blob: f9009668b02c53d1a59f5c0085b7448d7aba917a [file] [log] [blame]
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ParseContext.h"
#include <stdarg.h>
#include <stdio.h>
#include "compiler/translator/glslang.h"
#include "compiler/preprocessor/SourceLocation.h"
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////
//
// Look at a '.' field selector string and change it into offsets
// for a vector.
//
bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc& line)
{
fields.num = (int) compString.size();
if (fields.num > 4) {
error(line, "illegal vector field selection", compString.c_str());
return false;
}
enum {
exyzw,
ergba,
estpq
} fieldSet[4];
for (int i = 0; i < fields.num; ++i) {
switch (compString[i]) {
case 'x':
fields.offsets[i] = 0;
fieldSet[i] = exyzw;
break;
case 'r':
fields.offsets[i] = 0;
fieldSet[i] = ergba;
break;
case 's':
fields.offsets[i] = 0;
fieldSet[i] = estpq;
break;
case 'y':
fields.offsets[i] = 1;
fieldSet[i] = exyzw;
break;
case 'g':
fields.offsets[i] = 1;
fieldSet[i] = ergba;
break;
case 't':
fields.offsets[i] = 1;
fieldSet[i] = estpq;
break;
case 'z':
fields.offsets[i] = 2;
fieldSet[i] = exyzw;
break;
case 'b':
fields.offsets[i] = 2;
fieldSet[i] = ergba;
break;
case 'p':
fields.offsets[i] = 2;
fieldSet[i] = estpq;
break;
case 'w':
fields.offsets[i] = 3;
fieldSet[i] = exyzw;
break;
case 'a':
fields.offsets[i] = 3;
fieldSet[i] = ergba;
break;
case 'q':
fields.offsets[i] = 3;
fieldSet[i] = estpq;
break;
default:
error(line, "illegal vector field selection", compString.c_str());
return false;
}
}
for (int i = 0; i < fields.num; ++i) {
if (fields.offsets[i] >= vecSize) {
error(line, "vector field selection out of range", compString.c_str());
return false;
}
if (i > 0) {
if (fieldSet[i] != fieldSet[i-1]) {
error(line, "illegal - vector component fields not from the same set", compString.c_str());
return false;
}
}
}
return true;
}
//
// Look at a '.' field selector string and change it into offsets
// for a matrix.
//
bool TParseContext::parseMatrixFields(const TString& compString, int matCols, int matRows, TMatrixFields& fields, const TSourceLoc& line)
{
fields.wholeRow = false;
fields.wholeCol = false;
fields.row = -1;
fields.col = -1;
if (compString.size() != 2) {
error(line, "illegal length of matrix field selection", compString.c_str());
return false;
}
if (compString[0] == '_') {
if (compString[1] < '0' || compString[1] > '3') {
error(line, "illegal matrix field selection", compString.c_str());
return false;
}
fields.wholeCol = true;
fields.col = compString[1] - '0';
} else if (compString[1] == '_') {
if (compString[0] < '0' || compString[0] > '3') {
error(line, "illegal matrix field selection", compString.c_str());
return false;
}
fields.wholeRow = true;
fields.row = compString[0] - '0';
} else {
if (compString[0] < '0' || compString[0] > '3' ||
compString[1] < '0' || compString[1] > '3') {
error(line, "illegal matrix field selection", compString.c_str());
return false;
}
fields.row = compString[0] - '0';
fields.col = compString[1] - '0';
}
if (fields.row >= matRows || fields.col >= matCols) {
error(line, "matrix field selection out of range", compString.c_str());
return false;
}
return true;
}
///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////
//
// Track whether errors have occurred.
//
void TParseContext::recover()
{
}
//
// Used by flex/bison to output all syntax and parsing errors.
//
void TParseContext::error(const TSourceLoc& loc,
const char* reason, const char* token,
const char* extraInfo)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
diagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
srcLoc, reason, token, extraInfo);
}
void TParseContext::warning(const TSourceLoc& loc,
const char* reason, const char* token,
const char* extraInfo) {
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
diagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
srcLoc, reason, token, extraInfo);
}
void TParseContext::trace(const char* str)
{
diagnostics.writeDebug(str);
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(const TSourceLoc& line, const char* op, TString left, TString right)
{
std::stringstream extraInfoStream;
extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", op, extraInfo.c_str());
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(const TSourceLoc& line, const char* op, TString operand)
{
std::stringstream extraInfoStream;
extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
<< " (or there is no acceptable conversion)";
std::string extraInfo = extraInfoStream.str();
error(line, " wrong operand type", op, extraInfo.c_str());
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(const TSourceLoc& line, const char* op, TString left, TString right)
{
std::stringstream extraInfoStream;
extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
<< "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
std::string extraInfo = extraInfoStream.str();
error(line, " wrong operand types ", op, extraInfo.c_str());
}
bool TParseContext::precisionErrorCheck(const TSourceLoc& line, TPrecision precision, TBasicType type){
if (!checksPrecisionErrors)
return false;
switch( type ){
case EbtFloat:
if( precision == EbpUndefined ){
error( line, "No precision specified for (float)", "" );
return true;
}
break;
case EbtInt:
if( precision == EbpUndefined ){
error( line, "No precision specified (int)", "" );
return true;
}
break;
default:
return false;
}
return false;
}
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if the was an error.
//
bool TParseContext::lValueErrorCheck(const TSourceLoc& line, const char* op, TIntermTyped* node)
{
TIntermSymbol* symNode = node->getAsSymbolNode();
TIntermBinary* binaryNode = node->getAsBinaryNode();
if (binaryNode) {
bool errorReturn;
switch(binaryNode->getOp()) {
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
return lValueErrorCheck(line, op, binaryNode->getLeft());
case EOpVectorSwizzle:
errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
if (!errorReturn) {
int offset[4] = {0,0,0,0};
TIntermTyped* rightNode = binaryNode->getRight();
TIntermAggregate *aggrNode = rightNode->getAsAggregate();
for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
p != aggrNode->getSequence().end(); p++) {
int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
offset[value]++;
if (offset[value] > 1) {
error(line, " l-value of swizzle cannot have duplicate components", op);
return true;
}
}
}
return errorReturn;
default:
break;
}
error(line, " l-value required", op);
return true;
}
const char* symbol = 0;
if (symNode != 0)
symbol = symNode->getSymbol().c_str();
const char* message = 0;
switch (node->getQualifier()) {
case EvqConst: message = "can't modify a const"; break;
case EvqConstReadOnly: message = "can't modify a const"; break;
case EvqAttribute: message = "can't modify an attribute"; break;
case EvqFragmentIn: message = "can't modify an input"; break;
case EvqVertexIn: message = "can't modify an input"; break;
case EvqUniform: message = "can't modify a uniform"; break;
case EvqVaryingIn: message = "can't modify a varying"; break;
case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
default:
//
// Type that can't be written to?
//
if (node->getBasicType() == EbtVoid) {
message = "can't modify void";
}
if (IsSampler(node->getBasicType())) {
message = "can't modify a sampler";
}
}
if (message == 0 && binaryNode == 0 && symNode == 0) {
error(line, " l-value required", op);
return true;
}
//
// Everything else is okay, no error.
//
if (message == 0)
return false;
//
// If we get here, we have an error and a message.
//
if (symNode) {
std::stringstream extraInfoStream;
extraInfoStream << "\"" << symbol << "\" (" << message << ")";
std::string extraInfo = extraInfoStream.str();
error(line, " l-value required", op, extraInfo.c_str());
}
else {
std::stringstream extraInfoStream;
extraInfoStream << "(" << message << ")";
std::string extraInfo = extraInfoStream.str();
error(line, " l-value required", op, extraInfo.c_str());
}
return true;
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
//
// Returns true if the was an error.
//
bool TParseContext::constErrorCheck(TIntermTyped* node)
{
if (node->getQualifier() == EvqConst)
return false;
error(node->getLine(), "constant expression required", "");
return true;
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
//
// Returns true if the was an error.
//
bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
{
if (node->isScalarInt())
return false;
error(node->getLine(), "integer expression required", token);
return true;
}
//
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
//
// Returns true if the was an error.
//
bool TParseContext::globalErrorCheck(const TSourceLoc& line, bool global, const char* token)
{
if (global)
return false;
error(line, "only allowed at global scope", token);
return true;
}
//
// For now, keep it simple: if it starts "gl_", it's reserved, independent
// of scope. Except, if the symbol table is at the built-in push-level,
// which is when we are parsing built-ins.
// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
// webgl shader.
//
// Returns true if there was an error.
//
bool TParseContext::reservedErrorCheck(const TSourceLoc& line, const TString& identifier)
{
static const char* reservedErrMsg = "reserved built-in name";
if (!symbolTable.atBuiltInLevel()) {
if (identifier.compare(0, 3, "gl_") == 0) {
error(line, reservedErrMsg, "gl_");
return true;
}
if (IsWebGLBasedSpec(shaderSpec)) {
if (identifier.compare(0, 6, "webgl_") == 0) {
error(line, reservedErrMsg, "webgl_");
return true;
}
if (identifier.compare(0, 7, "_webgl_") == 0) {
error(line, reservedErrMsg, "_webgl_");
return true;
}
if (shaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) {
error(line, reservedErrMsg, "css_");
return true;
}
}
if (identifier.find("__") != TString::npos) {
error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
return true;
}
}
return false;
}
//
// Make sure there is enough data provided to the constructor to build
// something of the type of the constructor. Also returns the type of
// the constructor.
//
// Returns true if there was an error in construction.
//
bool TParseContext::constructorErrorCheck(const TSourceLoc& line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
{
*type = function.getReturnType();
bool constructingMatrix = false;
switch(op) {
case EOpConstructMat2:
case EOpConstructMat3:
case EOpConstructMat4:
constructingMatrix = true;
break;
default:
break;
}
//
// Note: It's okay to have too many components available, but not okay to have unused
// arguments. 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument, so 'overfull' will become true.
//
size_t size = 0;
bool constType = true;
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
for (size_t i = 0; i < function.getParamCount(); ++i) {
const TParameter& param = function.getParam(i);
size += param.type->getObjectSize();
if (constructingMatrix && param.type->isMatrix())
matrixInMatrix = true;
if (full)
overFull = true;
if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
full = true;
if (param.type->getQualifier() != EvqConst)
constType = false;
if (param.type->isArray())
arrayArg = true;
}
if (constType)
type->setQualifier(EvqConst);
if (type->isArray() && static_cast<size_t>(type->getArraySize()) != function.getParamCount()) {
error(line, "array constructor needs one argument per array element", "constructor");
return true;
}
if (arrayArg && op != EOpConstructStruct) {
error(line, "constructing from a non-dereferenced array", "constructor");
return true;
}
if (matrixInMatrix && !type->isArray()) {
if (function.getParamCount() != 1) {
error(line, "constructing matrix from matrix can only take one argument", "constructor");
return true;
}
}
if (overFull) {
error(line, "too many arguments", "constructor");
return true;
}
if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) {
error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
return true;
}
if (!type->isMatrix() || !matrixInMatrix) {
if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
(op == EOpConstructStruct && size < type->getObjectSize())) {
error(line, "not enough data provided for construction", "constructor");
return true;
}
}
TIntermTyped *typed = node ? node->getAsTyped() : 0;
if (typed == 0) {
error(line, "constructor argument does not have a type", "constructor");
return true;
}
if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
error(line, "cannot convert a sampler", "constructor");
return true;
}
if (typed->getBasicType() == EbtVoid) {
error(line, "cannot convert a void", "constructor");
return true;
}
return false;
}
// This function checks to see if a void variable has been declared and raise an error message for such a case
//
// returns true in case of an error
//
bool TParseContext::voidErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& pubType)
{
if (pubType.type == EbtVoid) {
error(line, "illegal use of type 'void'", identifier.c_str());
return true;
}
return false;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
//
// returns true in case of an error
//
bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TIntermTyped* type)
{
if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
error(line, "boolean expression expected", "");
return true;
}
return false;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
//
// returns true in case of an error
//
bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TPublicType& pType)
{
if (pType.type != EbtBool || pType.isAggregate()) {
error(line, "boolean expression expected", "");
return true;
}
return false;
}
bool TParseContext::samplerErrorCheck(const TSourceLoc& line, const TPublicType& pType, const char* reason)
{
if (pType.type == EbtStruct) {
if (containsSampler(*pType.userDef)) {
error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
return true;
}
return false;
} else if (IsSampler(pType.type)) {
error(line, reason, getBasicString(pType.type));
return true;
}
return false;
}
bool TParseContext::structQualifierErrorCheck(const TSourceLoc& line, const TPublicType& pType)
{
switch (pType.qualifier)
{
case EvqVaryingIn:
case EvqVaryingOut:
case EvqAttribute:
case EvqVertexIn:
case EvqFragmentOut:
if (pType.type == EbtStruct)
{
error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
return true;
}
default: break;
}
if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
return true;
return false;
}
bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType)
{
if (pType.layoutQualifier.location != -1)
{
error(line, "location must only be specified for a single input or output variable", "location");
return true;
}
return false;
}
bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc& line, TQualifier qualifier, const TType& type)
{
if ((qualifier == EvqOut || qualifier == EvqInOut) &&
type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
error(line, "samplers cannot be output parameters", type.getBasicString());
return true;
}
return false;
}
bool TParseContext::containsSampler(TType& type)
{
if (IsSampler(type.getBasicType()))
return true;
if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) {
const TFieldList& fields = type.getStruct()->fields();
for (unsigned int i = 0; i < fields.size(); ++i) {
if (containsSampler(*fields[i]->type()))
return true;
}
}
return false;
}
//
// Do size checking for an array type's size.
//
// Returns true if there was an error.
//
bool TParseContext::arraySizeErrorCheck(const TSourceLoc& line, TIntermTyped* expr, int& size)
{
TIntermConstantUnion* constant = expr->getAsConstantUnion();
if (constant == 0 || !constant->isScalarInt())
{
error(line, "array size must be a constant integer expression", "");
return true;
}
unsigned int unsignedSize = 0;
if (constant->getBasicType() == EbtUInt)
{
unsignedSize = constant->getUConst(0);
size = static_cast<int>(unsignedSize);
}
else
{
size = constant->getIConst(0);
if (size < 0)
{
error(line, "array size must be non-negative", "");
size = 1;
return true;
}
unsignedSize = static_cast<unsigned int>(size);
}
if (size == 0)
{
error(line, "array size must be greater than zero", "");
size = 1;
return true;
}
// The size of arrays is restricted here to prevent issues further down the
// compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
// 4096 registers so this should be reasonable even for aggressively optimizable code.
const unsigned int sizeLimit = 65536;
if (unsignedSize > sizeLimit)
{
error(line, "array size too large", "");
size = 1;
return true;
}
return false;
}
//
// See if this qualifier can be an array.
//
// Returns true if there is an error.
//
bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc& line, TPublicType type)
{
if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConst)) {
error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
return true;
}
return false;
}
//
// See if this type can be an array.
//
// Returns true if there is an error.
//
bool TParseContext::arrayTypeErrorCheck(const TSourceLoc& line, TPublicType type)
{
//
// Can the type be an array?
//
if (type.array) {
error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
return true;
}
return false;
}
//
// Do all the semantic checking for declaring an array, with and
// without a size, and make the right changes to the symbol table.
//
// size == 0 means no specified size.
//
// Returns true if there was an error.
//
bool TParseContext::arrayErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType &type, TVariable*& variable)
{
//
// Don't check for reserved word use until after we know it's not in the symbol table,
// because reserved arrays can be redeclared.
//
bool builtIn = false;
bool sameScope = false;
TSymbol* symbol = symbolTable.find(identifier, 0, &builtIn, &sameScope);
if (symbol == 0 || !sameScope) {
if (reservedErrorCheck(line, identifier))
return true;
variable = new TVariable(&identifier, TType(type));
if (type.arraySize)
variable->getType().setArraySize(type.arraySize);
if (! symbolTable.declare(*variable)) {
delete variable;
error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
return true;
}
} else {
if (! symbol->isVariable()) {
error(line, "variable expected", identifier.c_str());
return true;
}
variable = static_cast<TVariable*>(symbol);
if (! variable->getType().isArray()) {
error(line, "redeclaring non-array as array", identifier.c_str());
return true;
}
if (variable->getType().getArraySize() > 0) {
error(line, "redeclaration of array with size", identifier.c_str());
return true;
}
if (! variable->getType().sameElementType(TType(type))) {
error(line, "redeclaration of array with a different type", identifier.c_str());
return true;
}
if (type.arraySize)
variable->getType().setArraySize(type.arraySize);
}
if (voidErrorCheck(line, identifier, type))
return true;
return false;
}
//
// Enforce non-initializer type/qualifier rules.
//
// Returns true if there was an error.
//
bool TParseContext::nonInitConstErrorCheck(const TSourceLoc& line, const TString& identifier, TPublicType& type, bool array)
{
if (type.qualifier == EvqConst)
{
// Make the qualifier make sense.
type.qualifier = EvqTemporary;
if (array)
{
error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
}
else if (type.isStructureContainingArrays())
{
error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
}
else
{
error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
}
return true;
}
return false;
}
//
// Do semantic checking for a variable declaration that has no initializer,
// and update the symbol table.
//
// Returns true if there was an error.
//
bool TParseContext::nonInitErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& type, TVariable*& variable)
{
if (reservedErrorCheck(line, identifier))
recover();
variable = new TVariable(&identifier, TType(type));
if (! symbolTable.declare(*variable)) {
error(line, "redefinition", variable->getName().c_str());
delete variable;
variable = 0;
return true;
}
if (voidErrorCheck(line, identifier, type))
return true;
return false;
}
bool TParseContext::paramErrorCheck(const TSourceLoc& line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
{
if (qualifier != EvqConst && qualifier != EvqTemporary) {
error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
return true;
}
if (qualifier == EvqConst && paramQualifier != EvqIn) {
error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
return true;
}
if (qualifier == EvqConst)
type->setQualifier(EvqConstReadOnly);
else
type->setQualifier(paramQualifier);
return false;
}
bool TParseContext::extensionErrorCheck(const TSourceLoc& line, const TString& extension)
{
const TExtensionBehavior& extBehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
if (iter == extBehavior.end()) {
error(line, "extension", extension.c_str(), "is not supported");
return true;
}
// In GLSL ES, an extension's default behavior is "disable".
if (iter->second == EBhDisable || iter->second == EBhUndefined) {
error(line, "extension", extension.c_str(), "is disabled");
return true;
}
if (iter->second == EBhWarn) {
warning(line, "extension", extension.c_str(), "is being used");
return false;
}
return false;
}
bool TParseContext::singleDeclarationErrorCheck(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier)
{
if (structQualifierErrorCheck(identifierLocation, publicType))
return true;
// check for layout qualifier issues
const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking), "only valid for interface blocks");
return true;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage), "only valid for interface blocks");
return true;
}
if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut && layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier))
{
return true;
}
return false;
}
bool TParseContext::layoutLocationErrorCheck(const TSourceLoc& location, const TLayoutQualifier &layoutQualifier)
{
if (layoutQualifier.location != -1)
{
error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs");
return true;
}
return false;
}
bool TParseContext::supportsExtension(const char* extension)
{
const TExtensionBehavior& extbehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
return (iter != extbehavior.end());
}
bool TParseContext::isExtensionEnabled(const char* extension) const
{
const TExtensionBehavior& extbehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
if (iter == extbehavior.end())
{
return false;
}
return (iter->second == EBhEnable || iter->second == EBhRequire);
}
void TParseContext::handleExtensionDirective(const TSourceLoc& loc, const char* extName, const char* behavior)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
directiveHandler.handleExtension(srcLoc, extName, behavior);
}
void TParseContext::handlePragmaDirective(const TSourceLoc& loc, const char* name, const char* value)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
directiveHandler.handlePragma(srcLoc, name, value);
}
/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////
//
// Look up a function name in the symbol table, and make sure it is a function.
//
// Return the function symbol if found, otherwise 0.
//
const TFunction* TParseContext::findFunction(const TSourceLoc& line, TFunction* call, int shaderVersion, bool *builtIn)
{
// First find by unmangled name to check whether the function name has been
// hidden by a variable name or struct typename.
// If a function is found, check for one with a matching argument list.
const TSymbol* symbol = symbolTable.find(call->getName(), shaderVersion, builtIn);
if (symbol == 0 || symbol->isFunction()) {
symbol = symbolTable.find(call->getMangledName(), shaderVersion, builtIn);
}
if (symbol == 0) {
error(line, "no matching overloaded function found", call->getName().c_str());
return 0;
}
if (!symbol->isFunction()) {
error(line, "function name expected", call->getName().c_str());
return 0;
}
return static_cast<const TFunction*>(symbol);
}
//
// Initializers show up in several places in the grammar. Have one set of
// code to handle them here.
//
bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, TPublicType& pType,
TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
{
TType type = TType(pType);
if (variable == 0) {
if (reservedErrorCheck(line, identifier))
return true;
if (voidErrorCheck(line, identifier, pType))
return true;
//
// add variable to symbol table
//
variable = new TVariable(&identifier, type);
if (! symbolTable.declare(*variable)) {
error(line, "redefinition", variable->getName().c_str());
return true;
// don't delete variable, it's used by error recovery, and the pool
// pop will take care of the memory
}
}
//
// identifier must be of type constant, a global, or a temporary
//
TQualifier qualifier = variable->getType().getQualifier();
if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
return true;
}
//
// test for and propagate constant
//
if (qualifier == EvqConst) {
if (qualifier != initializer->getType().getQualifier()) {
std::stringstream extraInfoStream;
extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
std::string extraInfo = extraInfoStream.str();
error(line, " assigning non-constant to", "=", extraInfo.c_str());
variable->getType().setQualifier(EvqTemporary);
return true;
}
if (type != initializer->getType()) {
error(line, " non-matching types for const initializer ",
variable->getType().getQualifierString());
variable->getType().setQualifier(EvqTemporary);
return true;
}
if (initializer->getAsConstantUnion()) {
variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
} else if (initializer->getAsSymbolNode()) {
const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
const TVariable* tVar = static_cast<const TVariable*>(symbol);
ConstantUnion* constArray = tVar->getConstPointer();
variable->shareConstPointer(constArray);
} else {
std::stringstream extraInfoStream;
extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
std::string extraInfo = extraInfoStream.str();
error(line, " cannot assign to", "=", extraInfo.c_str());
variable->getType().setQualifier(EvqTemporary);
return true;
}
}
if (qualifier != EvqConst) {
TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
if (intermNode == 0) {
assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return true;
}
} else
intermNode = 0;
return false;
}
bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
{
ASSERT(aggrNode != NULL);
if (!aggrNode->isConstructor())
return false;
bool allConstant = true;
// check if all the child nodes are constants so that they can be inserted into
// the parent node
TIntermSequence &sequence = aggrNode->getSequence() ;
for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
if (!(*p)->getAsTyped()->getAsConstantUnion())
return false;
}
return allConstant;
}
TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, TLayoutQualifier layoutQualifier, const TPublicType& typeSpecifier)
{
TPublicType returnType = typeSpecifier;
returnType.qualifier = qualifier;
returnType.layoutQualifier = layoutQualifier;
if (typeSpecifier.array)
{
error(typeSpecifier.line, "not supported", "first-class array");
recover();
returnType.setArray(false);
}
if (shaderVersion < 300)
{
if (qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
{
error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
recover();
}
if ((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) &&
(typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
{
error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
recover();
}
}
else
{
switch (qualifier)
{
case EvqSmoothIn:
case EvqSmoothOut:
case EvqVertexOut:
case EvqFragmentIn:
case EvqCentroidOut:
case EvqCentroidIn:
if (typeSpecifier.type == EbtBool)
{
error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier));
recover();
}
if (typeSpecifier.type == EbtInt || typeSpecifier.type == EbtUInt)
{
error(typeSpecifier.line, "must use 'flat' interpolation here", getQualifierString(qualifier));
recover();
}
break;
case EvqVertexIn:
case EvqFragmentOut:
case EvqFlatIn:
case EvqFlatOut:
if (typeSpecifier.type == EbtBool)
{
error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier));
recover();
}
break;
default: break;
}
}
return returnType;
}
TIntermAggregate* TParseContext::parseSingleDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier)
{
TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
TIntermAggregate* aggregate = intermediate.makeAggregate(symbol, identifierLocation);
if (identifier != "")
{
if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
recover();
// this error check can mutate the type
if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, false))
recover();
TVariable* variable = 0;
if (nonInitErrorCheck(identifierLocation, identifier, publicType, variable))
recover();
if (variable && symbol)
{
symbol->setId(variable->getUniqueId());
}
}
return aggregate;
}
TIntermAggregate* TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& indexLocation, TIntermTyped *indexExpression)
{
if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
recover();
// this error check can mutate the type
if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, true))
recover();
if (arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
{
recover();
}
TPublicType arrayType = publicType;
int size;
if (arraySizeErrorCheck(identifierLocation, indexExpression, size))
{
recover();
}
else
{
arrayType.setArray(true, size);
}
TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(arrayType), identifierLocation);
TIntermAggregate* aggregate = intermediate.makeAggregate(symbol, identifierLocation);
TVariable* variable = 0;
if (arrayErrorCheck(identifierLocation, identifier, arrayType, variable))
recover();
if (variable && symbol)
{
symbol->setId(variable->getUniqueId());
}
return aggregate;
}
TIntermAggregate* TParseContext::parseSingleInitDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& initLocation, TIntermTyped *initializer)
{
if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
recover();
TIntermNode* intermNode;
if (!executeInitializer(identifierLocation, identifier, publicType, initializer, intermNode))
{
//
// Build intermediate representation
//
return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : NULL;
}
else
{
recover();
return NULL;
}
}
TIntermAggregate* TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, TSymbol *identifierSymbol, const TSourceLoc& identifierLocation, const TString &identifier)
{
if (publicType.type == EbtInvariant && !identifierSymbol)
{
error(identifierLocation, "undeclared identifier declared as invariant", identifier.c_str());
recover();
}
TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
TIntermAggregate* intermAggregate = intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
if (structQualifierErrorCheck(identifierLocation, publicType))
recover();
if (locationDeclaratorListCheck(identifierLocation, publicType))
recover();
if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, false))
recover();
TVariable* variable = 0;
if (nonInitErrorCheck(identifierLocation, identifier, publicType, variable))
recover();
if (symbol && variable)
symbol->setId(variable->getUniqueId());
return intermAggregate;
}
TIntermAggregate* TParseContext::parseArrayDeclarator(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& arrayLocation, TIntermNode *declaratorList, TIntermTyped *indexExpression)
{
if (structQualifierErrorCheck(identifierLocation, publicType))
recover();
if (locationDeclaratorListCheck(identifierLocation, publicType))
recover();
if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, true))
recover();
if (arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType))
{
recover();
}
else if (indexExpression)
{
int size;
if (arraySizeErrorCheck(arrayLocation, indexExpression, size))
recover();
TPublicType arrayType(publicType);
arrayType.setArray(true, size);
TVariable* variable = NULL;
if (arrayErrorCheck(arrayLocation, identifier, arrayType, variable))
recover();
TType type = TType(arrayType);
type.setArraySize(size);
return intermediate.growAggregate(declaratorList, intermediate.addSymbol(variable ? variable->getUniqueId() : 0, identifier, type, identifierLocation), identifierLocation);
}
else
{
TPublicType arrayType(publicType);
arrayType.setArray(true);
TVariable* variable = NULL;
if (arrayErrorCheck(arrayLocation, identifier, arrayType, variable))
recover();
}
return NULL;
}
TIntermAggregate* TParseContext::parseInitDeclarator(TPublicType &publicType, TIntermAggregate *declaratorList, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& initLocation, TIntermTyped *initializer)
{
if (structQualifierErrorCheck(identifierLocation, publicType))
recover();
if (locationDeclaratorListCheck(identifierLocation, publicType))
recover();
TIntermNode* intermNode;
if (!executeInitializer(identifierLocation, identifier, publicType, initializer, intermNode))
{
//
// build the intermediate representation
//
if (intermNode)
{
return intermediate.growAggregate(declaratorList, intermNode, initLocation);
}
else
{
return declaratorList;
}
}
else
{
recover();
return NULL;
}
}
void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier)
{
if (typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform");
recover();
return;
}
const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
ASSERT(!layoutQualifier.isEmpty());
if (shaderVersion < 300)
{
error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout");
recover();
return;
}
if (layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier))
{
recover();
return;
}
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
defaultMatrixPacking = layoutQualifier.matrixPacking;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
defaultBlockStorage = layoutQualifier.blockStorage;
}
}
TFunction *TParseContext::addConstructorFunc(TPublicType publicType)
{
TOperator op = EOpNull;
if (publicType.userDef)
{
op = EOpConstructStruct;
}
else
{
switch (publicType.type)
{
case EbtFloat:
if (publicType.isMatrix())
{
// TODO: non-square matrices
switch(publicType.getCols())
{
case 2: op = EOpConstructMat2; break;
case 3: op = EOpConstructMat3; break;
case 4: op = EOpConstructMat4; break;
}
}
else
{
switch(publicType.getNominalSize())
{
case 1: op = EOpConstructFloat; break;
case 2: op = EOpConstructVec2; break;
case 3: op = EOpConstructVec3; break;
case 4: op = EOpConstructVec4; break;
}
}
break;
case EbtInt:
switch(publicType.getNominalSize())
{
case 1: op = EOpConstructInt; break;
case 2: op = EOpConstructIVec2; break;
case 3: op = EOpConstructIVec3; break;
case 4: op = EOpConstructIVec4; break;
}
break;
case EbtUInt:
switch(publicType.getNominalSize())
{
case 1: op = EOpConstructUInt; break;
case 2: op = EOpConstructUVec2; break;
case 3: op = EOpConstructUVec3; break;
case 4: op = EOpConstructUVec4; break;
}
break;
case EbtBool:
switch(publicType.getNominalSize())
{
case 1: op = EOpConstructBool; break;
case 2: op = EOpConstructBVec2; break;
case 3: op = EOpConstructBVec3; break;
case 4: op = EOpConstructBVec4; break;
}
break;
default: break;
}
if (op == EOpNull)
{
error(publicType.line, "cannot construct this type", getBasicString(publicType.type));
recover();
publicType.type = EbtFloat;
op = EOpConstructFloat;
}
}
TString tempString;
TType type(publicType);
return new TFunction(&tempString, type, op);
}
// This function is used to test for the correctness of the parameters passed to various constructor functions
// and also convert them to the right datatype if it is allowed and required.
//
// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
//
TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc& line)
{
if (node == 0)
return 0;
TIntermAggregate* aggrNode = node->getAsAggregate();
TFieldList::const_iterator memberTypes;
if (op == EOpConstructStruct)
memberTypes = type->getStruct()->fields().begin();
TType elementType = *type;
if (type->isArray())
elementType.clearArrayness();
bool singleArg;
if (aggrNode) {
if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
singleArg = true;
else
singleArg = false;
} else
singleArg = true;
TIntermTyped *newNode;
if (singleArg) {
// If structure constructor or array constructor is being called
// for only one parameter inside the structure, we need to call constructStruct function once.
if (type->isArray())
newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
else if (op == EOpConstructStruct)
newNode = constructStruct(node, (*memberTypes)->type(), 1, node->getLine(), false);
else
newNode = constructBuiltIn(type, op, node, node->getLine(), false);
if (newNode && newNode->getAsAggregate()) {
TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
if (constConstructor)
return constConstructor;
}
return newNode;
}
//
// Handle list of arguments.
//
TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor
// if the structure constructor contains more than one parameter, then construct
// each parameter
int paramCount = 0; // keeps a track of the constructor parameter number being checked
// for each parameter to the constructor call, check to see if the right type is passed or convert them
// to the right type if possible (and allowed).
// for structure constructors, just check if the right type is passed, no conversion is allowed.
for (TIntermSequence::iterator p = sequenceVector.begin();
p != sequenceVector.end(); p++, paramCount++) {
if (type->isArray())
newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
else if (op == EOpConstructStruct)
newNode = constructStruct(*p, (memberTypes[paramCount])->type(), paramCount+1, node->getLine(), true);
else
newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
if (newNode) {
*p = newNode;
}
}
TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
if (constConstructor)
return constConstructor;
return constructor;
}
TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
{
bool canBeFolded = areAllChildConst(aggrNode);
aggrNode->setType(type);
if (canBeFolded) {
bool returnVal = false;
ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
if (aggrNode->getSequence().size() == 1) {
returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true);
}
else {
returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type);
}
if (returnVal)
return 0;
return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
}
return 0;
}
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
// for the parameter to the constructor (passed to this function). Essentially, it converts
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
// float, then float is converted to int.
//
// Returns 0 for an error or the constructed node.
//
TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, const TSourceLoc& line, bool subset)
{
TIntermTyped* newNode;
TOperator basicOp;
//
// First, convert types as needed.
//
switch (op) {
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructMat2:
case EOpConstructMat3:
case EOpConstructMat4:
case EOpConstructFloat:
basicOp = EOpConstructFloat;
break;
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructInt:
basicOp = EOpConstructInt;
break;
case EOpConstructUVec2:
case EOpConstructUVec3:
case EOpConstructUVec4:
case EOpConstructUInt:
basicOp = EOpConstructUInt;
break;
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructBool:
basicOp = EOpConstructBool;
break;
default:
error(line, "unsupported construction", "");
recover();
return 0;
}
newNode = intermediate.addUnaryMath(basicOp, node, node->getLine());
if (newNode == 0) {
error(line, "can't convert", "constructor");
return 0;
}
//
// Now, if there still isn't an operation to do the construction, and we need one, add one.
//
// Otherwise, skip out early.
if (subset || (newNode != node && newNode->getType() == *type))
return newNode;
// setAggregateOperator will insert a new node for the constructor, as needed.
return intermediate.setAggregateOperator(newNode, op, line);
}
// This function tests for the type of the parameters to the structures constructors. Raises
// an error message if the expected type does not match the parameter passed to the constructor.
//
// Returns 0 for an error or the input node itself if the expected and the given parameter types match.
//
TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, const TSourceLoc& line, bool subset)
{
if (*type == node->getAsTyped()->getType()) {
if (subset)
return node->getAsTyped();
else
return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
} else {
std::stringstream extraInfoStream;
extraInfoStream << "cannot convert parameter " << paramCount
<< " from '" << node->getAsTyped()->getType().getBasicString()
<< "' to '" << type->getBasicString() << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", "constructor", extraInfo.c_str());
recover();
}
return 0;
}
//
// This function returns the tree representation for the vector field(s) being accessed from contant vector.
// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
// a constant matrix.
//
TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc& line)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
ConstantUnion *unionArray;
if (tempConstantNode) {
unionArray = tempConstantNode->getUnionArrayPointer();
if (!unionArray) {
return node;
}
} else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
error(line, "Cannot offset into the vector", "Error");
recover();
return 0;
}
ConstantUnion* constArray = new ConstantUnion[fields.num];
for (int i = 0; i < fields.num; i++) {
if (fields.offsets[i] >= node->getType().getNominalSize()) {
std::stringstream extraInfoStream;
extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", "[", extraInfo.c_str());
recover();
fields.offsets[i] = 0;
}
constArray[i] = unionArray[fields.offsets[i]];
}
typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
return typedNode;
}
//
// This function returns the column being accessed from a constant matrix. The values are retrieved from
// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc& line)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
if (index >= node->getType().getCols()) {
std::stringstream extraInfoStream;
extraInfoStream << "matrix field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", "[", extraInfo.c_str());
recover();
index = 0;
}
if (tempConstantNode) {
ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
int size = tempConstantNode->getType().getCols();
typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
} else {
error(line, "Cannot offset into the matrix", "Error");
recover();
return 0;
}
return typedNode;
}
//
// This function returns an element of an array accessed from a constant array. The values are retrieved from
// the symbol table and parse-tree is built for the type of the element. The input
// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc& line)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
TType arrayElementType = node->getType();
arrayElementType.clearArrayness();
if (index >= node->getType().getArraySize()) {
std::stringstream extraInfoStream;
extraInfoStream << "array field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", "[", extraInfo.c_str());
recover();
index = 0;
}
if (tempConstantNode) {
size_t arrayElementSize = arrayElementType.getObjectSize();
ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
} else {
error(line, "Cannot offset into the array", "Error");
recover();
return 0;
}
return typedNode;
}
//
// This function returns the value of a particular field inside a constant structure from the symbol table.
// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
// function and returns the parse-tree with the values of the embedded/nested struct.
//
TIntermTyped* TParseContext::addConstStruct(const TString &identifier, TIntermTyped *node, const TSourceLoc& line)
{
const TFieldList& fields = node->getType().getStruct()->fields();
size_t instanceSize = 0;
for (size_t index = 0; index < fields.size(); ++index) {
if (fields[index]->name() == identifier) {
break;
} else {
instanceSize += fields[index]->type()->getObjectSize();
}
}
TIntermTyped *typedNode;
TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
if (tempConstantNode) {
ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
} else {
error(line, "Cannot offset into the structure", "Error");
recover();
return 0;
}
return typedNode;
}
//
// Interface/uniform blocks
//
TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList,
const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine)
{
if (reservedErrorCheck(nameLine, blockName))
recover();
if (typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform");
recover();
}
TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
if (layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier))
{
recover();
}
if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
{
blockLayoutQualifier.matrixPacking = defaultMatrixPacking;
}
if (blockLayoutQualifier.blockStorage == EbsUnspecified)
{
blockLayoutQualifier.blockStorage = defaultBlockStorage;
}
TSymbol* blockNameSymbol = new TInterfaceBlockName(&blockName);
if (!symbolTable.declare(*blockNameSymbol)) {
error(nameLine, "redefinition", blockName.c_str(), "interface block name");
recover();
}
// check for sampler types and apply layout qualifiers
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) {
TField* field = (*fieldList)[memberIndex];
TType* fieldType = field->type();
if (IsSampler(fieldType->getBasicType())) {
error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks");
recover();
}
const TQualifier qualifier = fieldType->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqUniform:
break;
default:
error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier));
recover();
break;
}
// check layout qualifiers
TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
if (layoutLocationErrorCheck(field->line(), fieldLayoutQualifier))
{
recover();
}
if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
{
error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
recover();
}
if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
{
fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
}
else if (!fieldType->isMatrix())
{
error(field->line(), "invalid layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "can only be used on matrix types");
recover();
}
fieldType->setLayoutQualifier(fieldLayoutQualifier);
}
// add array index
int arraySize = 0;
if (arrayIndex != NULL)
{
if (arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize))
recover();
}
TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize);
TString symbolName = "";
int symbolId = 0;
if (!instanceName)
{
// define symbols for the members of the interface block
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField* field = (*fieldList)[memberIndex];
TType* fieldType = field->type();
// set parent pointer of the field variable
fieldType->setInterfaceBlock(interfaceBlock);
TVariable* fieldVariable = new TVariable(&field->name(), *fieldType);
fieldVariable->setQualifier(typeQualifier.qualifier);
if (!symbolTable.declare(*fieldVariable)) {
error(field->line(), "redefinition", field->name().c_str(), "interface block member name");
recover();
}
}
}
else
{
// add a symbol for this interface block
TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
instanceTypeDef->setQualifier(typeQualifier.qualifier);
if (!symbolTable.declare(*instanceTypeDef)) {
error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name");
recover();
}
symbolId = instanceTypeDef->getUniqueId();
symbolName = instanceTypeDef->getName();
}
TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine);
aggregate->setOp(EOpDeclaration);
exitStructDeclaration();
return aggregate;
}
bool TParseContext::enterStructDeclaration(const TSourceLoc& line, const TString& identifier)
{
++structNestingLevel;
// Embedded structure definitions are not supported per GLSL ES spec.
// They aren't allowed in GLSL either, but we need to detect this here
// so we don't rely on the GLSL compiler to catch it.
if (structNestingLevel > 1) {
error(line, "", "Embedded struct definitions are not allowed");
return true;
}
return false;
}
void TParseContext::exitStructDeclaration()
{
--structNestingLevel;
}
namespace {
const int kWebGLMaxStructNesting = 4;
} // namespace
bool TParseContext::structNestingErrorCheck(const TSourceLoc& line, const TField& field)
{
if (!IsWebGLBasedSpec(shaderSpec)) {
return false;
}
if (field.type()->getBasicType() != EbtStruct) {
return false;
}
// We're already inside a structure definition at this point, so add
// one to the field's struct nesting.
if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) {
std::stringstream reasonStream;
reasonStream << "Reference of struct type "
<< field.type()->getStruct()->name().c_str()
<< " exceeds maximum allowed nesting level of "
<< kWebGLMaxStructNesting;
std::string reason = reasonStream.str();
error(line, reason.c_str(), field.name().c_str(), "");
return true;
}
return false;
}
//
// Parse an array index expression
//
TIntermTyped* TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc& location, TIntermTyped *indexExpression)
{
TIntermTyped *indexedExpression = NULL;
if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
{
if (baseExpression->getAsSymbolNode())
{
error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str());
}
else
{
error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
}
recover();
}
if (indexExpression->getQualifier() == EvqConst)
{
int index = indexExpression->getAsConstantUnion()->getIConst(0);
if (index < 0)
{
std::stringstream infoStream;
infoStream << index;
std::string info = infoStream.str();
error(location, "negative index", info.c_str());
recover();
index = 0;
}
if (baseExpression->getType().getQualifier() == EvqConst)
{
if (baseExpression->isArray())
{
// constant folding for arrays
indexedExpression = addConstArrayNode(index, baseExpression, location);
}
else if (baseExpression->isVector())
{
// constant folding for vectors
TVectorFields fields;
fields.num = 1;
fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
indexedExpression = addConstVectorNode(fields, baseExpression, location);
}
else if (baseExpression->isMatrix())
{
// constant folding for matrices
indexedExpression = addConstMatrixNode(index, baseExpression, location);
}
}
else
{
if (baseExpression->isArray())
{
if (index >= baseExpression->getType().getArraySize())
{
std::stringstream extraInfoStream;
extraInfoStream << "array index out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
error(location, "", "[", extraInfo.c_str());
recover();
index = baseExpression->getType().getArraySize() - 1;
}
else if (baseExpression->getQualifier() == EvqFragData && index > 0 && !isExtensionEnabled("GL_EXT_draw_buffers"))
{
error(location, "", "[", "array indexes for gl_FragData must be zero when GL_EXT_draw_buffers is disabled");
recover();
index = 0;
}
}
else if ((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index)
{
std::stringstream extraInfoStream;
extraInfoStream << "field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
error(location, "", "[", extraInfo.c_str());
recover();
index = baseExpression->getType().getNominalSize() - 1;
}
indexExpression->getAsConstantUnion()->getUnionArrayPointer()->setIConst(index);
indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
}
}
else
{
if (baseExpression->isInterfaceBlock())
{
error(location, "", "[", "array indexes for interface blocks arrays must be constant integral expressions");
recover();
}
else if (baseExpression->getQualifier() == EvqFragmentOut)
{
error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions");
recover();
}
indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
}
if (indexedExpression == 0)
{
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setFConst(0.0f);
indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location);
}
else if (baseExpression->isArray())
{
const TType &baseType = baseExpression->getType();
if (baseType.getStruct())
{
TType copyOfType(baseType.getStruct());
indexedExpression->setType(copyOfType);
}
else if (baseType.isInterfaceBlock())
{
TType copyOfType(baseType.getInterfaceBlock(), baseType.getQualifier(), baseType.getLayoutQualifier(), 0);
indexedExpression->setType(copyOfType);
}
else
{
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, baseExpression->getNominalSize(), baseExpression->getSecondarySize()));
}
if (baseExpression->getType().getQualifier() == EvqConst)
{
indexedExpression->getTypePointer()->setQualifier(EvqConst);
}
}
else if (baseExpression->isMatrix())
{
TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier, baseExpression->getRows()));
}
else if (baseExpression->isVector())
{
TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
}
else
{
indexedExpression->setType(baseExpression->getType());
}
return indexedExpression;
}
TIntermTyped* TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc& dotLocation, const TString &fieldString, const TSourceLoc& fieldLocation)
{
TIntermTyped *indexedExpression = NULL;
if (baseExpression->isArray())
{
error(fieldLocation, "cannot apply dot operator to an array", ".");
recover();
}
if (baseExpression->isVector())
{
TVectorFields fields;
if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation))
{
fields.num = 1;
fields.offsets[0] = 0;
recover();
}
if (baseExpression->getType().getQualifier() == EvqConst)
{
// constant folding for vector fields
indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation);
if (indexedExpression == 0)
{
recover();
indexedExpression = baseExpression;
}
else
{
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqConst, (int) (fieldString).size()));
}
}
else
{
TString vectorString = fieldString;
TIntermTyped* index = intermediate.addSwizzle(fields, fieldLocation);
indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation);
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, (int) vectorString.size()));
}
}
else if (baseExpression->isMatrix())
{
TMatrixFields fields;
if (!parseMatrixFields(fieldString, baseExpression->getCols(), baseExpression->getRows(), fields, fieldLocation))
{
fields.wholeRow = false;
fields.wholeCol = false;
fields.row = 0;
fields.col = 0;
recover();
}
if (fields.wholeRow || fields.wholeCol)
{
error(dotLocation, " non-scalar fields not implemented yet", ".");
recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(0);
TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), fieldLocation);
indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),EvqTemporary, baseExpression->getCols(), baseExpression->getRows()));
}
else
{
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(fields.col * baseExpression->getRows() + fields.row);
TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), fieldLocation);
indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision()));
}
}
else if (baseExpression->getBasicType() == EbtStruct)
{
bool fieldFound = false;
const TFieldList& fields = baseExpression->getType().getStruct()->fields();
if (fields.empty())
{
error(dotLocation, "structure has no fields", "Internal Error");
recover();
indexedExpression = baseExpression;
}
else
{
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
if (baseExpression->getType().getQualifier() == EvqConst)
{
indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation);
if (indexedExpression == 0)
{
recover();
indexedExpression = baseExpression;
}
else
{
indexedExpression->setType(*fields[i]->type());
// change the qualifier of the return type, not of the structure field
// as the structure definition is shared between various structures.
indexedExpression->getTypePointer()->setQualifier(EvqConst);
}
}
else
{
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(i);
TIntermTyped* index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation);
indexedExpression->setType(*fields[i]->type());
}
}
else
{
error(dotLocation, " no such field in structure", fieldString.c_str());
recover();
indexedExpression = baseExpression;
}
}
}
else if (baseExpression->isInterfaceBlock())
{
bool fieldFound = false;
const TFieldList& fields = baseExpression->getType().getInterfaceBlock()->fields();
if (fields.empty())
{
error(dotLocation, "interface block has no fields", "Internal Error");
recover();
indexedExpression = baseExpression;
}
else
{
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(i);
TIntermTyped* index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, dotLocation);
indexedExpression->setType(*fields[i]->type());
}
else
{
error(dotLocation, " no such field in interface block", fieldString.c_str());
recover();
indexedExpression = baseExpression;
}
}
}
else
{
if (shaderVersion < 300)
{
error(dotLocation, " field selection requires structure, vector, or matrix on left hand side", fieldString.c_str());
}
else
{
error(dotLocation, " field selection requires structure, vector, matrix, or interface block on left hand side", fieldString.c_str());
}
recover();
indexedExpression = baseExpression;
}
return indexedExpression;
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine)
{
TLayoutQualifier qualifier;
qualifier.location = -1;
qualifier.matrixPacking = EmpUnspecified;
qualifier.blockStorage = EbsUnspecified;
if (qualifierType == "shared")
{
qualifier.blockStorage = EbsShared;
}
else if (qualifierType == "packed")
{
qualifier.blockStorage = EbsPacked;
}
else if (qualifierType == "std140")
{
qualifier.blockStorage = EbsStd140;
}
else if (qualifierType == "row_major")
{
qualifier.matrixPacking = EmpRowMajor;
}
else if (qualifierType == "column_major")
{
qualifier.matrixPacking = EmpColumnMajor;
}
else if (qualifierType == "location")
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument");
recover();
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
recover();
}
return qualifier;
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine)
{
TLayoutQualifier qualifier;
qualifier.location = -1;
qualifier.matrixPacking = EmpUnspecified;
qualifier.blockStorage = EbsUnspecified;
if (qualifierType != "location")
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments");
recover();
}
else
{
// must check that location is non-negative
if (intValue < 0)
{
error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative");
recover();
}
else
{
qualifier.location = intValue;
}
}
return qualifier;
}
TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier)
{
TLayoutQualifier joinedQualifier = leftQualifier;
if (rightQualifier.location != -1)
{
joinedQualifier.location = rightQualifier.location;
}
if (rightQualifier.matrixPacking != EmpUnspecified)
{
joinedQualifier.matrixPacking = rightQualifier.matrixPacking;
}
if (rightQualifier.blockStorage != EbsUnspecified)
{
joinedQualifier.blockStorage = rightQualifier.blockStorage;
}
return joinedQualifier;
}
TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier,
const TSourceLoc &storageLoc, TQualifier storageQualifier)
{
TQualifier mergedQualifier = EvqSmoothIn;
if (storageQualifier == EvqFragmentIn) {
if (interpolationQualifier == EvqSmooth)
mergedQualifier = EvqSmoothIn;
else if (interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatIn;
else UNREACHABLE();
}
else if (storageQualifier == EvqCentroidIn) {
if (interpolationQualifier == EvqSmooth)
mergedQualifier = EvqCentroidIn;
else if (interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatIn;
else UNREACHABLE();
}
else if (storageQualifier == EvqVertexOut) {
if (interpolationQualifier == EvqSmooth)
mergedQualifier = EvqSmoothOut;
else if (interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatOut;
else UNREACHABLE();
}
else if (storageQualifier == EvqCentroidOut) {
if (interpolationQualifier == EvqSmooth)
mergedQualifier = EvqCentroidOut;
else if (interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatOut;
else UNREACHABLE();
}
else {
error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getInterpolationString(interpolationQualifier));
recover();
mergedQualifier = storageQualifier;
}
TPublicType type;
type.setBasic(EbtVoid, mergedQualifier, storageLoc);
return type;
}
TFieldList *TParseContext::addStructDeclaratorList(const TPublicType& typeSpecifier, TFieldList *fieldList)
{
if (voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier)) {
recover();
}
for (unsigned int i = 0; i < fieldList->size(); ++i) {
//
// Careful not to replace already known aspects of type, like array-ness
//
TType* type = (*fieldList)[i]->type();
type->setBasicType(typeSpecifier.type);
type->setPrimarySize(typeSpecifier.primarySize);
type->setSecondarySize(typeSpecifier.secondarySize);
type->setPrecision(typeSpecifier.precision);
type->setQualifier(typeSpecifier.qualifier);
type->setLayoutQualifier(typeSpecifier.layoutQualifier);
// don't allow arrays of arrays
if (type->isArray()) {
if (arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier))
recover();
}
if (typeSpecifier.array)
type->setArraySize(typeSpecifier.arraySize);
if (typeSpecifier.userDef) {
type->setStruct(typeSpecifier.userDef->getStruct());
}
if (structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i])) {
recover();
}
}
return fieldList;
}
TPublicType TParseContext::addStructure(const TSourceLoc& structLine, const TSourceLoc& nameLine, const TString *structName, TFieldList* fieldList)
{
TStructure* structure = new TStructure(structName, fieldList);
TType* structureType = new TType(structure);
structure->setUniqueId(TSymbolTable::nextUniqueId());
if (!structName->empty())
{
if (reservedErrorCheck(nameLine, *structName))
{
recover();
}
TVariable* userTypeDef = new TVariable(structName, *structureType, true);
if (!symbolTable.declare(*userTypeDef)) {
error(nameLine, "redefinition", structName->c_str(), "struct");
recover();
}
}
// ensure we do not specify any storage qualifiers on the struct members
for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
{
const TField &field = *(*fieldList)[typeListIndex];
const TQualifier qualifier = field.type()->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqTemporary:
break;
default:
error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier));
recover();
break;
}
}
TPublicType publicType;
publicType.setBasic(EbtStruct, EvqTemporary, structLine);
publicType.userDef = structureType;
exitStructDeclaration();
return publicType;
}
//
// Parse an array of strings using yyparse.
//
// Returns 0 for success.
//
int PaParseStrings(size_t count, const char* const string[], const int length[],
TParseContext* context) {
if ((count == 0) || (string == NULL))
return 1;
if (glslang_initialize(context))
return 1;
int error = glslang_scan(count, string, length, context);
if (!error)
error = glslang_parse(context);
glslang_finalize(context);
return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
}