false;
mScissorTest = false;
mScissor.x = 0;
mScissor.y = 0;
mScissor.width = 0;
mScissor.height = 0;
mBlend.blend = false;
mBlend.sourceBlendRGB = GL_ONE;
mBlend.sourceBlendAlpha = GL_ONE;
mBlend.destBlendRGB = GL_ZERO;
mBlend.destBlendAlpha = GL_ZERO;
mBlend.blendEquationRGB = GL_FUNC_ADD;
mBlend.blendEquationAlpha = GL_FUNC_ADD;
mBlend.sampleAlphaToCoverage = false;
mBlend.dither = true;
mBlendColor.red = 0;
mBlendColor.green = 0;
mBlendColor.blue = 0;
mBlendColor.alpha = 0;
mDepthStencil.depthTest = false;
mDepthStencil.depthFunc = GL_LESS;
mDepthStencil.depthMask = true;
mDepthStencil.stencilTest = false;
mDepthStencil.stencilFunc = GL_ALWAYS;
mDepthStencil.stencilMask = -1;
mDepthStencil.stencilWritemask = -1;
mDepthStencil.stencilBackFunc = GL_ALWAYS;
mDepthStencil.stencilBackMask = -1;
mDepthStencil.stencilBackWritemask = -1;
mDepthStencil.stencilFail = GL_KEEP;
mDepthStencil.stencilPassDepthFail = GL_KEEP;
mDepthStencil.stencilPassDepthPass = GL_KEEP;
mDepthStencil.stencilBackFail = GL_KEEP;
mDepthStencil.stencilBackPassDepthFail = GL_KEEP;
mDepthStencil.stencilBackPassDepthPass = GL_KEEP;
mStencilRef = 0;
mStencilBackRef = 0;
mSampleCoverage = false;
mSampleCoverageValue = 1.0f;
mSampleCoverageInvert = false;
mGenerateMipmapHint = GL_DONT_CARE;
mFragmentShaderDerivativeHint = GL_DONT_CARE;
mLineWidth = 1.0f;
mViewport.x = 0;
mViewport.y = 0;
mViewport.width = 0;
mViewport.height = 0;
mNearZ = 0.0f;
mFarZ = 1.0f;
mBlend.colorMaskRed = true;
mBlend.colorMaskGreen = true;
mBlend.colorMaskBlue = true;
mBlend.colorMaskAlpha = true;
mActiveSampler = 0;
const GLfloat defaultFloatValues[] = { 0.0f, 0.0f, 0.0f, 1.0f };
for (int attribIndex = 0; attribIndex < MAX_VERTEX_ATTRIBS; attribIndex++)
{
mVertexAttribCurrentValues[attribIndex].setFloatValues(defaultFloatValues);
}
mSamplerTextures[GL_TEXTURE_2D].resize(caps.maxCombinedTextureImageUnits);
mSamplerTextures[GL_TEXTURE_CUBE_MAP].resize(caps.maxCombinedTextureImageUnits);
if (clientVersion >= 3)
{
// TODO: These could also be enabled via extension
mSamplerTextures[GL_TEXTURE_2D_ARRAY].resize(caps.maxCombinedTextureImageUnits);
mSamplerTextures[GL_TEXTURE_3D].resize(caps.maxCombinedTextureImageUnits);
}
mSamplers.resize(caps.maxCombinedTextureImageUnits);
mActiveQueries[GL_ANY_SAMPLES_PASSED].set(NULL);
mActiveQueries[GL_ANY_SAMPLES_PASSED_CONSERVATIVE].set(NULL);
mActiveQueries[GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN].set(NULL);
mCurrentProgramId = 0;
mCurrentProgramBinary.set(NULL);
mReadFramebuffer = NULL;
mDrawFramebuffer = NULL;
}
void State::reset()
{
for (TextureBindingMap::iterator bindingVec = mSamplerTextures.begin(); bindingVec != mSamplerTextures.end(); bindingVec++)
{
TextureBindingVector &textureVector = bindingVec->second;
for (size_t textureIdx = 0; textureIdx < textureVector.size(); textureIdx++)
{
textureVector[textureIdx].set(NULL);
}
}
for (size_t samplerIdx = 0; samplerIdx < mSamplers.size(); samplerIdx++)
{
mSamplers[samplerIdx].set(NULL);
}
const GLfloat defaultFloatValues[] = { 0.0f, 0.0f, 0.0f, 1.0f };
for (int attribIndex = 0; attribIndex < MAX_VERTEX_ATTRIBS; attribIndex++)
{
mVertexAttribCurrentValues[attribIndex].setFloatValues(defaultFloatValues);
}
mArrayBuffer.set(NULL);
mRenderbuffer.set(NULL);
mTransformFeedback.set(NULL);
for (State::ActiveQueryMap::iterator i = mActiveQueries.begin(); i != mActiveQueries.end(); i++)
{
i->second.set(NULL);
}
mGenericUniformBuffer.set(NULL);
for (int i = 0; i < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; i++)
{
mUniformBuffers[i].set(NULL);
}
mGenericTransformFeedbackBuffer.set(NULL);
for (int i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
mTransformFeedbackBuffers[i].set(NULL);
}
mCopyReadBuffer.set(NULL);
mCopyWriteBuffer.set(NULL);
mPack.pixelBuffer.set(NULL);
mUnpack.pixelBuffer.set(NULL);
}
const RasterizerState &State::getRasterizerState() const
{
return mRasterizer;
}
const BlendState &State::getBlendState() const
{
return mBlend;
}
const DepthStencilState &State::getDepthStencilState() const
{
return mDepthStencil;
}
void State::setClearColor(float red, float green, float blue, float alpha)
{
mColorClearValue.red = red;
mColorClearValue.green = green;
mColorClearValue.blue = blue;
mColorClearValue.alpha = alpha;
}
void State::setClearDepth(float depth)
{
mDepthClearValue = depth;
}
void State::setClearStencil(int stencil)
{
mStencilClearValue = stencil;
}
ClearParameters State::getClearParameters(GLbitfield mask) const
{
ClearParameters clearParams = { 0 };
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = false;
}
clearParams.colorFClearValue = mColorClearValue;
clearParams.colorClearType = GL_FLOAT;
clearParams.colorMaskRed = mBlend.colorMaskRed;
clearParams.colorMaskGreen = mBlend.colorMaskGreen;
clearParams.colorMaskBlue = mBlend.colorMaskBlue;
clearParams.colorMaskAlpha = mBlend.colorMaskAlpha;
clearParams.clearDepth = false;
clearParams.depthClearValue = mDepthClearValue;
clearParams.clearStencil = false;
clearParams.stencilClearValue = mStencilClearValue;
clearParams.stencilWriteMask = mDepthStencil.stencilWritemask;
clearParams.scissorEnabled = mScissorTest;
clearParams.scissor = mScissor;
const Framebuffer *framebufferObject = getDrawFramebuffer();
if (mask & GL_COLOR_BUFFER_BIT)
{
if (framebufferObject->hasEnabledColorAttachment())
{
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = true;
}
}
}
if (mask & GL_DEPTH_BUFFER_BIT)
{
if (mDepthStencil.depthMask && framebufferObject->getDepthbuffer() != NULL)
{
clearParams.clearDepth = true;
}
}
if (mask & GL_STENCIL_BUFFER_BIT)
{
if (framebufferObject->getStencilbuffer() != NULL)
{
GLenum stencilActualFormat = framebufferObject->getStencilbuffer()->getActualFormat();
if (GetInternalFormatInfo(stencilActualFormat).stencilBits > 0)
{
clearParams.clearStencil = true;
}
}
}
return clearParams;
}
void State::setColorMask(bool red, bool green, bool blue, bool alpha)
{
mBlend.colorMaskRed = red;
mBlend.colorMaskGreen = green;
mBlend.colorMaskBlue = blue;
mBlend.colorMaskAlpha = alpha;
}
void State::setDepthMask(bool mask)
{
mDepthStencil.depthMask = mask;
}
bool State::isRasterizerDiscardEnabled() const
{
return mRasterizer.rasterizerDiscard;
}
void State::setRasterizerDiscard(bool enabled)
{
mRasterizer.rasterizerDiscard = enabled;
}
bool State::isCullFaceEnabled() const
{
return mRasterizer.cullFace;
}
void State::setCullFace(bool enabled)
{
mRasterizer.cullFace = enabled;
}
void State::setCullMode(GLenum mode)
{
mRasterizer.cullMode = mode;
}
void State::setFrontFace(GLenum front)
{
mRasterizer.frontFace = front;
}
bool State::isDepthTestEnabled() const
{
return mDepthStencil.depthTest;
}
void State::setDepthTest(bool enabled)
{
mDepthStencil.depthTest = enabled;
}
void State::setDepthFunc(GLenum depthFunc)
{
mDepthStencil.depthFunc = depthFunc;
}
void State::setDepthRange(float zNear, float zFar)
{
mNearZ = zNear;
mFarZ = zFar;
}
void State::getDepthRange(float *zNear, float *zFar) const
{
*zNear = mNearZ;
*zFar = mFarZ;
}
bool State::isBlendEnabled() const
{
return mBlend.blend;
}
void State::setBlend(bool enabled)
{
mBlend.blend = enabled;
}
void State::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
mBlend.sourceBlendRGB = sourceRGB;
mBlend.destBlendRGB = destRGB;
mBlend.sourceBlendAlpha = sourceAlpha;
mBlend.destBlendAlpha = destAlpha;
}
void State::setBlendColor(float red, float green, float blue, float alpha)
{
mBlendColor.red = red;
mBlendColor.green = green;
mBlendColor.blue = blue;
mBlendColor.alpha = alpha;
}
void State::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
mBlend.blendEquationRGB = rgbEquation;
mBlend.blendEquationAlpha = alphaEquation;
}
const ColorF &State::getBlendColor() const
{
return mBlendColor;
}
bool State::isStencilTestEnabled() const
{
return mDepthStencil.stencilTest;
}
void State::setStencilTest(bool enabled)
{
mDepthStencil.stencilTest = enabled;
}
void State::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
mDepthStencil.stencilFunc = stencilFunc;
mStencilRef = (stencilRef > 0) ? stencilRef : 0;
mDepthStencil.stencilMask = stencilMask;
}
void State::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask)
{
mDepthStencil.stencilBackFunc = stencilBackFunc;
mStencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
mDepthStencil.stencilBackMask = stencilBackMask;
}
void State::setStencilWritemask(GLuint stencilWritemask)
{
mDepthStencil.stencilWritemask = stencilWritemask;
}
void State::setStencilBackWritemask(GLuint stencilBackWritemask)
{
mDepthStencil.stencilBackWritemask = stencilBackWritemask;
}
void State::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
mDepthStencil.stencilFail = stencilFail;
mDepthStencil.stencilPassDepthFail = stencilPassDepthFail;
mDepthStencil.stencilPassDepthPass = stencilPassDepthPass;
}
void State::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass)
{
mDepthStencil.stencilBackFail = stencilBackFail;
mDepthStencil.stencilBackPassDepthFail = stencilBackPassDepthFail;
mDepthStencil.stencilBackPassDepthPass = stencilBackPassDepthPass;
}
GLint State::getStencilRef() const
{
return mStencilRef;
}
GLint State::getStencilBackRef() const
{
return mStencilBackRef;
}
bool State::isPolygonOffsetFillEnabled() const
{
return mRasterizer.polygonOffsetFill;
}
void State::setPolygonOffsetFill(bool enabled)
{
mRasterizer.polygonOffsetFill = enabled;
}
void State::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
// An application can pass NaN values here, so handle this gracefully
mRasterizer.polygonOffsetFactor = factor != factor ? 0.0f : factor;
mRasterizer.polygonOffsetUnits = units != units ? 0.0f : units;
}
bool State::isSampleAlphaToCoverageEnabled() const
{
return mBlend.sampleAlphaToCoverage;
}
void State::setSampleAlphaToCoverage(bool enabled)
{
mBlend.sampleAlphaToCoverage = enabled;
}
bool State::isSampleCoverageEnabled() const
{
return mSampleCoverage;
}
void State::setSampleCoverage(bool enabled)
{
mSampleCoverage = enabled;
}
void State::setSampleCoverageParams(GLclampf value, bool invert)
{
mSampleCoverageValue = value;
mSampleCoverageInvert = invert;
}
void State::getSampleCoverageParams(GLclampf *value, bool *invert)
{
ASSERT(value != NULL && invert != NULL);
*value = mSampleCoverageValue;
*invert = mSampleCoverageInvert;
}
bool State::isScissorTestEnabled() const
{
return mScissorTest;
}
void State::setScissorTest(bool enabled)
{
mScissorTest = enabled;
}
void State::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mScissor.x = x;
mScissor.y = y;
mScissor.width = width;
mScissor.height = height;
}
const Rectangle &State::getScissor() const
{
return mScissor;
}
bool State::isDitherEnabled() const
{
return mBlend.dither;
}
void State::setDither(bool enabled)
{
mBlend.dither = enabled;
}
void State::setEnableFeature(GLenum feature, bool enabled)
{
switch (feature)
{
case GL_CULL_FACE: setCullFace(enabled); break;
case GL_POLYGON_OFFSET_FILL: setPolygonOffsetFill(enabled); break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: setSampleAlphaToCoverage(enabled); break;
case GL_SAMPLE_COVERAGE: setSampleCoverage(enabled); break;
case GL_SCISSOR_TEST: setScissorTest(enabled); break;
case GL_STENCIL_TEST: setStencilTest(enabled); break;
case GL_DEPTH_TEST: setDepthTest(enabled); break;
case GL_BLEND: setBlend(enabled); break;
case GL_DITHER: setDither(enabled); break;
case GL_PRIMITIVE_RESTART_FIXED_INDEX: UNIMPLEMENTED(); break;
case GL_RASTERIZER_DISCARD: setRasterizerDiscard(enabled); break;
default: UNREACHABLE();
}
}
bool State::getEnableFeature(GLenum feature)
{
switch (feature)
{
case GL_CULL_FACE: return isCullFaceEnabled();
case GL_POLYGON_OFFSET_FILL: return isPolygonOffsetFillEnabled();
case GL_SAMPLE_ALPHA_TO_COVERAGE: return isSampleAlphaToCoverageEnabled();
case GL_SAMPLE_COVERAGE: return isSampleCoverageEnabled();
case GL_SCISSOR_TEST: return isScissorTestEnabled();
case GL_STENCIL_TEST: return isStencilTestEnabled();
case GL_DEPTH_TEST: return isDepthTestEnabled();
case GL_BLEND: return isBlendEnabled();
case GL_DITHER: return isDitherEnabled();
case GL_PRIMITIVE_RESTART_FIXED_INDEX: UNIMPLEMENTED(); return false;
case GL_RASTERIZER_DISCARD: return isRasterizerDiscardEnabled();
default: UNREACHABLE(); return false;
}
}
void State::setLineWidth(GLfloat width)
{
mLineWidth = width;
}
void State::setGenerateMipmapHint(GLenum hint)
{
mGenerateMipmapHint = hint;
}
void State::setFragmentShaderDerivativeHint(GLenum hint)
{
mFragmentShaderDerivativeHint = hint;
// TODO: Propagate the hint to shader translator so we can write
// ddx, ddx_coarse, or ddx_fine depending on the hint.
// Ignore for now. It is valid for implementations to ignore hint.
}
void State::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mViewport.x = x;
mViewport.y = y;
mViewport.width = width;
mViewport.height = height;
}
const Rectangle &State::getViewport() const
{
return mViewport;
}
void State::setActiveSampler(unsigned int active)
{
mActiveSampler = active;
}
unsigned int State::getActiveSampler() const
{
return mActiveSampler;
}
void State::setSamplerTexture(GLenum type, Texture *texture)
{
mSamplerTextures[type][mActiveSampler].set(texture);
}
Texture *State::getSamplerTexture(unsigned int sampler, GLenum type) const
{
const BindingPointer<Texture>& binding = mSamplerTextures.at(type)[sampler];
if (binding.id() == 0) // Special case: 0 refers to default textures held by Context
{
return NULL;
}
return binding.get();
}
GLuint State::getSamplerTextureId(unsigned int sampler, GLenum type) const
{
return mSamplerTextures.at(type)[sampler].id();
}
void State::detachTexture(GLuint texture)
{
// Textures have a detach method on State rather than a simple
// removeBinding, because the zero/null texture objects are managed
// separately, and don't have to go through the Context's maps or
// the ResourceManager.
// [OpenGL ES 2.0.24] section 3.8 page 84:
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
// rebound to texture object zero
for (TextureBindingMap::iterator bindingVec = mSamplerTextures.begin(); bindingVec != mSamplerTextures.end(); bindingVec++)
{
TextureBindingVector &textureVector = bindingVec->second;
for (size_t textureIdx = 0; textureIdx < textureVector.size(); textureIdx++)
{
BindingPointer<Texture> &binding = textureVector[textureIdx];
if (binding.id() == texture)
{
binding.set(NULL);
}
}
}
// [OpenGL ES 2.0.24] section 4.4 page 112:
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
// as if Texture2DAttachment had been called, with a texture of 0, for each attachment point to which this
// image was attached in the currently bound framebuffer.
if (mReadFramebuffer)
{
mReadFramebuffer->detachTexture(texture);
}
if (mDrawFramebuffer)
{
mDrawFramebuffer->detachTexture(texture);
}
}
void State::setSamplerBinding(GLuint textureUnit, Sampler *sampler)
{
mSamplers[textureUnit].set(sampler);
}
GLuint State::getSamplerId(GLuint textureUnit) const
{
ASSERT(textureUnit < mSamplers.size());
return mSamplers[textureUnit].id();
}
Sampler *State::getSampler(GLuint textureUnit) const
{
return mSamplers[textureUnit].get();
}
void State::detachSampler(GLuint sampler)
{
// [OpenGL ES 3.0.2] section 3.8.2 pages 123-124:
// If a sampler object that is currently bound to one or more texture units is
// deleted, it is as though BindSampler is called once for each texture unit to
// which the sampler is bound, with unit set to the texture unit and sampler set to zero.
for (size_t textureUnit = 0; textureUnit < mSamplers.size(); textureUnit++)
{
BindingPointer<Sampler> &samplerBinding = mSamplers[textureUnit];
if (samplerBinding.id() == sampler)
{
samplerBinding.set(NULL);
}
}
}
void State::setRenderbufferBinding(Renderbuffer *renderbuffer)
{
mRenderbuffer.set(renderbuffer);
}
GLuint State::getRenderbufferId() const
{
return mRenderbuffer.id();
}
Renderbuffer *State::getCurrentRenderbuffer()
{
return mRenderbuffer.get();
}
void State::detachRenderbuffer(GLuint renderbuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 109:
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
// had been executed with the target RENDERBUFFER and name of zero.
if (mRenderbuffer.id() == renderbuffer)
{
mRenderbuffer.set(NULL);
}
// [OpenGL ES 2.0.24] section 4.4 page 111:
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
// point to which this image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = mReadFramebuffer;
Framebuffer *drawFramebuffer = mDrawFramebuffer;
if (readFramebuffer)
{
readFramebuffer->detachRenderbuffer(renderbuffer);
}
if (drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachRenderbuffer(renderbuffer);
}
}
void State::setReadFramebufferBinding(Framebuffer *framebuffer)
{
mReadFramebuffer = framebuffer;
}
void State::setDrawFramebufferBinding(Framebuffer *framebuffer)
{
mDrawFramebuffer = framebuffer;
}
Framebuffer *State::getTargetFramebuffer(GLenum target) const
{
switch (target)
{
case GL_READ_FRAMEBUFFER_ANGLE: return mReadFramebuffer;
case GL_DRAW_FRAMEBUFFER_ANGLE:
case GL_FRAMEBUFFER: return mDrawFramebuffer;
default: UNREACHABLE(); return NULL;
}
}
Framebuffer *State::getReadFramebuffer()
{
return mReadFramebuffer;
}
Framebuffer *State::getDrawFramebuffer()
{
return mDrawFramebuffer;
}
const Framebuffer *State::getReadFramebuffer() const
{
return mReadFramebuffer;
}
const Framebuffer *State::getDrawFramebuffer() const
{
return mDrawFramebuffer;
}
bool State::removeReadFramebufferBinding(GLuint framebuffer)
{
if (mReadFramebuffer->id() == framebuffer)
{
mReadFramebuffer = NULL;
return true;
}
return false;
}
bool State::removeDrawFramebufferBinding(GLuint framebuffer)
{
if (mDrawFramebuffer->id() == framebuffer)
{
mDrawFramebuffer = NULL;
return true;
}
return false;
}
void State::setVertexArrayBinding(VertexArray *vertexArray)
{
mVertexArray = vertexArray;
}
GLuint State::getVertexArrayId() const
{
ASSERT(mVertexArray != NULL);
return mVertexArray->id();
}
VertexArray *State::getVertexArray() const
{
ASSERT(mVertexArray != NULL);
return mVertexArray;
}
bool State::removeVertexArrayBinding(GLuint vertexArray)
{
if (mVertexArray->id() == vertexArray)
{
mVertexArray = NULL;
return true;
}
return false;
}
void State::setCurrentProgram(GLuint programId, Program *newProgram)
{
mCurrentProgramId = programId; // set new ID before trying to delete program binary; otherwise it will only be flagged for deletion
mCurrentProgramBinary.set(NULL);
if (newProgram)
{
newProgram->addRef();
mCurrentProgramBinary.set(newProgram->getProgramBinary());
}
}
void State::setCurrentProgramBinary(ProgramBinary *binary)
{
mCurrentProgramBinary.set(binary);
}
GLuint State::getCurrentProgramId() const
{
return mCurrentProgramId;
}
ProgramBinary *State::getCurrentProgramBinary() const
{
return mCurrentProgramBinary.get();
}
void State::setTransformFeedbackBinding(TransformFeedback *transformFeedback)
{
mTransformFeedback.set(transformFeedback);
}
TransformFeedback *State::getCurrentTransformFeedback() const
{
return mTransformFeedback.get();
}
void State::detachTransformFeedback(GLuint transformFeedback)
{
if (mTransformFeedback.id() == transformFeedback)
{
mTransformFeedback.set(NULL);
}
}
bool State::isQueryActive() const
{
for (State::ActiveQueryMap::const_iterator i = mActiveQueries.begin();
i != mActiveQueries.end(); i++)
{
if (i->second.get() != NULL)
{
return true;
}
}
return false;
}
void State::setActiveQuery(GLenum target, Query *query)
{
mActiveQueries[target].set(query);
}
GLuint State::getActiveQueryId(GLenum target) const
{
const Query *query = getActiveQuery(target);
return (query ? query->id() : 0u);
}
Query *State::getActiveQuery(GLenum target) const
{
// All query types should already exist in the activeQueries map
ASSERT(mActiveQueries.find(target) != mActiveQueries.end());
return mActiveQueries.at(target).get();
}
void State::setArrayBufferBinding(Buffer *buffer)
{
mArrayBuffer.set(buffer);
}
GLuint State::getArrayBufferId() const
{
return mArrayBuffer.id();
}
bool State::removeArrayBufferBinding(GLuint buffer)
{
if (mArrayBuffer.id() == buffer)
{
mArrayBuffer.set(NULL);
return true;
}
return false;
}
void State::setGenericUniformBufferBinding(Buffer *buffer)
{
mGenericUniformBuffer.set(buffer);
}
void State::setIndexedUniformBufferBinding(GLuint index, Buffer *buffer, GLintptr offset, GLsizeiptr size)
{
mUniformBuffers[index].set(buffer, offset, size);
}
GLuint State::getIndexedUniformBufferId(GLuint index) const
{
ASSERT(index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS);
return mUniformBuffers[index].id();
}
Buffer *State::getIndexedUniformBuffer(GLuint index) const
{
ASSERT(index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS);
return mUniformBuffers[index].get();
}
void State::setGenericTransformFeedbackBufferBinding(Buffer *buffer)
{
mGenericTransformFeedbackBuffer.set(buffer);
}
void State::setIndexedTransformFeedbackBufferBinding(GLuint index, Buffer *buffer, GLintptr offset, GLsizeiptr size)
{
mTransformFeedbackBuffers[index].set(buffer, offset, size);
}
GLuint State::getIndexedTransformFeedbackBufferId(GLuint index) const
{
ASSERT(index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS);
return mTransformFeedbackBuffers[index].id();
}
Buffer *State::getIndexedTransformFeedbackBuffer(GLuint index) const
{
ASSERT(index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS);
return mTransformFeedbackBuffers[index].get();
}
GLuint State::getIndexedTransformFeedbackBufferOffset(GLuint index) const
{
ASSERT(index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS);
return mTransformFeedbackBuffers[index].getOffset();
}
void State::setCopyReadBufferBinding(Buffer *buffer)
{
mCopyReadBuffer.set(buffer);
}
void State::setCopyWriteBufferBinding(Buffer *buffer)
{
mCopyWriteBuffer.set(buffer);
}
void State::setPixelPackBufferBinding(Buffer *buffer)
{
mPack.pixelBuffer.set(buffer);
}
void State::setPixelUnpackBufferBinding(Buffer *buffer)
{
mUnpack.pixelBuffer.set(buffer);
}
Buffer *State::getTargetBuffer(GLenum target) const
{
switch (target)
{
case GL_ARRAY_BUFFER: return mArrayBuffer.get();
case GL_COPY_READ_BUFFER: return mCopyReadBuffer.get();
case GL_COPY_WRITE_BUFFER: return mCopyWriteBuffer.get();
case GL_ELEMENT_ARRAY_BUFFER: return getVertexArray()->getElementArrayBuffer();
case GL_PIXEL_PACK_BUFFER: return mPack.pixelBuffer.get();
case GL_PIXEL_UNPACK_BUFFER: return mUnpack.pixelBuffer.get();
case GL_TRANSFORM_FEEDBACK_BUFFER: return mGenericTransformFeedbackBuffer.get();
case GL_UNIFORM_BUFFER: return mGenericUniformBuffer.get();
default: UNREACHABLE(); return NULL;
}
}
void State::setEnableVertexAttribArray(unsigned int attribNum, bool enabled)
{
getVertexArray()->enableAttribute(attribNum, enabled);
}
void State::setVertexAttribf(GLuint index, const GLfloat values[4])
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mVertexAttribCurrentValues[index].setFloatValues(values);
}
void State::setVertexAttribu(GLuint index, const GLuint values[4])
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mVertexAttribCurrentValues[index].setUnsignedIntValues(values);
}
void State::setVertexAttribi(GLuint index, const GLint values[4])
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mVertexAttribCurrentValues[index].setIntValues(values);
}
void State::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
bool pureInteger, GLsizei stride, const void *pointer)
{
getVertexArray()->setAttributeState(attribNum, boundBuffer, size, type, normalized, pureInteger, stride, pointer);
}
const VertexAttribute &State::getVertexAttribState(unsigned int attribNum) const
{
return getVertexArray()->getVertexAttribute(attribNum);
}
const VertexAttribCurrentValueData &State::getVertexAttribCurrentValue(unsigned int attribNum) const
{
ASSERT(attribNum < MAX_VERTEX_ATTRIBS);
return mVertexAttribCurrentValues[attribNum];
}
const VertexAttribCurrentValueData *State::getVertexAttribCurrentValues() const
{
return mVertexAttribCurrentValues;
}
const void *State::getVertexAttribPointer(unsigned int attribNum) const
{
return getVertexArray()->getVertexAttribute(attribNum).pointer;
}
void State::setPackAlignment(GLint alignment)
{
mPack.alignment = alignment;
}
GLint State::getPackAlignment() const
{
return mPack.alignment;
}
void State::setPackReverseRowOrder(bool reverseRowOrder)
{
mPack.reverseRowOrder = reverseRowOrder;
}
bool State::getPackReverseRowOrder() const
{
return mPack.reverseRowOrder;
}
const PixelPackState &State::getPackState() const
{
return mPack;
}
void State::setUnpackAlignment(GLint alignment)
{
mUnpack.alignment = alignment;
}
GLint State::getUnpackAlignment() const
{
return mUnpack.alignment;
}
const PixelUnpackState &State::getUnpackState() const
{
return mUnpack;
}
void State::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SAMPLE_COVERAGE_INVERT: *params = mSampleCoverageInvert; break;
case GL_DEPTH_WRITEMASK: *params = mDepthStencil.depthMask; break;
case GL_COLOR_WRITEMASK:
params[0] = mBlend.colorMaskRed;
params[1] = mBlend.colorMaskGreen;
params[2] = mBlend.colorMaskBlue;
params[3] = mBlend.colorMaskAlpha;
break;
case GL_CULL_FACE: *params = mRasterizer.cullFace; break;
case GL_POLYGON_OFFSET_FILL: *params = mRasterizer.polygonOffsetFill; break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mBlend.sampleAlphaToCoverage; break;
case GL_SAMPLE_COVERAGE: *params = mSampleCoverage; break;
case GL_SCISSOR_TEST: *params = mScissorTest; break;
case GL_STENCIL_TEST: *params = mDepthStencil.stencilTest; break;
case GL_DEPTH_TEST: *params = mDepthStencil.depthTest; break;
case GL_BLEND: *params = mBlend.blend; break;
case GL_DITHER: *params = mBlend.dither; break;
case GL_TRANSFORM_FEEDBACK_ACTIVE: *params = getCurrentTransformFeedback()->isStarted(); break;
case GL_TRANSFORM_FEEDBACK_PAUSED: *params = getCurrentTransformFeedback()->isPaused(); break;
default:
UNREACHABLE();
break;
}
}
void State::getFloatv(GLenum pname, GLfloat *params)
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch (pname)
{
case GL_LINE_WIDTH: *params = mLineWidth; break;
case GL_SAMPLE_COVERAGE_VALUE: *params = mSampleCoverageValue; break;
case GL_DEPTH_CLEAR_VALUE: *params = mDepthClearValue; break;
case GL_POLYGON_OFFSET_FACTOR: *params = mRasterizer.polygonOffsetFactor; break;
case GL_POLYGON_OFFSET_UNITS: *params = mRasterizer.polygonOffsetUnits; break;
case GL_DEPTH_RANGE:
params[0] = mNearZ;
params[1] = mFarZ;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = mColorClearValue.red;
params[1] = mColorClearValue.green;
params[2] = mColorClearValue.blue;
params[3] = mColorClearValue.alpha;
break;
case GL_BLEND_COLOR:
params[0] = mBlendColor.red;
params[1] = mBlendColor.green;
params[2] = mBlendColor.blue;
params[3] = mBlendColor.alpha;
break;
default:
UNREACHABLE();
break;
}
}
void State::getIntegerv(GLenum pname, GLint *params)
{
if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT)
{
unsigned int colorAttachment = (pname - GL_DRAW_BUFFER0_EXT);
ASSERT(colorAttachment < mContext->getCaps().maxDrawBuffers);
Framebuffer *framebuffer = mDrawFramebuffer;
*params = framebuffer->getDrawBufferState(colorAttachment);
return;
}
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// State::getFloatv.
switch (pname)
{
case GL_ARRAY_BUFFER_BINDING: *params = mArrayBuffer.id(); break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = getVertexArray()->getElementArrayBufferId(); break;
//case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: *params = mDrawFramebuffer->id(); break;
case GL_READ_FRAMEBUFFER_BINDING_ANGLE: *params = mReadFramebuffer->id(); break;
case GL_RENDERBUFFER_BINDING: *params = mRenderbuffer.id(); break;
case GL_VERTEX_ARRAY_BINDING: *params = mVertexArray->id(); break;
case GL_CURRENT_PROGRAM: *params = mCurrentProgramId; break;
case GL_PACK_ALIGNMENT: *params = mPack.alignment; break;
case GL_PACK_REVERSE_ROW_ORDER_ANGLE: *params = mPack.reverseRowOrder; break;
case GL_UNPACK_ALIGNMENT: *params = mUnpack.alignment; break;
case GL_GENERATE_MIPMAP_HINT: *params = mGenerateMipmapHint; break;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mFragmentShaderDerivativeHint; break;
case GL_ACTIVE_TEXTURE: *params = (mActiveSampler + GL_TEXTURE0); break;
case GL_STENCIL_FUNC: *params = mDepthStencil.stencilFunc; break;
case GL_STENCIL_REF: *params = mStencilRef; break;
case GL_STENCIL_VALUE_MASK: *params = clampToInt(mDepthStencil.stencilMask); break;
case GL_STENCIL_BACK_FUNC: *params = mDepthStencil.stencilBackFunc; break;
case GL_STENCIL_BACK_REF: *params = mStencilBackRef; break;
case GL_STENCIL_BACK_VALUE_MASK: *params = clampToInt(mDepthStencil.stencilBackMask); break;
case GL_STENCIL_FAIL: *params = mDepthStencil.stencilFail; break;
case GL_STENCIL_PASS_DEPTH_FAIL: *params = mDepthStencil.stencilPassDepthFail; break;
case GL_STENCIL_PASS_DEPTH_PASS: *params = mDepthStencil.stencilPassDepthPass; break;
case GL_STENCIL_BACK_FAIL: *params = mDepthStencil.stencilBackFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mDepthStencil.stencilBackPassDepthFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mDepthStencil.stencilBackPassDepthPass; break;
case GL_DEPTH_FUNC: *params = mDepthStencil.depthFunc; break;
case GL_BLEND_SRC_RGB: *params = mBlend.sourceBlendRGB; break;
case GL_BLEND_SRC_ALPHA: *params = mBlend.sourceBlendAlpha; break;
case GL_BLEND_DST_RGB: *params = mBlend.destBlendRGB; break;
case GL_BLEND_DST_ALPHA: *params = mBlend.destBlendAlpha; break;
case GL_BLEND_EQUATION_RGB: *params = mBlend.blendEquationRGB; break;
case GL_BLEND_EQUATION_ALPHA: *params = mBlend.blendEquationAlpha; break;
case GL_STENCIL_WRITEMASK: *params = clampToInt(mDepthStencil.stencilWritemask); break;
case GL_STENCIL_BACK_WRITEMASK: *params = clampToInt(mDepthStencil.stencilBackWritemask); break;
case GL_STENCIL_CLEAR_VALUE: *params = mStencilClearValue; break;
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
{
gl::Framebuffer *framebuffer = mDrawFramebuffer;
if (framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE)
{
switch (pname)
{
case GL_SAMPLE_BUFFERS:
if (framebuffer->getSamples() != 0)
{
*params = 1;
}
else
{
*params = 0;
}
break;
case GL_SAMPLES:
*params = framebuffer->getSamples();
break;
}
}
else
{
*params = 0;
}
}
break;
case GL_VIEWPORT:
params[0] = mViewport.x;
params[1] = mViewport.y;
params[2] = mViewport.width;
params[3] = mViewport.height;
break;
case GL_SCISSOR_BOX:
params[0] = mScissor.x;
params[1] = mScissor.y;
params[2] = mScissor.width;
params[3] = mScissor.height;
break;
case GL_CULL_FACE_MODE: *params = mRasterizer.cullMode; break;
case GL_FRONT_FACE: *params = mRasterizer.frontFace; break;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::FramebufferAttachment *colorbuffer = framebuffer->getFirstColorbuffer();
if (colorbuffer)
{
switch (pname)
{
case GL_RED_BITS: *params = colorbuffer->getRedSize(); break;
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break;
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break;
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break;
}
}
else
{
*params = 0;
}
}
break;
case GL_DEPTH_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::FramebufferAttachment *depthbuffer = framebuffer->getDepthbuffer();
if (depthbuffer)
{
*params = depthbuffer->getDepthSize();
}
else
{
*params = 0;
}
}
break;
case GL_STENCIL_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::FramebufferAttachment *stencilbuffer = framebuffer->getStencilbuffer();
if (stencilbuffer)
{
*params = stencilbuffer->getStencilSize();
}
else
{
*params = 0;
}
}
break;
case GL_TEXTURE_BINDING_2D:
ASSERT(mActiveSampler < mContext->getCaps().maxCombinedTextureImageUnits);
*params = mSamplerTextures.at(GL_TEXTURE_2D)[mActiveSampler].id();
break;
case GL_TEXTURE_BINDING_CUBE_MAP:
ASSERT(mActiveSampler < mContext->getCaps().maxCombinedTextureImageUnits);
*params = mSamplerTextures.at(GL_TEXTURE_CUBE_MAP)[mActiveSampler].id();
break;
case GL_TEXTURE_BINDING_3D:
ASSERT(mActiveSampler <mContext->getCaps().maxCombinedTextureImageUnits);
*params = mSamplerTextures.at(GL_TEXTURE_3D)[mActiveSampler].id();
break;
case GL_TEXTURE_BINDING_2D_ARRAY:
ASSERT(mActiveSampler < mContext->getCaps().maxCombinedTextureImageUnits);
*params = mSamplerTextures.at(GL_TEXTURE_2D_ARRAY)[mActiveSampler].id();
break;
case GL_UNIFORM_BUFFER_BINDING:
*params = mGenericUniformBuffer.id();
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
*params = mGenericTransformFeedbackBuffer.id();
break;
case GL_COPY_READ_BUFFER_BINDING:
*params = mCopyReadBuffer.id();
break;
case GL_COPY_WRITE_BUFFER_BINDING:
*params = mCopyWriteBuffer.id();
break;
case GL_PIXEL_PACK_BUFFER_BINDING:
*params = mPack.pixelBuffer.id();
break;
case GL_PIXEL_UNPACK_BUFFER_BINDING:
*params = mUnpack.pixelBuffer.id();
break;
default:
UNREACHABLE();
break;
}
}
bool State::getIndexedIntegerv(GLenum target, GLuint index, GLint *data)
{
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS)
{
*data = mTransformFeedbackBuffers[index].id();
}
break;
case GL_UNIFORM_BUFFER_BINDING:
if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS)
{
*data = mUniformBuffers[index].id();
}
break;
default:
return false;
}
return true;
}
bool State::getIndexedInteger64v(GLenum target, GLuint index, GLint64 *data)
{
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_START:
if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS)
{
*data = mTransformFeedbackBuffers[index].getOffset();
}
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE:
if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS)
{
*data = mTransformFeedbackBuffers[index].getSize();
}
break;
case GL_UNIFORM_BUFFER_START:
if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS)
{
*data = mUniformBuffers[index].getOffset();
}
break;
case GL_UNIFORM_BUFFER_SIZE:
if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS)
{
*data = mUniformBuffers[index].getSize();
}
break;
default:
return false;
}
return true;
}
bool State::hasMappedBuffer(GLenum target) const
{
if (target == GL_ARRAY_BUFFER)
{
for (unsigned int attribIndex = 0; attribIndex < gl::MAX_VERTEX_ATTRIBS; attribIndex++)
{
const gl::VertexAttribute &vertexAttrib = getVertexAttribState(attribIndex);
gl::Buffer *boundBuffer = vertexAttrib.buffer.get();
if (vertexAttrib.enabled && boundBuffer && boundBuffer->isMapped())
{
return true;
}
}
return false;
}
else
{
Buffer *buffer = getTargetBuffer(target);
return (buffer && buffer->isMapped());
}
}
}