blob: a9fda8af99a9fb204841fe01b5ebe84b80006c80 [file] [log] [blame]
henrike@webrtc.org0e118e72013-07-10 00:45:36 +00001/*
2 * libjingle
3 * Copyright 2004--2005, Google Inc.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include "talk/base/win32.h"
29
30#include <winsock2.h>
31#include <ws2tcpip.h>
32#include <algorithm>
33
34#include "talk/base/basictypes.h"
35#include "talk/base/byteorder.h"
36#include "talk/base/common.h"
37#include "talk/base/logging.h"
38
39namespace talk_base {
40
41// Helper function declarations for inet_ntop/inet_pton.
42static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size);
43static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size);
44static int inet_pton_v4(const char* src, void* dst);
45static int inet_pton_v6(const char* src, void* dst);
46
47// Implementation of inet_ntop (create a printable representation of an
48// ip address). XP doesn't have its own inet_ntop, and
49// WSAAddressToString requires both IPv6 to be installed and for Winsock
50// to be initialized.
51const char* win32_inet_ntop(int af, const void *src,
52 char* dst, socklen_t size) {
53 if (!src || !dst) {
54 return NULL;
55 }
56 switch (af) {
57 case AF_INET: {
58 return inet_ntop_v4(src, dst, size);
59 }
60 case AF_INET6: {
61 return inet_ntop_v6(src, dst, size);
62 }
63 }
64 return NULL;
65}
66
67// As above, but for inet_pton. Implements inet_pton for v4 and v6.
68// Note that our inet_ntop will output normal 'dotted' v4 addresses only.
69int win32_inet_pton(int af, const char* src, void* dst) {
70 if (!src || !dst) {
71 return 0;
72 }
73 if (af == AF_INET) {
74 return inet_pton_v4(src, dst);
75 } else if (af == AF_INET6) {
76 return inet_pton_v6(src, dst);
77 }
78 return -1;
79}
80
81// Helper function for inet_ntop for IPv4 addresses.
82// Outputs "dotted-quad" decimal notation.
83const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) {
84 if (size < INET_ADDRSTRLEN) {
85 return NULL;
86 }
87 const struct in_addr* as_in_addr =
88 reinterpret_cast<const struct in_addr*>(src);
89 talk_base::sprintfn(dst, size, "%d.%d.%d.%d",
90 as_in_addr->S_un.S_un_b.s_b1,
91 as_in_addr->S_un.S_un_b.s_b2,
92 as_in_addr->S_un.S_un_b.s_b3,
93 as_in_addr->S_un.S_un_b.s_b4);
94 return dst;
95}
96
97// Helper function for inet_ntop for IPv6 addresses.
98const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) {
99 if (size < INET6_ADDRSTRLEN) {
100 return NULL;
101 }
102 const uint16* as_shorts =
103 reinterpret_cast<const uint16*>(src);
104 int runpos[8];
105 int current = 1;
106 int max = 1;
107 int maxpos = -1;
108 int run_array_size = ARRAY_SIZE(runpos);
109 // Run over the address marking runs of 0s.
110 for (int i = 0; i < run_array_size; ++i) {
111 if (as_shorts[i] == 0) {
112 runpos[i] = current;
113 if (current > max) {
114 maxpos = i;
115 max = current;
116 }
117 ++current;
118 } else {
119 runpos[i] = -1;
120 current =1;
121 }
122 }
123
124 if (max > 1) {
125 int tmpmax = maxpos;
126 // Run back through, setting -1 for all but the longest run.
127 for (int i = run_array_size - 1; i >= 0; i--) {
128 if (i > tmpmax) {
129 runpos[i] = -1;
130 } else if (runpos[i] == -1) {
131 // We're less than maxpos, we hit a -1, so the 'good' run is done.
132 // Setting tmpmax -1 means all remaining positions get set to -1.
133 tmpmax = -1;
134 }
135 }
136 }
137
138 char* cursor = dst;
139 // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper.
140 // These addresses have an initial run of either eight zero-bytes followed
141 // by 0xFFFF, or an initial run of ten zero-bytes.
142 if (runpos[0] == 1 && (maxpos == 5 ||
143 (maxpos == 4 && as_shorts[5] == 0xFFFF))) {
144 *cursor++ = ':';
145 *cursor++ = ':';
146 if (maxpos == 4) {
147 cursor += talk_base::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:");
148 }
149 const struct in_addr* as_v4 =
150 reinterpret_cast<const struct in_addr*>(&(as_shorts[6]));
151 inet_ntop_v4(as_v4, cursor,
152 static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst)));
153 } else {
154 for (int i = 0; i < run_array_size; ++i) {
155 if (runpos[i] == -1) {
156 cursor += talk_base::sprintfn(cursor,
157 INET6_ADDRSTRLEN - (cursor - dst),
158 "%x", NetworkToHost16(as_shorts[i]));
159 if (i != 7 && runpos[i + 1] != 1) {
160 *cursor++ = ':';
161 }
162 } else if (runpos[i] == 1) {
163 // Entered the run; print the colons and skip the run.
164 *cursor++ = ':';
165 *cursor++ = ':';
166 i += (max - 1);
167 }
168 }
169 }
170 return dst;
171}
172
173// Helper function for inet_pton for IPv4 addresses.
174// |src| points to a character string containing an IPv4 network address in
175// dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number
176// of up to three digits in the range 0 to 255.
177// The address is converted and copied to dst,
178// which must be sizeof(struct in_addr) (4) bytes (32 bits) long.
179int inet_pton_v4(const char* src, void* dst) {
180 const int kIpv4AddressSize = 4;
181 int found = 0;
182 const char* src_pos = src;
183 unsigned char result[kIpv4AddressSize] = {0};
184
185 while (*src_pos != '\0') {
186 // strtol won't treat whitespace characters in the begining as an error,
187 // so check to ensure this is started with digit before passing to strtol.
188 if (!isdigit(*src_pos)) {
189 return 0;
190 }
191 char* end_pos;
192 long value = strtol(src_pos, &end_pos, 10);
193 if (value < 0 || value > 255 || src_pos == end_pos) {
194 return 0;
195 }
196 ++found;
197 if (found > kIpv4AddressSize) {
198 return 0;
199 }
200 result[found - 1] = static_cast<unsigned char>(value);
201 src_pos = end_pos;
202 if (*src_pos == '.') {
203 // There's more.
204 ++src_pos;
205 } else if (*src_pos != '\0') {
206 // If it's neither '.' nor '\0' then return fail.
207 return 0;
208 }
209 }
210 if (found != kIpv4AddressSize) {
211 return 0;
212 }
213 memcpy(dst, result, sizeof(result));
214 return 1;
215}
216
217// Helper function for inet_pton for IPv6 addresses.
218int inet_pton_v6(const char* src, void* dst) {
219 // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex.
220 // Check for literal x in the input string.
221 const char* readcursor = src;
222 char c = *readcursor++;
223 while (c) {
224 if (c == 'x') {
225 return 0;
226 }
227 c = *readcursor++;
228 }
229 readcursor = src;
230
231 struct in6_addr an_addr;
232 memset(&an_addr, 0, sizeof(an_addr));
233
234 uint16* addr_cursor = reinterpret_cast<uint16*>(&an_addr.s6_addr[0]);
235 uint16* addr_end = reinterpret_cast<uint16*>(&an_addr.s6_addr[16]);
236 bool seencompressed = false;
237
238 // Addresses that start with "::" (i.e., a run of initial zeros) or
239 // "::ffff:" can potentially be IPv4 mapped or compatibility addresses.
240 // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1").
241 if (*readcursor == ':' && *(readcursor+1) == ':' &&
242 *(readcursor + 2) != 0) {
243 // Check for periods, which we'll take as a sign of v4 addresses.
244 const char* addrstart = readcursor + 2;
245 if (talk_base::strchr(addrstart, ".")) {
246 const char* colon = talk_base::strchr(addrstart, "::");
247 if (colon) {
248 uint16 a_short;
249 int bytesread = 0;
250 if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 ||
251 a_short != 0xFFFF || bytesread != 4) {
252 // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't.
253 return 0;
254 } else {
255 an_addr.s6_addr[10] = 0xFF;
256 an_addr.s6_addr[11] = 0xFF;
257 addrstart = colon + 1;
258 }
259 }
260 struct in_addr v4;
261 if (inet_pton_v4(addrstart, &v4.s_addr)) {
262 memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4));
263 memcpy(dst, &an_addr, sizeof(an_addr));
264 return 1;
265 } else {
266 // Invalid v4 address.
267 return 0;
268 }
269 }
270 }
271
272 // For addresses without a trailing IPv4 component ('normal' IPv6 addresses).
273 while (*readcursor != 0 && addr_cursor < addr_end) {
274 if (*readcursor == ':') {
275 if (*(readcursor + 1) == ':') {
276 if (seencompressed) {
277 // Can only have one compressed run of zeroes ("::") per address.
278 return 0;
279 }
280 // Hit a compressed run. Count colons to figure out how much of the
281 // address is skipped.
282 readcursor += 2;
283 const char* coloncounter = readcursor;
284 int coloncount = 0;
285 if (*coloncounter == 0) {
286 // Special case - trailing ::.
287 addr_cursor = addr_end;
288 } else {
289 while (*coloncounter) {
290 if (*coloncounter == ':') {
291 ++coloncount;
292 }
293 ++coloncounter;
294 }
295 // (coloncount + 1) is the number of shorts left in the address.
296 addr_cursor = addr_end - (coloncount + 1);
297 seencompressed = true;
298 }
299 } else {
300 ++readcursor;
301 }
302 } else {
303 uint16 word;
304 int bytesread = 0;
305 if (sscanf(readcursor, "%hx%n", &word, &bytesread) != 1) {
306 return 0;
307 } else {
308 *addr_cursor = HostToNetwork16(word);
309 ++addr_cursor;
310 readcursor += bytesread;
311 if (*readcursor != ':' && *readcursor != '\0') {
312 return 0;
313 }
314 }
315 }
316 }
317
318 if (*readcursor != '\0' || addr_cursor < addr_end) {
319 // Catches addresses too short or too long.
320 return 0;
321 }
322 memcpy(dst, &an_addr, sizeof(an_addr));
323 return 1;
324}
325
326//
327// Unix time is in seconds relative to 1/1/1970. So we compute the windows
328// FILETIME of that time/date, then we add/subtract in appropriate units to
329// convert to/from unix time.
330// The units of FILETIME are 100ns intervals, so by multiplying by or dividing
331// by 10000000, we can convert to/from seconds.
332//
333// FileTime = UnixTime*10000000 + FileTime(1970)
334// UnixTime = (FileTime-FileTime(1970))/10000000
335//
336
337void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) {
338 ASSERT(NULL != ut);
339
340 // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off
341 // the difference.
342 SYSTEMTIME base_st;
343 memset(&base_st, 0, sizeof(base_st));
344 base_st.wDay = 1;
345 base_st.wMonth = 1;
346 base_st.wYear = 1970;
347
348 FILETIME base_ft;
349 SystemTimeToFileTime(&base_st, &base_ft);
350
351 ULARGE_INTEGER base_ul, current_ul;
352 memcpy(&base_ul, &base_ft, sizeof(FILETIME));
353 memcpy(&current_ul, &ft, sizeof(FILETIME));
354
355 // Divide by big number to convert to seconds, then subtract out the 1970
356 // base date value.
357 const ULONGLONG RATIO = 10000000;
358 *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO);
359}
360
361void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) {
362 ASSERT(NULL != ft);
363
364 // FILETIME has an earlier date base than time_t (1/1/1970), so add in
365 // the difference.
366 SYSTEMTIME base_st;
367 memset(&base_st, 0, sizeof(base_st));
368 base_st.wDay = 1;
369 base_st.wMonth = 1;
370 base_st.wYear = 1970;
371
372 FILETIME base_ft;
373 SystemTimeToFileTime(&base_st, &base_ft);
374
375 ULARGE_INTEGER base_ul;
376 memcpy(&base_ul, &base_ft, sizeof(FILETIME));
377
378 // Multiply by big number to convert to 100ns units, then add in the 1970
379 // base date value.
380 const ULONGLONG RATIO = 10000000;
381 ULARGE_INTEGER current_ul;
382 current_ul.QuadPart = base_ul.QuadPart + static_cast<int64>(ut) * RATIO;
383 memcpy(ft, &current_ul, sizeof(FILETIME));
384}
385
386bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) {
387 // TODO: Integrate into fileutils.h
388 // TODO: Handle wide and non-wide cases via TCHAR?
389 // TODO: Skip \\?\ processing if the length is not > MAX_PATH?
390 // TODO: Write unittests
391
392 // Convert to Utf16
393 int wlen = ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
394 static_cast<int>(utf8.length() + 1), NULL,
395 0);
396 if (0 == wlen) {
397 return false;
398 }
399 wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen);
400 if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
401 static_cast<int>(utf8.length() + 1),
402 wfilename, wlen)) {
403 return false;
404 }
405 // Replace forward slashes with backslashes
406 std::replace(wfilename, wfilename + wlen, L'/', L'\\');
407 // Convert to complete filename
408 DWORD full_len = ::GetFullPathName(wfilename, 0, NULL, NULL);
409 if (0 == full_len) {
410 return false;
411 }
412 wchar_t* filepart = NULL;
413 wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6);
414 wchar_t* start = full_filename + 6;
415 if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) {
416 return false;
417 }
418 // Add long-path prefix
419 const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC";
420 if ((start[0] != L'\\') || (start[1] != L'\\')) {
421 // Non-unc path: <pathname>
422 // Becomes: \\?\<pathname>
423 start -= 4;
424 ASSERT(start >= full_filename);
425 memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t));
426 } else if (start[2] != L'?') {
427 // Unc path: \\<server>\<pathname>
428 // Becomes: \\?\UNC\<server>\<pathname>
429 start -= 6;
430 ASSERT(start >= full_filename);
431 memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t));
432 } else {
433 // Already in long-path form.
434 }
435 filename->assign(start);
436 return true;
437}
438
439bool GetOsVersion(int* major, int* minor, int* build) {
440 OSVERSIONINFO info = {0};
441 info.dwOSVersionInfoSize = sizeof(info);
442 if (GetVersionEx(&info)) {
443 if (major) *major = info.dwMajorVersion;
444 if (minor) *minor = info.dwMinorVersion;
445 if (build) *build = info.dwBuildNumber;
446 return true;
447 }
448 return false;
449}
450
451bool GetCurrentProcessIntegrityLevel(int* level) {
452 bool ret = false;
453 HANDLE process = ::GetCurrentProcess(), token;
454 if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) {
455 DWORD size;
456 if (!GetTokenInformation(token, TokenIntegrityLevel, NULL, 0, &size) &&
457 GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
458
459 char* buf = STACK_ARRAY(char, size);
460 TOKEN_MANDATORY_LABEL* til =
461 reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf);
462 if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) {
463
464 DWORD count = *GetSidSubAuthorityCount(til->Label.Sid);
465 *level = *GetSidSubAuthority(til->Label.Sid, count - 1);
466 ret = true;
467 }
468 }
469 CloseHandle(token);
470 }
471 return ret;
472}
473} // namespace talk_base