blob: a7f65c57accc5b669df26b2e7d3fca0698cff65d [file] [log] [blame]
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001/*
2 * libjingle
3 * Copyright 2004--2005, Google Inc.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#if defined(_MSC_VER) && _MSC_VER < 1300
29#pragma warning(disable:4786)
30#endif
31
pbos@webrtc.orgb9518272014-03-07 15:22:04 +000032#include <assert.h>
henrike@webrtc.org0e118e72013-07-10 00:45:36 +000033
34#ifdef POSIX
35#include <string.h>
36#include <errno.h>
37#include <fcntl.h>
38#include <sys/time.h>
wu@webrtc.org2a81a382014-01-03 22:08:47 +000039#include <sys/select.h>
henrike@webrtc.org0e118e72013-07-10 00:45:36 +000040#include <unistd.h>
41#include <signal.h>
42#endif
43
44#ifdef WIN32
45#define WIN32_LEAN_AND_MEAN
46#include <windows.h>
47#include <winsock2.h>
48#include <ws2tcpip.h>
49#undef SetPort
50#endif
51
52#include <algorithm>
53#include <map>
54
55#include "talk/base/basictypes.h"
56#include "talk/base/byteorder.h"
57#include "talk/base/common.h"
58#include "talk/base/logging.h"
59#include "talk/base/nethelpers.h"
60#include "talk/base/physicalsocketserver.h"
61#include "talk/base/timeutils.h"
62#include "talk/base/winping.h"
63#include "talk/base/win32socketinit.h"
64
65// stm: this will tell us if we are on OSX
66#ifdef HAVE_CONFIG_H
67#include "config.h"
68#endif
69
70#ifdef POSIX
71#include <netinet/tcp.h> // for TCP_NODELAY
72#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
73typedef void* SockOptArg;
74#endif // POSIX
75
76#ifdef WIN32
77typedef char* SockOptArg;
78#endif
79
80namespace talk_base {
81
sergeyu@chromium.org9750edd2014-03-25 00:31:35 +000082#if defined(WIN32)
henrike@webrtc.org0e118e72013-07-10 00:45:36 +000083// Standard MTUs, from RFC 1191
84const uint16 PACKET_MAXIMUMS[] = {
85 65535, // Theoretical maximum, Hyperchannel
86 32000, // Nothing
87 17914, // 16Mb IBM Token Ring
88 8166, // IEEE 802.4
89 //4464, // IEEE 802.5 (4Mb max)
90 4352, // FDDI
91 //2048, // Wideband Network
92 2002, // IEEE 802.5 (4Mb recommended)
93 //1536, // Expermental Ethernet Networks
94 //1500, // Ethernet, Point-to-Point (default)
95 1492, // IEEE 802.3
96 1006, // SLIP, ARPANET
97 //576, // X.25 Networks
98 //544, // DEC IP Portal
99 //512, // NETBIOS
100 508, // IEEE 802/Source-Rt Bridge, ARCNET
101 296, // Point-to-Point (low delay)
102 68, // Official minimum
103 0, // End of list marker
104};
105
106static const int IP_HEADER_SIZE = 20u;
107static const int IPV6_HEADER_SIZE = 40u;
108static const int ICMP_HEADER_SIZE = 8u;
109static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
sergeyu@chromium.org9750edd2014-03-25 00:31:35 +0000110#endif
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000111
112class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> {
113 public:
114 PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
115 : ss_(ss), s_(s), enabled_events_(0), error_(0),
116 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
117 resolver_(NULL) {
118#ifdef WIN32
119 // EnsureWinsockInit() ensures that winsock is initialized. The default
120 // version of this function doesn't do anything because winsock is
121 // initialized by constructor of a static object. If neccessary libjingle
122 // users can link it with a different version of this function by replacing
123 // win32socketinit.cc. See win32socketinit.cc for more details.
124 EnsureWinsockInit();
125#endif
126 if (s_ != INVALID_SOCKET) {
127 enabled_events_ = DE_READ | DE_WRITE;
128
129 int type = SOCK_STREAM;
130 socklen_t len = sizeof(type);
131 VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
132 udp_ = (SOCK_DGRAM == type);
133 }
134 }
135
136 virtual ~PhysicalSocket() {
137 Close();
138 }
139
140 // Creates the underlying OS socket (same as the "socket" function).
141 virtual bool Create(int family, int type) {
142 Close();
143 s_ = ::socket(family, type, 0);
144 udp_ = (SOCK_DGRAM == type);
145 UpdateLastError();
146 if (udp_)
147 enabled_events_ = DE_READ | DE_WRITE;
148 return s_ != INVALID_SOCKET;
149 }
150
151 SocketAddress GetLocalAddress() const {
152 sockaddr_storage addr_storage = {0};
153 socklen_t addrlen = sizeof(addr_storage);
154 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
155 int result = ::getsockname(s_, addr, &addrlen);
156 SocketAddress address;
157 if (result >= 0) {
158 SocketAddressFromSockAddrStorage(addr_storage, &address);
159 } else {
160 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
161 << s_;
162 }
163 return address;
164 }
165
166 SocketAddress GetRemoteAddress() const {
167 sockaddr_storage addr_storage = {0};
168 socklen_t addrlen = sizeof(addr_storage);
169 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
170 int result = ::getpeername(s_, addr, &addrlen);
171 SocketAddress address;
172 if (result >= 0) {
173 SocketAddressFromSockAddrStorage(addr_storage, &address);
174 } else {
175 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
176 << s_;
177 }
178 return address;
179 }
180
181 int Bind(const SocketAddress& bind_addr) {
182 sockaddr_storage addr_storage;
183 size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
184 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
185 int err = ::bind(s_, addr, static_cast<int>(len));
186 UpdateLastError();
187#ifdef _DEBUG
188 if (0 == err) {
189 dbg_addr_ = "Bound @ ";
190 dbg_addr_.append(GetLocalAddress().ToString());
191 }
192#endif // _DEBUG
193 return err;
194 }
195
196 int Connect(const SocketAddress& addr) {
197 // TODO: Implicit creation is required to reconnect...
198 // ...but should we make it more explicit?
199 if (state_ != CS_CLOSED) {
200 SetError(EALREADY);
201 return SOCKET_ERROR;
202 }
203 if (addr.IsUnresolved()) {
204 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
205 resolver_ = new AsyncResolver();
sergeyu@chromium.org19da4652013-11-13 22:48:52 +0000206 resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
207 resolver_->Start(addr);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000208 state_ = CS_CONNECTING;
209 return 0;
210 }
211
212 return DoConnect(addr);
213 }
214
215 int DoConnect(const SocketAddress& connect_addr) {
216 if ((s_ == INVALID_SOCKET) &&
217 !Create(connect_addr.family(), SOCK_STREAM)) {
218 return SOCKET_ERROR;
219 }
220 sockaddr_storage addr_storage;
221 size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
222 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
223 int err = ::connect(s_, addr, static_cast<int>(len));
224 UpdateLastError();
225 if (err == 0) {
226 state_ = CS_CONNECTED;
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000227 } else if (IsBlockingError(GetError())) {
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000228 state_ = CS_CONNECTING;
229 enabled_events_ |= DE_CONNECT;
230 } else {
231 return SOCKET_ERROR;
232 }
233
234 enabled_events_ |= DE_READ | DE_WRITE;
235 return 0;
236 }
237
238 int GetError() const {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000239 CritScope cs(&crit_);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000240 return error_;
241 }
242
243 void SetError(int error) {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000244 CritScope cs(&crit_);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000245 error_ = error;
246 }
247
248 ConnState GetState() const {
249 return state_;
250 }
251
252 int GetOption(Option opt, int* value) {
253 int slevel;
254 int sopt;
255 if (TranslateOption(opt, &slevel, &sopt) == -1)
256 return -1;
257 socklen_t optlen = sizeof(*value);
258 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
259 if (ret != -1 && opt == OPT_DONTFRAGMENT) {
260#ifdef LINUX
261 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
262#endif
263 }
264 return ret;
265 }
266
267 int SetOption(Option opt, int value) {
268 int slevel;
269 int sopt;
270 if (TranslateOption(opt, &slevel, &sopt) == -1)
271 return -1;
272 if (opt == OPT_DONTFRAGMENT) {
273#ifdef LINUX
274 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
275#endif
276 }
277 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
278 }
279
280 int Send(const void *pv, size_t cb) {
281 int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
282#ifdef LINUX
283 // Suppress SIGPIPE. Without this, attempting to send on a socket whose
284 // other end is closed will result in a SIGPIPE signal being raised to
285 // our process, which by default will terminate the process, which we
286 // don't want. By specifying this flag, we'll just get the error EPIPE
287 // instead and can handle the error gracefully.
288 MSG_NOSIGNAL
289#else
290 0
291#endif
292 );
293 UpdateLastError();
294 MaybeRemapSendError();
295 // We have seen minidumps where this may be false.
296 ASSERT(sent <= static_cast<int>(cb));
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000297 if ((sent < 0) && IsBlockingError(GetError())) {
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000298 enabled_events_ |= DE_WRITE;
299 }
300 return sent;
301 }
302
303 int SendTo(const void* buffer, size_t length, const SocketAddress& addr) {
304 sockaddr_storage saddr;
305 size_t len = addr.ToSockAddrStorage(&saddr);
306 int sent = ::sendto(
307 s_, static_cast<const char *>(buffer), static_cast<int>(length),
308#ifdef LINUX
309 // Suppress SIGPIPE. See above for explanation.
310 MSG_NOSIGNAL,
311#else
312 0,
313#endif
314 reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
315 UpdateLastError();
316 MaybeRemapSendError();
317 // We have seen minidumps where this may be false.
318 ASSERT(sent <= static_cast<int>(length));
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000319 if ((sent < 0) && IsBlockingError(GetError())) {
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000320 enabled_events_ |= DE_WRITE;
321 }
322 return sent;
323 }
324
325 int Recv(void* buffer, size_t length) {
326 int received = ::recv(s_, static_cast<char*>(buffer),
327 static_cast<int>(length), 0);
328 if ((received == 0) && (length != 0)) {
329 // Note: on graceful shutdown, recv can return 0. In this case, we
330 // pretend it is blocking, and then signal close, so that simplifying
331 // assumptions can be made about Recv.
332 LOG(LS_WARNING) << "EOF from socket; deferring close event";
333 // Must turn this back on so that the select() loop will notice the close
334 // event.
335 enabled_events_ |= DE_READ;
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000336 SetError(EWOULDBLOCK);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000337 return SOCKET_ERROR;
338 }
339 UpdateLastError();
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000340 int error = GetError();
341 bool success = (received >= 0) || IsBlockingError(error);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000342 if (udp_ || success) {
343 enabled_events_ |= DE_READ;
344 }
345 if (!success) {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000346 LOG_F(LS_VERBOSE) << "Error = " << error;
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000347 }
348 return received;
349 }
350
351 int RecvFrom(void* buffer, size_t length, SocketAddress *out_addr) {
352 sockaddr_storage addr_storage;
353 socklen_t addr_len = sizeof(addr_storage);
354 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
355 int received = ::recvfrom(s_, static_cast<char*>(buffer),
356 static_cast<int>(length), 0, addr, &addr_len);
357 UpdateLastError();
358 if ((received >= 0) && (out_addr != NULL))
359 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000360 int error = GetError();
361 bool success = (received >= 0) || IsBlockingError(error);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000362 if (udp_ || success) {
363 enabled_events_ |= DE_READ;
364 }
365 if (!success) {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000366 LOG_F(LS_VERBOSE) << "Error = " << error;
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000367 }
368 return received;
369 }
370
371 int Listen(int backlog) {
372 int err = ::listen(s_, backlog);
373 UpdateLastError();
374 if (err == 0) {
375 state_ = CS_CONNECTING;
376 enabled_events_ |= DE_ACCEPT;
377#ifdef _DEBUG
378 dbg_addr_ = "Listening @ ";
379 dbg_addr_.append(GetLocalAddress().ToString());
380#endif // _DEBUG
381 }
382 return err;
383 }
384
385 AsyncSocket* Accept(SocketAddress *out_addr) {
386 sockaddr_storage addr_storage;
387 socklen_t addr_len = sizeof(addr_storage);
388 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
389 SOCKET s = ::accept(s_, addr, &addr_len);
390 UpdateLastError();
391 if (s == INVALID_SOCKET)
392 return NULL;
393 enabled_events_ |= DE_ACCEPT;
394 if (out_addr != NULL)
395 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
396 return ss_->WrapSocket(s);
397 }
398
399 int Close() {
400 if (s_ == INVALID_SOCKET)
401 return 0;
402 int err = ::closesocket(s_);
403 UpdateLastError();
404 s_ = INVALID_SOCKET;
405 state_ = CS_CLOSED;
406 enabled_events_ = 0;
407 if (resolver_) {
408 resolver_->Destroy(false);
409 resolver_ = NULL;
410 }
411 return err;
412 }
413
414 int EstimateMTU(uint16* mtu) {
415 SocketAddress addr = GetRemoteAddress();
416 if (addr.IsAny()) {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000417 SetError(ENOTCONN);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000418 return -1;
419 }
420
421#if defined(WIN32)
422 // Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
423 WinPing ping;
424 if (!ping.IsValid()) {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000425 SetError(EINVAL); // can't think of a better error ID
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000426 return -1;
427 }
428 int header_size = ICMP_HEADER_SIZE;
429 if (addr.family() == AF_INET6) {
430 header_size += IPV6_HEADER_SIZE;
431 } else if (addr.family() == AF_INET) {
432 header_size += IP_HEADER_SIZE;
433 }
434
435 for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
436 int32 size = PACKET_MAXIMUMS[level] - header_size;
437 WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
438 ICMP_PING_TIMEOUT_MILLIS,
439 1, false);
440 if (result == WinPing::PING_FAIL) {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000441 SetError(EINVAL); // can't think of a better error ID
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000442 return -1;
443 } else if (result != WinPing::PING_TOO_LARGE) {
444 *mtu = PACKET_MAXIMUMS[level];
445 return 0;
446 }
447 }
448
449 ASSERT(false);
450 return -1;
451#elif defined(IOS) || defined(OSX)
452 // No simple way to do this on Mac OS X.
453 // SIOCGIFMTU would work if we knew which interface would be used, but
454 // figuring that out is pretty complicated. For now we'll return an error
455 // and let the caller pick a default MTU.
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000456 SetError(EINVAL);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000457 return -1;
458#elif defined(LINUX) || defined(ANDROID)
459 // Gets the path MTU.
460 int value;
461 socklen_t vlen = sizeof(value);
462 int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
463 if (err < 0) {
464 UpdateLastError();
465 return err;
466 }
467
468 ASSERT((0 <= value) && (value <= 65536));
469 *mtu = value;
470 return 0;
wu@webrtc.orgd1f631d2013-10-30 05:18:12 +0000471#elif defined(__native_client__)
472 // Most socket operations, including this, will fail in NaCl's sandbox.
473 error_ = EACCES;
474 return -1;
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000475#endif
476 }
477
478 SocketServer* socketserver() { return ss_; }
479
480 protected:
sergeyu@chromium.org19da4652013-11-13 22:48:52 +0000481 void OnResolveResult(AsyncResolverInterface* resolver) {
482 if (resolver != resolver_) {
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000483 return;
484 }
485
sergeyu@chromium.org19da4652013-11-13 22:48:52 +0000486 int error = resolver_->GetError();
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000487 if (error == 0) {
488 error = DoConnect(resolver_->address());
489 } else {
490 Close();
491 }
492
493 if (error) {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000494 SetError(error);
495 SignalCloseEvent(this, error);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000496 }
497 }
498
499 void UpdateLastError() {
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000500 SetError(LAST_SYSTEM_ERROR);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000501 }
502
503 void MaybeRemapSendError() {
fischman@webrtc.orgaa06b852014-04-29 18:37:29 +0000504#if defined(OSX) || defined(IOS)
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000505 // https://developer.apple.com/library/mac/documentation/Darwin/
506 // Reference/ManPages/man2/sendto.2.html
507 // ENOBUFS - The output queue for a network interface is full.
508 // This generally indicates that the interface has stopped sending,
509 // but may be caused by transient congestion.
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000510 if (GetError() == ENOBUFS) {
511 SetError(EWOULDBLOCK);
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000512 }
513#endif
514 }
515
516 static int TranslateOption(Option opt, int* slevel, int* sopt) {
517 switch (opt) {
518 case OPT_DONTFRAGMENT:
519#ifdef WIN32
520 *slevel = IPPROTO_IP;
521 *sopt = IP_DONTFRAGMENT;
522 break;
wu@webrtc.org2a81a382014-01-03 22:08:47 +0000523#elif defined(IOS) || defined(OSX) || defined(BSD) || defined(__native_client__)
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000524 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
525 return -1;
526#elif defined(POSIX)
527 *slevel = IPPROTO_IP;
528 *sopt = IP_MTU_DISCOVER;
529 break;
530#endif
531 case OPT_RCVBUF:
532 *slevel = SOL_SOCKET;
533 *sopt = SO_RCVBUF;
534 break;
535 case OPT_SNDBUF:
536 *slevel = SOL_SOCKET;
537 *sopt = SO_SNDBUF;
538 break;
539 case OPT_NODELAY:
540 *slevel = IPPROTO_TCP;
541 *sopt = TCP_NODELAY;
542 break;
wu@webrtc.org5c9dd592013-10-25 21:18:33 +0000543 case OPT_DSCP:
544 LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
545 return -1;
wu@webrtc.org8a77f5b2014-02-13 23:18:49 +0000546 case OPT_RTP_SENDTIME_EXTN_ID:
547 return -1; // No logging is necessary as this not a OS socket option.
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000548 default:
549 ASSERT(false);
550 return -1;
551 }
552 return 0;
553 }
554
555 PhysicalSocketServer* ss_;
556 SOCKET s_;
557 uint8 enabled_events_;
558 bool udp_;
559 int error_;
wu@webrtc.org95cabf52013-10-23 23:56:09 +0000560 // Protects |error_| that is accessed from different threads.
561 mutable CriticalSection crit_;
henrike@webrtc.org0e118e72013-07-10 00:45:36 +0000562 ConnState state_;
563 AsyncResolver* resolver_;
564
565#ifdef _DEBUG
566 std::string dbg_addr_;
567#endif // _DEBUG;
568};
569
570#ifdef POSIX
571class EventDispatcher : public Dispatcher {
572 public:
573 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
574 if (pipe(afd_) < 0)
575 LOG(LERROR) << "pipe failed";
576 ss_->Add(this);
577 }
578
579 virtual ~EventDispatcher() {
580 ss_->Remove(this);
581 close(afd_[0]);
582 close(afd_[1]);
583 }
584
585 virtual void Signal() {
586 CritScope cs(&crit_);
587 if (!fSignaled_) {
588 const uint8 b[1] = { 0 };
589 if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
590 fSignaled_ = true;
591 }
592 }
593 }
594
595 virtual uint32 GetRequestedEvents() {
596 return DE_READ;
597 }
598
599 virtual void OnPreEvent(uint32 ff) {
600 // It is not possible to perfectly emulate an auto-resetting event with
601 // pipes. This simulates it by resetting before the event is handled.
602
603 CritScope cs(&crit_);
604 if (fSignaled_) {
605 uint8 b[4]; // Allow for reading more than 1 byte, but expect 1.
606 VERIFY(1 == read(afd_[0], b, sizeof(b)));
607 fSignaled_ = false;
608 }
609 }
610
611 virtual void OnEvent(uint32 ff, int err) {
612 ASSERT(false);
613 }
614
615 virtual int GetDescriptor() {
616 return afd_[0];
617 }
618
619 virtual bool IsDescriptorClosed() {
620 return false;
621 }
622
623 private:
624 PhysicalSocketServer *ss_;
625 int afd_[2];
626 bool fSignaled_;
627 CriticalSection crit_;
628};
629
630// These two classes use the self-pipe trick to deliver POSIX signals to our
631// select loop. This is the only safe, reliable, cross-platform way to do
632// non-trivial things with a POSIX signal in an event-driven program (until
633// proper pselect() implementations become ubiquitous).
634
635class PosixSignalHandler {
636 public:
637 // POSIX only specifies 32 signals, but in principle the system might have
638 // more and the programmer might choose to use them, so we size our array
639 // for 128.
640 static const int kNumPosixSignals = 128;
641
642 // There is just a single global instance. (Signal handlers do not get any
643 // sort of user-defined void * parameter, so they can't access anything that
644 // isn't global.)
645 static PosixSignalHandler* Instance() {
646 LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
647 return &instance;
648 }
649
650 // Returns true if the given signal number is set.
651 bool IsSignalSet(int signum) const {
652 ASSERT(signum < ARRAY_SIZE(received_signal_));
653 if (signum < ARRAY_SIZE(received_signal_)) {
654 return received_signal_[signum];
655 } else {
656 return false;
657 }
658 }
659
660 // Clears the given signal number.
661 void ClearSignal(int signum) {
662 ASSERT(signum < ARRAY_SIZE(received_signal_));
663 if (signum < ARRAY_SIZE(received_signal_)) {
664 received_signal_[signum] = false;
665 }
666 }
667
668 // Returns the file descriptor to monitor for signal events.
669 int GetDescriptor() const {
670 return afd_[0];
671 }
672
673 // This is called directly from our real signal handler, so it must be
674 // signal-handler-safe. That means it cannot assume anything about the
675 // user-level state of the process, since the handler could be executed at any
676 // time on any thread.
677 void OnPosixSignalReceived(int signum) {
678 if (signum >= ARRAY_SIZE(received_signal_)) {
679 // We don't have space in our array for this.
680 return;
681 }
682 // Set a flag saying we've seen this signal.
683 received_signal_[signum] = true;
684 // Notify application code that we got a signal.
685 const uint8 b[1] = { 0 };
686 if (-1 == write(afd_[1], b, sizeof(b))) {
687 // Nothing we can do here. If there's an error somehow then there's
688 // nothing we can safely do from a signal handler.
689 // No, we can't even safely log it.
690 // But, we still have to check the return value here. Otherwise,
691 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
692 return;
693 }
694 }
695
696 private:
697 PosixSignalHandler() {
698 if (pipe(afd_) < 0) {
699 LOG_ERR(LS_ERROR) << "pipe failed";
700 return;
701 }
702 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
703 LOG_ERR(LS_WARNING) << "fcntl #1 failed";
704 }
705 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
706 LOG_ERR(LS_WARNING) << "fcntl #2 failed";
707 }
708 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
709 0,
710 sizeof(received_signal_));
711 }
712
713 ~PosixSignalHandler() {
714 int fd1 = afd_[0];
715 int fd2 = afd_[1];
716 // We clobber the stored file descriptor numbers here or else in principle
717 // a signal that happens to be delivered during application termination
718 // could erroneously write a zero byte to an unrelated file handle in
719 // OnPosixSignalReceived() if some other file happens to be opened later
720 // during shutdown and happens to be given the same file descriptor number
721 // as our pipe had. Unfortunately even with this precaution there is still a
722 // race where that could occur if said signal happens to be handled
723 // concurrently with this code and happens to have already read the value of
724 // afd_[1] from memory before we clobber it, but that's unlikely.
725 afd_[0] = -1;
726 afd_[1] = -1;
727 close(fd1);
728 close(fd2);
729 }
730
731 int afd_[2];
732 // These are boolean flags that will be set in our signal handler and read
733 // and cleared from Wait(). There is a race involved in this, but it is
734 // benign. The signal handler sets the flag before signaling the pipe, so
735 // we'll never end up blocking in select() while a flag is still true.
736 // However, if two of the same signal arrive close to each other then it's
737 // possible that the second time the handler may set the flag while it's still
738 // true, meaning that signal will be missed. But the first occurrence of it
739 // will still be handled, so this isn't a problem.
740 // Volatile is not necessary here for correctness, but this data _is_ volatile
741 // so I've marked it as such.
742 volatile uint8 received_signal_[kNumPosixSignals];
743};
744
745class PosixSignalDispatcher : public Dispatcher {
746 public:
747 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
748 owner_->Add(this);
749 }
750
751 virtual ~PosixSignalDispatcher() {
752 owner_->Remove(this);
753 }
754
755 virtual uint32 GetRequestedEvents() {
756 return DE_READ;
757 }
758
759 virtual void OnPreEvent(uint32 ff) {
760 // Events might get grouped if signals come very fast, so we read out up to
761 // 16 bytes to make sure we keep the pipe empty.
762 uint8 b[16];
763 ssize_t ret = read(GetDescriptor(), b, sizeof(b));
764 if (ret < 0) {
765 LOG_ERR(LS_WARNING) << "Error in read()";
766 } else if (ret == 0) {
767 LOG(LS_WARNING) << "Should have read at least one byte";
768 }
769 }
770
771 virtual void OnEvent(uint32 ff, int err) {
772 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
773 ++signum) {
774 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
775 PosixSignalHandler::Instance()->ClearSignal(signum);
776 HandlerMap::iterator i = handlers_.find(signum);
777 if (i == handlers_.end()) {
778 // This can happen if a signal is delivered to our process at around
779 // the same time as we unset our handler for it. It is not an error
780 // condition, but it's unusual enough to be worth logging.
781 LOG(LS_INFO) << "Received signal with no handler: " << signum;
782 } else {
783 // Otherwise, execute our handler.
784 (*i->second)(signum);
785 }
786 }
787 }
788 }
789
790 virtual int GetDescriptor() {
791 return PosixSignalHandler::Instance()->GetDescriptor();
792 }
793
794 virtual bool IsDescriptorClosed() {
795 return false;
796 }
797
798 void SetHandler(int signum, void (*handler)(int)) {
799 handlers_[signum] = handler;
800 }
801
802 void ClearHandler(int signum) {
803 handlers_.erase(signum);
804 }
805
806 bool HasHandlers() {
807 return !handlers_.empty();
808 }
809
810 private:
811 typedef std::map<int, void (*)(int)> HandlerMap;
812
813 HandlerMap handlers_;
814 // Our owner.
815 PhysicalSocketServer *owner_;
816};
817
818class SocketDispatcher : public Dispatcher, public PhysicalSocket {
819 public:
820 explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
821 }
822 SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
823 }
824
825 virtual ~SocketDispatcher() {
826 Close();
827 }
828
829 bool Initialize() {
830 ss_->Add(this);
831 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
832 return true;
833 }
834
835 virtual bool Create(int type) {
836 return Create(AF_INET, type);
837 }
838
839 virtual bool Create(int family, int type) {
840 // Change the socket to be non-blocking.
841 if (!PhysicalSocket::Create(family, type))
842 return false;
843
844 return Initialize();
845 }
846
847 virtual int GetDescriptor() {
848 return s_;
849 }
850
851 virtual bool IsDescriptorClosed() {
852 // We don't have a reliable way of distinguishing end-of-stream
853 // from readability. So test on each readable call. Is this
854 // inefficient? Probably.
855 char ch;
856 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
857 if (res > 0) {
858 // Data available, so not closed.
859 return false;
860 } else if (res == 0) {
861 // EOF, so closed.
862 return true;
863 } else { // error
864 switch (errno) {
865 // Returned if we've already closed s_.
866 case EBADF:
867 // Returned during ungraceful peer shutdown.
868 case ECONNRESET:
869 return true;
870 default:
871 // Assume that all other errors are just blocking errors, meaning the
872 // connection is still good but we just can't read from it right now.
873 // This should only happen when connecting (and at most once), because
874 // in all other cases this function is only called if the file
875 // descriptor is already known to be in the readable state. However,
876 // it's not necessary a problem if we spuriously interpret a
877 // "connection lost"-type error as a blocking error, because typically
878 // the next recv() will get EOF, so we'll still eventually notice that
879 // the socket is closed.
880 LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
881 return false;
882 }
883 }
884 }
885
886 virtual uint32 GetRequestedEvents() {
887 return enabled_events_;
888 }
889
890 virtual void OnPreEvent(uint32 ff) {
891 if ((ff & DE_CONNECT) != 0)
892 state_ = CS_CONNECTED;
893 if ((ff & DE_CLOSE) != 0)
894 state_ = CS_CLOSED;
895 }
896
897 virtual void OnEvent(uint32 ff, int err) {
898 // Make sure we deliver connect/accept first. Otherwise, consumers may see
899 // something like a READ followed by a CONNECT, which would be odd.
900 if ((ff & DE_CONNECT) != 0) {
901 enabled_events_ &= ~DE_CONNECT;
902 SignalConnectEvent(this);
903 }
904 if ((ff & DE_ACCEPT) != 0) {
905 enabled_events_ &= ~DE_ACCEPT;
906 SignalReadEvent(this);
907 }
908 if ((ff & DE_READ) != 0) {
909 enabled_events_ &= ~DE_READ;
910 SignalReadEvent(this);
911 }
912 if ((ff & DE_WRITE) != 0) {
913 enabled_events_ &= ~DE_WRITE;
914 SignalWriteEvent(this);
915 }
916 if ((ff & DE_CLOSE) != 0) {
917 // The socket is now dead to us, so stop checking it.
918 enabled_events_ = 0;
919 SignalCloseEvent(this, err);
920 }
921 }
922
923 virtual int Close() {
924 if (s_ == INVALID_SOCKET)
925 return 0;
926
927 ss_->Remove(this);
928 return PhysicalSocket::Close();
929 }
930};
931
932class FileDispatcher: public Dispatcher, public AsyncFile {
933 public:
934 FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
935 set_readable(true);
936
937 ss_->Add(this);
938
939 fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
940 }
941
942 virtual ~FileDispatcher() {
943 ss_->Remove(this);
944 }
945
946 SocketServer* socketserver() { return ss_; }
947
948 virtual int GetDescriptor() {
949 return fd_;
950 }
951
952 virtual bool IsDescriptorClosed() {
953 return false;
954 }
955
956 virtual uint32 GetRequestedEvents() {
957 return flags_;
958 }
959
960 virtual void OnPreEvent(uint32 ff) {
961 }
962
963 virtual void OnEvent(uint32 ff, int err) {
964 if ((ff & DE_READ) != 0)
965 SignalReadEvent(this);
966 if ((ff & DE_WRITE) != 0)
967 SignalWriteEvent(this);
968 if ((ff & DE_CLOSE) != 0)
969 SignalCloseEvent(this, err);
970 }
971
972 virtual bool readable() {
973 return (flags_ & DE_READ) != 0;
974 }
975
976 virtual void set_readable(bool value) {
977 flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
978 }
979
980 virtual bool writable() {
981 return (flags_ & DE_WRITE) != 0;
982 }
983
984 virtual void set_writable(bool value) {
985 flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
986 }
987
988 private:
989 PhysicalSocketServer* ss_;
990 int fd_;
991 int flags_;
992};
993
994AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
995 return new FileDispatcher(fd, this);
996}
997
998#endif // POSIX
999
1000#ifdef WIN32
1001static uint32 FlagsToEvents(uint32 events) {
1002 uint32 ffFD = FD_CLOSE;
1003 if (events & DE_READ)
1004 ffFD |= FD_READ;
1005 if (events & DE_WRITE)
1006 ffFD |= FD_WRITE;
1007 if (events & DE_CONNECT)
1008 ffFD |= FD_CONNECT;
1009 if (events & DE_ACCEPT)
1010 ffFD |= FD_ACCEPT;
1011 return ffFD;
1012}
1013
1014class EventDispatcher : public Dispatcher {
1015 public:
1016 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1017 hev_ = WSACreateEvent();
1018 if (hev_) {
1019 ss_->Add(this);
1020 }
1021 }
1022
1023 ~EventDispatcher() {
1024 if (hev_ != NULL) {
1025 ss_->Remove(this);
1026 WSACloseEvent(hev_);
1027 hev_ = NULL;
1028 }
1029 }
1030
1031 virtual void Signal() {
1032 if (hev_ != NULL)
1033 WSASetEvent(hev_);
1034 }
1035
1036 virtual uint32 GetRequestedEvents() {
1037 return 0;
1038 }
1039
1040 virtual void OnPreEvent(uint32 ff) {
1041 WSAResetEvent(hev_);
1042 }
1043
1044 virtual void OnEvent(uint32 ff, int err) {
1045 }
1046
1047 virtual WSAEVENT GetWSAEvent() {
1048 return hev_;
1049 }
1050
1051 virtual SOCKET GetSocket() {
1052 return INVALID_SOCKET;
1053 }
1054
1055 virtual bool CheckSignalClose() { return false; }
1056
1057private:
1058 PhysicalSocketServer* ss_;
1059 WSAEVENT hev_;
1060};
1061
1062class SocketDispatcher : public Dispatcher, public PhysicalSocket {
1063 public:
1064 static int next_id_;
1065 int id_;
1066 bool signal_close_;
1067 int signal_err_;
1068
1069 SocketDispatcher(PhysicalSocketServer* ss)
1070 : PhysicalSocket(ss),
1071 id_(0),
1072 signal_close_(false) {
1073 }
1074
1075 SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
1076 : PhysicalSocket(ss, s),
1077 id_(0),
1078 signal_close_(false) {
1079 }
1080
1081 virtual ~SocketDispatcher() {
1082 Close();
1083 }
1084
1085 bool Initialize() {
1086 ASSERT(s_ != INVALID_SOCKET);
1087 // Must be a non-blocking
1088 u_long argp = 1;
1089 ioctlsocket(s_, FIONBIO, &argp);
1090 ss_->Add(this);
1091 return true;
1092 }
1093
1094 virtual bool Create(int type) {
1095 return Create(AF_INET, type);
1096 }
1097
1098 virtual bool Create(int family, int type) {
1099 // Create socket
1100 if (!PhysicalSocket::Create(family, type))
1101 return false;
1102
1103 if (!Initialize())
1104 return false;
1105
1106 do { id_ = ++next_id_; } while (id_ == 0);
1107 return true;
1108 }
1109
1110 virtual int Close() {
1111 if (s_ == INVALID_SOCKET)
1112 return 0;
1113
1114 id_ = 0;
1115 signal_close_ = false;
1116 ss_->Remove(this);
1117 return PhysicalSocket::Close();
1118 }
1119
1120 virtual uint32 GetRequestedEvents() {
1121 return enabled_events_;
1122 }
1123
1124 virtual void OnPreEvent(uint32 ff) {
1125 if ((ff & DE_CONNECT) != 0)
1126 state_ = CS_CONNECTED;
1127 // We set CS_CLOSED from CheckSignalClose.
1128 }
1129
1130 virtual void OnEvent(uint32 ff, int err) {
1131 int cache_id = id_;
1132 // Make sure we deliver connect/accept first. Otherwise, consumers may see
1133 // something like a READ followed by a CONNECT, which would be odd.
1134 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
1135 if (ff != DE_CONNECT)
1136 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
1137 enabled_events_ &= ~DE_CONNECT;
1138#ifdef _DEBUG
1139 dbg_addr_ = "Connected @ ";
1140 dbg_addr_.append(GetRemoteAddress().ToString());
1141#endif // _DEBUG
1142 SignalConnectEvent(this);
1143 }
1144 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
1145 enabled_events_ &= ~DE_ACCEPT;
1146 SignalReadEvent(this);
1147 }
1148 if ((ff & DE_READ) != 0) {
1149 enabled_events_ &= ~DE_READ;
1150 SignalReadEvent(this);
1151 }
1152 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
1153 enabled_events_ &= ~DE_WRITE;
1154 SignalWriteEvent(this);
1155 }
1156 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
1157 signal_close_ = true;
1158 signal_err_ = err;
1159 }
1160 }
1161
1162 virtual WSAEVENT GetWSAEvent() {
1163 return WSA_INVALID_EVENT;
1164 }
1165
1166 virtual SOCKET GetSocket() {
1167 return s_;
1168 }
1169
1170 virtual bool CheckSignalClose() {
1171 if (!signal_close_)
1172 return false;
1173
1174 char ch;
1175 if (recv(s_, &ch, 1, MSG_PEEK) > 0)
1176 return false;
1177
1178 state_ = CS_CLOSED;
1179 signal_close_ = false;
1180 SignalCloseEvent(this, signal_err_);
1181 return true;
1182 }
1183};
1184
1185int SocketDispatcher::next_id_ = 0;
1186
1187#endif // WIN32
1188
1189// Sets the value of a boolean value to false when signaled.
1190class Signaler : public EventDispatcher {
1191 public:
1192 Signaler(PhysicalSocketServer* ss, bool* pf)
1193 : EventDispatcher(ss), pf_(pf) {
1194 }
1195 virtual ~Signaler() { }
1196
1197 void OnEvent(uint32 ff, int err) {
1198 if (pf_)
1199 *pf_ = false;
1200 }
1201
1202 private:
1203 bool *pf_;
1204};
1205
1206PhysicalSocketServer::PhysicalSocketServer()
sergeyu@chromium.org9750edd2014-03-25 00:31:35 +00001207 : fWait_(false) {
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001208 signal_wakeup_ = new Signaler(this, &fWait_);
1209#ifdef WIN32
1210 socket_ev_ = WSACreateEvent();
1211#endif
1212}
1213
1214PhysicalSocketServer::~PhysicalSocketServer() {
1215#ifdef WIN32
1216 WSACloseEvent(socket_ev_);
1217#endif
1218#ifdef POSIX
1219 signal_dispatcher_.reset();
1220#endif
1221 delete signal_wakeup_;
1222 ASSERT(dispatchers_.empty());
1223}
1224
1225void PhysicalSocketServer::WakeUp() {
1226 signal_wakeup_->Signal();
1227}
1228
1229Socket* PhysicalSocketServer::CreateSocket(int type) {
1230 return CreateSocket(AF_INET, type);
1231}
1232
1233Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1234 PhysicalSocket* socket = new PhysicalSocket(this);
1235 if (socket->Create(family, type)) {
1236 return socket;
1237 } else {
1238 delete socket;
1239 return 0;
1240 }
1241}
1242
1243AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1244 return CreateAsyncSocket(AF_INET, type);
1245}
1246
1247AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1248 SocketDispatcher* dispatcher = new SocketDispatcher(this);
1249 if (dispatcher->Create(family, type)) {
1250 return dispatcher;
1251 } else {
1252 delete dispatcher;
1253 return 0;
1254 }
1255}
1256
1257AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1258 SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1259 if (dispatcher->Initialize()) {
1260 return dispatcher;
1261 } else {
1262 delete dispatcher;
1263 return 0;
1264 }
1265}
1266
1267void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1268 CritScope cs(&crit_);
1269 // Prevent duplicates. This can cause dead dispatchers to stick around.
1270 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1271 dispatchers_.end(),
1272 pdispatcher);
1273 if (pos != dispatchers_.end())
1274 return;
1275 dispatchers_.push_back(pdispatcher);
1276}
1277
1278void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1279 CritScope cs(&crit_);
1280 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1281 dispatchers_.end(),
1282 pdispatcher);
wu@webrtc.org4ba8b9e2013-09-19 05:49:50 +00001283 // We silently ignore duplicate calls to Add, so we should silently ignore
1284 // the (expected) symmetric calls to Remove. Note that this may still hide
1285 // a real issue, so we at least log a warning about it.
1286 if (pos == dispatchers_.end()) {
1287 LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1288 << "dispatcher, potentially from a duplicate call to Add.";
1289 return;
1290 }
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001291 size_t index = pos - dispatchers_.begin();
1292 dispatchers_.erase(pos);
1293 for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
1294 ++it) {
1295 if (index < **it) {
1296 --**it;
1297 }
1298 }
1299}
1300
1301#ifdef POSIX
1302bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1303 // Calculate timing information
1304
1305 struct timeval *ptvWait = NULL;
1306 struct timeval tvWait;
1307 struct timeval tvStop;
1308 if (cmsWait != kForever) {
1309 // Calculate wait timeval
1310 tvWait.tv_sec = cmsWait / 1000;
1311 tvWait.tv_usec = (cmsWait % 1000) * 1000;
1312 ptvWait = &tvWait;
1313
1314 // Calculate when to return in a timeval
1315 gettimeofday(&tvStop, NULL);
1316 tvStop.tv_sec += tvWait.tv_sec;
1317 tvStop.tv_usec += tvWait.tv_usec;
1318 if (tvStop.tv_usec >= 1000000) {
1319 tvStop.tv_usec -= 1000000;
1320 tvStop.tv_sec += 1;
1321 }
1322 }
1323
1324 // Zero all fd_sets. Don't need to do this inside the loop since
1325 // select() zeros the descriptors not signaled
1326
1327 fd_set fdsRead;
1328 FD_ZERO(&fdsRead);
1329 fd_set fdsWrite;
1330 FD_ZERO(&fdsWrite);
1331
1332 fWait_ = true;
1333
1334 while (fWait_) {
1335 int fdmax = -1;
1336 {
1337 CritScope cr(&crit_);
1338 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1339 // Query dispatchers for read and write wait state
1340 Dispatcher *pdispatcher = dispatchers_[i];
1341 ASSERT(pdispatcher);
1342 if (!process_io && (pdispatcher != signal_wakeup_))
1343 continue;
1344 int fd = pdispatcher->GetDescriptor();
1345 if (fd > fdmax)
1346 fdmax = fd;
1347
1348 uint32 ff = pdispatcher->GetRequestedEvents();
1349 if (ff & (DE_READ | DE_ACCEPT))
1350 FD_SET(fd, &fdsRead);
1351 if (ff & (DE_WRITE | DE_CONNECT))
1352 FD_SET(fd, &fdsWrite);
1353 }
1354 }
1355
1356 // Wait then call handlers as appropriate
1357 // < 0 means error
1358 // 0 means timeout
1359 // > 0 means count of descriptors ready
1360 int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
1361
1362 // If error, return error.
1363 if (n < 0) {
1364 if (errno != EINTR) {
1365 LOG_E(LS_ERROR, EN, errno) << "select";
1366 return false;
1367 }
1368 // Else ignore the error and keep going. If this EINTR was for one of the
1369 // signals managed by this PhysicalSocketServer, the
1370 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1371 // iteration.
1372 } else if (n == 0) {
1373 // If timeout, return success
1374 return true;
1375 } else {
1376 // We have signaled descriptors
1377 CritScope cr(&crit_);
1378 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1379 Dispatcher *pdispatcher = dispatchers_[i];
1380 int fd = pdispatcher->GetDescriptor();
1381 uint32 ff = 0;
1382 int errcode = 0;
1383
1384 // Reap any error code, which can be signaled through reads or writes.
1385 // TODO: Should we set errcode if getsockopt fails?
1386 if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
1387 socklen_t len = sizeof(errcode);
1388 ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
1389 }
1390
1391 // Check readable descriptors. If we're waiting on an accept, signal
1392 // that. Otherwise we're waiting for data, check to see if we're
1393 // readable or really closed.
1394 // TODO: Only peek at TCP descriptors.
1395 if (FD_ISSET(fd, &fdsRead)) {
1396 FD_CLR(fd, &fdsRead);
1397 if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
1398 ff |= DE_ACCEPT;
1399 } else if (errcode || pdispatcher->IsDescriptorClosed()) {
1400 ff |= DE_CLOSE;
1401 } else {
1402 ff |= DE_READ;
1403 }
1404 }
1405
1406 // Check writable descriptors. If we're waiting on a connect, detect
1407 // success versus failure by the reaped error code.
1408 if (FD_ISSET(fd, &fdsWrite)) {
1409 FD_CLR(fd, &fdsWrite);
1410 if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
1411 if (!errcode) {
1412 ff |= DE_CONNECT;
1413 } else {
1414 ff |= DE_CLOSE;
1415 }
1416 } else {
1417 ff |= DE_WRITE;
1418 }
1419 }
1420
1421 // Tell the descriptor about the event.
1422 if (ff != 0) {
1423 pdispatcher->OnPreEvent(ff);
1424 pdispatcher->OnEvent(ff, errcode);
1425 }
1426 }
1427 }
1428
1429 // Recalc the time remaining to wait. Doing it here means it doesn't get
1430 // calced twice the first time through the loop
1431 if (ptvWait) {
1432 ptvWait->tv_sec = 0;
1433 ptvWait->tv_usec = 0;
1434 struct timeval tvT;
1435 gettimeofday(&tvT, NULL);
1436 if ((tvStop.tv_sec > tvT.tv_sec)
1437 || ((tvStop.tv_sec == tvT.tv_sec)
1438 && (tvStop.tv_usec > tvT.tv_usec))) {
1439 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1440 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1441 if (ptvWait->tv_usec < 0) {
1442 ASSERT(ptvWait->tv_sec > 0);
1443 ptvWait->tv_usec += 1000000;
1444 ptvWait->tv_sec -= 1;
1445 }
1446 }
1447 }
1448 }
1449
1450 return true;
1451}
1452
1453static void GlobalSignalHandler(int signum) {
1454 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1455}
1456
1457bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1458 void (*handler)(int)) {
1459 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1460 // otherwise set one.
1461 if (handler == SIG_IGN || handler == SIG_DFL) {
1462 if (!InstallSignal(signum, handler)) {
1463 return false;
1464 }
1465 if (signal_dispatcher_) {
1466 signal_dispatcher_->ClearHandler(signum);
1467 if (!signal_dispatcher_->HasHandlers()) {
1468 signal_dispatcher_.reset();
1469 }
1470 }
1471 } else {
1472 if (!signal_dispatcher_) {
1473 signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1474 }
1475 signal_dispatcher_->SetHandler(signum, handler);
1476 if (!InstallSignal(signum, &GlobalSignalHandler)) {
1477 return false;
1478 }
1479 }
1480 return true;
1481}
1482
1483Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1484 return signal_dispatcher_.get();
1485}
1486
1487bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1488 struct sigaction act;
1489 // It doesn't really matter what we set this mask to.
1490 if (sigemptyset(&act.sa_mask) != 0) {
1491 LOG_ERR(LS_ERROR) << "Couldn't set mask";
1492 return false;
1493 }
1494 act.sa_handler = handler;
wu@webrtc.org2a81a382014-01-03 22:08:47 +00001495#if !defined(__native_client__)
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001496 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1497 // and it's a nuisance. Though some syscalls still return EINTR and there's no
1498 // real standard for which ones. :(
1499 act.sa_flags = SA_RESTART;
wu@webrtc.org2a81a382014-01-03 22:08:47 +00001500#else
1501 act.sa_flags = 0;
1502#endif
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001503 if (sigaction(signum, &act, NULL) != 0) {
1504 LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1505 return false;
1506 }
1507 return true;
1508}
1509#endif // POSIX
1510
1511#ifdef WIN32
1512bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1513 int cmsTotal = cmsWait;
1514 int cmsElapsed = 0;
1515 uint32 msStart = Time();
1516
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001517 fWait_ = true;
1518 while (fWait_) {
1519 std::vector<WSAEVENT> events;
1520 std::vector<Dispatcher *> event_owners;
1521
1522 events.push_back(socket_ev_);
1523
1524 {
1525 CritScope cr(&crit_);
1526 size_t i = 0;
1527 iterators_.push_back(&i);
1528 // Don't track dispatchers_.size(), because we want to pick up any new
1529 // dispatchers that were added while processing the loop.
1530 while (i < dispatchers_.size()) {
1531 Dispatcher* disp = dispatchers_[i++];
1532 if (!process_io && (disp != signal_wakeup_))
1533 continue;
1534 SOCKET s = disp->GetSocket();
1535 if (disp->CheckSignalClose()) {
1536 // We just signalled close, don't poll this socket
1537 } else if (s != INVALID_SOCKET) {
1538 WSAEventSelect(s,
1539 events[0],
1540 FlagsToEvents(disp->GetRequestedEvents()));
1541 } else {
1542 events.push_back(disp->GetWSAEvent());
1543 event_owners.push_back(disp);
1544 }
1545 }
1546 ASSERT(iterators_.back() == &i);
1547 iterators_.pop_back();
1548 }
1549
1550 // Which is shorter, the delay wait or the asked wait?
1551
1552 int cmsNext;
1553 if (cmsWait == kForever) {
1554 cmsNext = cmsWait;
1555 } else {
1556 cmsNext = _max(0, cmsTotal - cmsElapsed);
1557 }
1558
1559 // Wait for one of the events to signal
1560 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1561 &events[0],
1562 false,
1563 cmsNext,
1564 false);
1565
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001566 if (dw == WSA_WAIT_FAILED) {
1567 // Failed?
1568 // TODO: need a better strategy than this!
henrike@webrtc.org15ce9582014-03-20 22:33:30 +00001569 WSAGetLastError();
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001570 ASSERT(false);
1571 return false;
1572 } else if (dw == WSA_WAIT_TIMEOUT) {
1573 // Timeout?
1574 return true;
1575 } else {
1576 // Figure out which one it is and call it
1577 CritScope cr(&crit_);
1578 int index = dw - WSA_WAIT_EVENT_0;
1579 if (index > 0) {
1580 --index; // The first event is the socket event
1581 event_owners[index]->OnPreEvent(0);
1582 event_owners[index]->OnEvent(0, 0);
1583 } else if (process_io) {
1584 size_t i = 0, end = dispatchers_.size();
1585 iterators_.push_back(&i);
1586 iterators_.push_back(&end); // Don't iterate over new dispatchers.
1587 while (i < end) {
1588 Dispatcher* disp = dispatchers_[i++];
1589 SOCKET s = disp->GetSocket();
1590 if (s == INVALID_SOCKET)
1591 continue;
1592
1593 WSANETWORKEVENTS wsaEvents;
1594 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1595 if (err == 0) {
1596
1597#if LOGGING
1598 {
1599 if ((wsaEvents.lNetworkEvents & FD_READ) &&
1600 wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1601 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1602 << wsaEvents.iErrorCode[FD_READ_BIT];
1603 }
1604 if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1605 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1606 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1607 << wsaEvents.iErrorCode[FD_WRITE_BIT];
1608 }
1609 if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1610 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1611 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1612 << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1613 }
1614 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1615 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1616 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1617 << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1618 }
1619 if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1620 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1621 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1622 << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1623 }
1624 }
1625#endif
1626 uint32 ff = 0;
1627 int errcode = 0;
1628 if (wsaEvents.lNetworkEvents & FD_READ)
1629 ff |= DE_READ;
1630 if (wsaEvents.lNetworkEvents & FD_WRITE)
1631 ff |= DE_WRITE;
1632 if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1633 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1634 ff |= DE_CONNECT;
1635 } else {
1636 ff |= DE_CLOSE;
1637 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1638 }
1639 }
1640 if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1641 ff |= DE_ACCEPT;
1642 if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1643 ff |= DE_CLOSE;
1644 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1645 }
1646 if (ff != 0) {
1647 disp->OnPreEvent(ff);
1648 disp->OnEvent(ff, errcode);
1649 }
1650 }
1651 }
1652 ASSERT(iterators_.back() == &end);
1653 iterators_.pop_back();
1654 ASSERT(iterators_.back() == &i);
1655 iterators_.pop_back();
1656 }
1657
1658 // Reset the network event until new activity occurs
1659 WSAResetEvent(socket_ev_);
1660 }
1661
1662 // Break?
1663 if (!fWait_)
1664 break;
1665 cmsElapsed = TimeSince(msStart);
1666 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1667 break;
1668 }
1669 }
1670
1671 // Done
1672 return true;
1673}
1674#endif // WIN32
1675
1676} // namespace talk_base