blob: c472113ebacf76d11668839752946e9575cb1805 [file] [log] [blame]
//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ShaderD3D.cpp: Defines the rx::ShaderD3D class which implements rx::ShaderImpl.
#include "libGLESv2/renderer/d3d/ShaderD3D.h"
#include "libGLESv2/renderer/Renderer.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/main.h"
#include "common/utilities.h"
namespace rx
{
template <typename VarT>
void FilterInactiveVariables(std::vector<VarT> *variableList)
{
ASSERT(variableList);
for (size_t varIndex = 0; varIndex < variableList->size();)
{
if (!(*variableList)[varIndex].staticUse)
{
variableList->erase(variableList->begin() + varIndex);
}
else
{
varIndex++;
}
}
}
void *ShaderD3D::mFragmentCompiler = NULL;
void *ShaderD3D::mVertexCompiler = NULL;
template <typename VarT>
const std::vector<VarT> *GetShaderVariables(const std::vector<VarT> *variableList)
{
ASSERT(variableList);
return variableList;
}
ShaderD3D::ShaderD3D(GLenum type, rx::Renderer *renderer)
: mType(type),
mRenderer(renderer),
mShaderVersion(100)
{
uncompile();
initializeCompiler();
}
ShaderD3D::~ShaderD3D()
{
}
ShaderD3D *ShaderD3D::makeShaderD3D(ShaderImpl *impl)
{
ASSERT(HAS_DYNAMIC_TYPE(ShaderD3D*, impl));
return static_cast<ShaderD3D*>(impl);
}
const ShaderD3D *ShaderD3D::makeShaderD3D(const ShaderImpl *impl)
{
ASSERT(HAS_DYNAMIC_TYPE(const ShaderD3D*, impl));
return static_cast<const ShaderD3D*>(impl);
}
// Perform a one-time initialization of the shader compiler (or after being destructed by releaseCompiler)
void ShaderD3D::initializeCompiler()
{
if (!mFragmentCompiler)
{
int result = ShInitialize();
if (result)
{
ShShaderOutput hlslVersion = (mRenderer->getMajorShaderModel() >= 4) ? SH_HLSL11_OUTPUT : SH_HLSL9_OUTPUT;
ShBuiltInResources resources;
ShInitBuiltInResources(&resources);
// TODO(geofflang): use context's caps
const gl::Caps &caps = mRenderer->getRendererCaps();
const gl::Extensions &extensions = mRenderer->getRendererExtensions();
resources.MaxVertexAttribs = caps.maxVertexAttributes;
resources.MaxVertexUniformVectors = caps.maxVertexUniformVectors;
resources.MaxVaryingVectors = caps.maxVaryingVectors;
resources.MaxVertexTextureImageUnits = caps.maxVertexTextureImageUnits;
resources.MaxCombinedTextureImageUnits = caps.maxCombinedTextureImageUnits;
resources.MaxTextureImageUnits = caps.maxTextureImageUnits;
resources.MaxFragmentUniformVectors = caps.maxFragmentUniformVectors;
resources.MaxDrawBuffers = caps.maxDrawBuffers;
resources.OES_standard_derivatives = extensions.standardDerivatives;
resources.EXT_draw_buffers = extensions.drawBuffers;
resources.EXT_shader_texture_lod = 1;
// resources.OES_EGL_image_external = mRenderer->getShareHandleSupport() ? 1 : 0; // TODO: commented out until the extension is actually supported.
resources.FragmentPrecisionHigh = 1; // Shader Model 2+ always supports FP24 (s16e7) which corresponds to highp
resources.EXT_frag_depth = 1; // Shader Model 2+ always supports explicit depth output
// GLSL ES 3.0 constants
resources.MaxVertexOutputVectors = caps.maxVertexOutputComponents / 4;
resources.MaxFragmentInputVectors = caps.maxFragmentInputComponents / 4;
resources.MinProgramTexelOffset = caps.minProgramTexelOffset;
resources.MaxProgramTexelOffset = caps.maxProgramTexelOffset;
mFragmentCompiler = ShConstructCompiler(GL_FRAGMENT_SHADER, SH_GLES2_SPEC, hlslVersion, &resources);
mVertexCompiler = ShConstructCompiler(GL_VERTEX_SHADER, SH_GLES2_SPEC, hlslVersion, &resources);
}
}
}
void ShaderD3D::releaseCompiler()
{
ShDestruct(mFragmentCompiler);
ShDestruct(mVertexCompiler);
mFragmentCompiler = NULL;
mVertexCompiler = NULL;
ShFinalize();
}
void ShaderD3D::parseVaryings(void *compiler)
{
if (!mHlsl.empty())
{
const std::vector<sh::Varying> *varyings = ShGetVaryings(compiler);
ASSERT(varyings);
for (size_t varyingIndex = 0; varyingIndex < varyings->size(); varyingIndex++)
{
mVaryings.push_back(gl::PackedVarying((*varyings)[varyingIndex]));
}
mUsesMultipleRenderTargets = mHlsl.find("GL_USES_MRT") != std::string::npos;
mUsesFragColor = mHlsl.find("GL_USES_FRAG_COLOR") != std::string::npos;
mUsesFragData = mHlsl.find("GL_USES_FRAG_DATA") != std::string::npos;
mUsesFragCoord = mHlsl.find("GL_USES_FRAG_COORD") != std::string::npos;
mUsesFrontFacing = mHlsl.find("GL_USES_FRONT_FACING") != std::string::npos;
mUsesPointSize = mHlsl.find("GL_USES_POINT_SIZE") != std::string::npos;
mUsesPointCoord = mHlsl.find("GL_USES_POINT_COORD") != std::string::npos;
mUsesDepthRange = mHlsl.find("GL_USES_DEPTH_RANGE") != std::string::npos;
mUsesFragDepth = mHlsl.find("GL_USES_FRAG_DEPTH") != std::string::npos;
mUsesDiscardRewriting = mHlsl.find("ANGLE_USES_DISCARD_REWRITING") != std::string::npos;
mUsesNestedBreak = mHlsl.find("ANGLE_USES_NESTED_BREAK") != std::string::npos;
}
}
void ShaderD3D::resetVaryingsRegisterAssignment()
{
for (size_t varyingIndex = 0; varyingIndex < mVaryings.size(); varyingIndex++)
{
mVaryings[varyingIndex].resetRegisterAssignment();
}
}
// initialize/clean up previous state
void ShaderD3D::uncompile()
{
// set by compileToHLSL
mHlsl.clear();
mInfoLog.clear();
mUsesMultipleRenderTargets = false;
mUsesFragColor = false;
mUsesFragData = false;
mUsesFragCoord = false;
mUsesFrontFacing = false;
mUsesPointSize = false;
mUsesPointCoord = false;
mUsesDepthRange = false;
mUsesFragDepth = false;
mShaderVersion = 100;
mUsesDiscardRewriting = false;
mUsesNestedBreak = false;
mVaryings.clear();
mUniforms.clear();
mInterfaceBlocks.clear();
mActiveAttributes.clear();
mActiveOutputVariables.clear();
}
void ShaderD3D::compileToHLSL(void *compiler, const std::string &source)
{
// ensure the compiler is loaded
initializeCompiler();
int compileOptions = (SH_OBJECT_CODE | SH_VARIABLES);
std::string sourcePath;
if (gl::perfActive())
{
sourcePath = getTempPath();
writeFile(sourcePath.c_str(), source.c_str(), source.length());
compileOptions |= SH_LINE_DIRECTIVES;
}
int result;
if (sourcePath.empty())
{
const char* sourceStrings[] =
{
source.c_str(),
};
result = ShCompile(compiler, sourceStrings, ArraySize(sourceStrings), compileOptions);
}
else
{
const char* sourceStrings[] =
{
sourcePath.c_str(),
source.c_str(),
};
result = ShCompile(compiler, sourceStrings, ArraySize(sourceStrings), compileOptions | SH_SOURCE_PATH);
}
size_t shaderVersion = 100;
ShGetInfo(compiler, SH_SHADER_VERSION, &shaderVersion);
mShaderVersion = static_cast<int>(shaderVersion);
if (shaderVersion == 300 && mRenderer->getCurrentClientVersion() < 3)
{
mInfoLog = "GLSL ES 3.00 is not supported by OpenGL ES 2.0 contexts";
TRACE("\n%s", mInfoLog.c_str());
}
else if (result)
{
size_t objCodeLen = 0;
ShGetInfo(compiler, SH_OBJECT_CODE_LENGTH, &objCodeLen);
char* outputHLSL = new char[objCodeLen];
ShGetObjectCode(compiler, outputHLSL);
#ifdef _DEBUG
std::ostringstream hlslStream;
hlslStream << "// GLSL\n";
hlslStream << "//\n";
size_t curPos = 0;
while (curPos != std::string::npos)
{
size_t nextLine = source.find("\n", curPos);
size_t len = (nextLine == std::string::npos) ? std::string::npos : (nextLine - curPos + 1);
hlslStream << "// " << source.substr(curPos, len);
curPos = (nextLine == std::string::npos) ? std::string::npos : (nextLine + 1);
}
hlslStream << "\n\n";
hlslStream << outputHLSL;
mHlsl = hlslStream.str();
#else
mHlsl = outputHLSL;
#endif
SafeDeleteArray(outputHLSL);
mUniforms = *GetShaderVariables(ShGetUniforms(compiler));
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
const sh::Uniform &uniform = mUniforms[uniformIndex];
if (uniform.staticUse)
{
unsigned int index = -1;
bool result = ShGetUniformRegister(compiler, uniform.name.c_str(), &index);
UNUSED_ASSERTION_VARIABLE(result);
ASSERT(result);
mUniformRegisterMap[uniform.name] = index;
}
}
mInterfaceBlocks = *GetShaderVariables(ShGetInterfaceBlocks(compiler));
for (size_t blockIndex = 0; blockIndex < mInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &interfaceBlock = mInterfaceBlocks[blockIndex];
if (interfaceBlock.staticUse)
{
unsigned int index = -1;
bool result = ShGetInterfaceBlockRegister(compiler, interfaceBlock.name.c_str(), &index);
UNUSED_ASSERTION_VARIABLE(result);
ASSERT(result);
mInterfaceBlockRegisterMap[interfaceBlock.name] = index;
}
}
}
else
{
size_t infoLogLen = 0;
ShGetInfo(compiler, SH_INFO_LOG_LENGTH, &infoLogLen);
char* infoLog = new char[infoLogLen];
ShGetInfoLog(compiler, infoLog);
mInfoLog = infoLog;
TRACE("\n%s", mInfoLog.c_str());
}
}
rx::D3DWorkaroundType ShaderD3D::getD3DWorkarounds() const
{
if (mUsesDiscardRewriting)
{
// ANGLE issue 486:
// Work-around a D3D9 compiler bug that presents itself when using conditional discard, by disabling optimization
return rx::ANGLE_D3D_WORKAROUND_SKIP_OPTIMIZATION;
}
if (mUsesNestedBreak)
{
// ANGLE issue 603:
// Work-around a D3D9 compiler bug that presents itself when using break in a nested loop, by maximizing optimization
// We want to keep the use of ANGLE_D3D_WORKAROUND_MAX_OPTIMIZATION minimal to prevent hangs, so usesDiscard takes precedence
return rx::ANGLE_D3D_WORKAROUND_MAX_OPTIMIZATION;
}
return rx::ANGLE_D3D_WORKAROUND_NONE;
}
// true if varying x has a higher priority in packing than y
bool ShaderD3D::compareVarying(const gl::PackedVarying &x, const gl::PackedVarying &y)
{
if (x.type == y.type)
{
return x.arraySize > y.arraySize;
}
// Special case for handling structs: we sort these to the end of the list
if (x.type == GL_STRUCT_ANGLEX)
{
return false;
}
if (y.type == GL_STRUCT_ANGLEX)
{
return true;
}
return gl::VariableSortOrder(x.type) < gl::VariableSortOrder(y.type);
}
unsigned int ShaderD3D::getUniformRegister(const std::string &uniformName) const
{
ASSERT(mUniformRegisterMap.count(uniformName) > 0);
return mUniformRegisterMap.find(uniformName)->second;
}
unsigned int ShaderD3D::getInterfaceBlockRegister(const std::string &blockName) const
{
ASSERT(mInterfaceBlockRegisterMap.count(blockName) > 0);
return mInterfaceBlockRegisterMap.find(blockName)->second;
}
void *ShaderD3D::getCompiler()
{
if (mType == GL_VERTEX_SHADER)
{
return mVertexCompiler;
}
else
{
ASSERT(mType == GL_FRAGMENT_SHADER);
return mFragmentCompiler;
}
}
ShShaderOutput ShaderD3D::getCompilerOutputType(GLenum shader)
{
void *compiler = NULL;
switch (shader)
{
case GL_VERTEX_SHADER: compiler = mVertexCompiler; break;
case GL_FRAGMENT_SHADER: compiler = mFragmentCompiler; break;
default: UNREACHABLE(); return SH_HLSL9_OUTPUT;
}
size_t outputType = 0;
ShGetInfo(compiler, SH_OUTPUT_TYPE, &outputType);
return static_cast<ShShaderOutput>(outputType);
}
bool ShaderD3D::compile(const std::string &source)
{
uncompile();
void *compiler = getCompiler();
compileToHLSL(compiler, source);
if (mType == GL_VERTEX_SHADER)
{
parseAttributes(compiler);
}
parseVaryings(compiler);
if (mType == GL_FRAGMENT_SHADER)
{
std::sort(mVaryings.begin(), mVaryings.end(), compareVarying);
const std::string &hlsl = getTranslatedSource();
if (!hlsl.empty())
{
mActiveOutputVariables = *GetShaderVariables(ShGetOutputVariables(compiler));
FilterInactiveVariables(&mActiveOutputVariables);
}
}
return !getTranslatedSource().empty();
}
void ShaderD3D::parseAttributes(void *compiler)
{
const std::string &hlsl = getTranslatedSource();
if (!hlsl.empty())
{
mActiveAttributes = *GetShaderVariables(ShGetAttributes(compiler));
FilterInactiveVariables(&mActiveAttributes);
}
}
int ShaderD3D::getSemanticIndex(const std::string &attributeName) const
{
if (!attributeName.empty())
{
int semanticIndex = 0;
for (size_t attributeIndex = 0; attributeIndex < mActiveAttributes.size(); attributeIndex++)
{
const sh::ShaderVariable &attribute = mActiveAttributes[attributeIndex];
if (attribute.name == attributeName)
{
return semanticIndex;
}
semanticIndex += gl::VariableRegisterCount(attribute.type);
}
}
return -1;
}
}