blob: 77d812153092f34c691f9f291f1fe657be26a3ba [file] [log] [blame]
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00001/*
2 * jidctint.c
3 *
4 * Copyright (C) 1991-1998, Thomas G. Lane.
hbono@chromium.orgdf5ffdd2012-05-11 07:46:03 +00005 * Modification developed 2002-2009 by Guido Vollbeding.
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00006 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains a slow-but-accurate integer implementation of the
10 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
11 * must also perform dequantization of the input coefficients.
12 *
13 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
14 * on each row (or vice versa, but it's more convenient to emit a row at
15 * a time). Direct algorithms are also available, but they are much more
16 * complex and seem not to be any faster when reduced to code.
17 *
18 * This implementation is based on an algorithm described in
19 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
20 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
21 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
22 * The primary algorithm described there uses 11 multiplies and 29 adds.
23 * We use their alternate method with 12 multiplies and 32 adds.
24 * The advantage of this method is that no data path contains more than one
25 * multiplication; this allows a very simple and accurate implementation in
26 * scaled fixed-point arithmetic, with a minimal number of shifts.
hbono@chromium.orgdf5ffdd2012-05-11 07:46:03 +000027 *
28 * We also provide IDCT routines with various output sample block sizes for
29 * direct resolution reduction or enlargement without additional resampling:
30 * NxN (N=1...16) pixels for one 8x8 input DCT block.
31 *
32 * For N<8 we simply take the corresponding low-frequency coefficients of
33 * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block
34 * to yield the downscaled outputs.
35 * This can be seen as direct low-pass downsampling from the DCT domain
36 * point of view rather than the usual spatial domain point of view,
37 * yielding significant computational savings and results at least
38 * as good as common bilinear (averaging) spatial downsampling.
39 *
40 * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as
41 * lower frequencies and higher frequencies assumed to be zero.
42 * It turns out that the computational effort is similar to the 8x8 IDCT
43 * regarding the output size.
44 * Furthermore, the scaling and descaling is the same for all IDCT sizes.
45 *
46 * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
47 * since there would be too many additional constants to pre-calculate.
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +000048 */
49
50#define JPEG_INTERNALS
51#include "jinclude.h"
52#include "jpeglib.h"
53#include "jdct.h" /* Private declarations for DCT subsystem */
54
55#ifdef DCT_ISLOW_SUPPORTED
56
57
58/*
59 * This module is specialized to the case DCTSIZE = 8.
60 */
61
62#if DCTSIZE != 8
hbono@chromium.orgdf5ffdd2012-05-11 07:46:03 +000063 Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +000064#endif
65
66
67/*
68 * The poop on this scaling stuff is as follows:
69 *
70 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
71 * larger than the true IDCT outputs. The final outputs are therefore
72 * a factor of N larger than desired; since N=8 this can be cured by
73 * a simple right shift at the end of the algorithm. The advantage of
74 * this arrangement is that we save two multiplications per 1-D IDCT,
75 * because the y0 and y4 inputs need not be divided by sqrt(N).
76 *
77 * We have to do addition and subtraction of the integer inputs, which
78 * is no problem, and multiplication by fractional constants, which is
79 * a problem to do in integer arithmetic. We multiply all the constants
80 * by CONST_SCALE and convert them to integer constants (thus retaining
81 * CONST_BITS bits of precision in the constants). After doing a
82 * multiplication we have to divide the product by CONST_SCALE, with proper
83 * rounding, to produce the correct output. This division can be done
84 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
85 * as long as possible so that partial sums can be added together with
86 * full fractional precision.
87 *
88 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
89 * they are represented to better-than-integral precision. These outputs
90 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
91 * with the recommended scaling. (To scale up 12-bit sample data further, an
92 * intermediate INT32 array would be needed.)
93 *
94 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
95 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
96 * shows that the values given below are the most effective.
97 */
98
99#if BITS_IN_JSAMPLE == 8
100#define CONST_BITS 13
101#define PASS1_BITS 2
102#else
103#define CONST_BITS 13
104#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
105#endif
106
107/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
108 * causing a lot of useless floating-point operations at run time.
109 * To get around this we use the following pre-calculated constants.
110 * If you change CONST_BITS you may want to add appropriate values.
111 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
112 */
113
114#if CONST_BITS == 13
115#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
116#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
117#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
118#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
119#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
120#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
121#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
122#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
123#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
124#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
125#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
126#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
127#else
128#define FIX_0_298631336 FIX(0.298631336)
129#define FIX_0_390180644 FIX(0.390180644)
130#define FIX_0_541196100 FIX(0.541196100)
131#define FIX_0_765366865 FIX(0.765366865)
132#define FIX_0_899976223 FIX(0.899976223)
133#define FIX_1_175875602 FIX(1.175875602)
134#define FIX_1_501321110 FIX(1.501321110)
135#define FIX_1_847759065 FIX(1.847759065)
136#define FIX_1_961570560 FIX(1.961570560)
137#define FIX_2_053119869 FIX(2.053119869)
138#define FIX_2_562915447 FIX(2.562915447)
139#define FIX_3_072711026 FIX(3.072711026)
140#endif
141
142
143/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
144 * For 8-bit samples with the recommended scaling, all the variable
145 * and constant values involved are no more than 16 bits wide, so a
146 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
147 * For 12-bit samples, a full 32-bit multiplication will be needed.
148 */
149
150#if BITS_IN_JSAMPLE == 8
151#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
152#else
153#define MULTIPLY(var,const) ((var) * (const))
154#endif
155
156
157/* Dequantize a coefficient by multiplying it by the multiplier-table
158 * entry; produce an int result. In this module, both inputs and result
159 * are 16 bits or less, so either int or short multiply will work.
160 */
161
162#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
163
164
165/*
166 * Perform dequantization and inverse DCT on one block of coefficients.
167 */
168
169GLOBAL(void)
170jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
171 JCOEFPTR coef_block,
172 JSAMPARRAY output_buf, JDIMENSION output_col)
173{
174 INT32 tmp0, tmp1, tmp2, tmp3;
175 INT32 tmp10, tmp11, tmp12, tmp13;
176 INT32 z1, z2, z3, z4, z5;
177 JCOEFPTR inptr;
178 ISLOW_MULT_TYPE * quantptr;
179 int * wsptr;
180 JSAMPROW outptr;
181 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
182 int ctr;
183 int workspace[DCTSIZE2]; /* buffers data between passes */
184 SHIFT_TEMPS
185
186 /* Pass 1: process columns from input, store into work array. */
187 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
188 /* furthermore, we scale the results by 2**PASS1_BITS. */
189
190 inptr = coef_block;
191 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
192 wsptr = workspace;
193 for (ctr = DCTSIZE; ctr > 0; ctr--) {
194 /* Due to quantization, we will usually find that many of the input
195 * coefficients are zero, especially the AC terms. We can exploit this
196 * by short-circuiting the IDCT calculation for any column in which all
197 * the AC terms are zero. In that case each output is equal to the
198 * DC coefficient (with scale factor as needed).
199 * With typical images and quantization tables, half or more of the
200 * column DCT calculations can be simplified this way.
201 */
202
203 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
204 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
205 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
206 inptr[DCTSIZE*7] == 0) {
207 /* AC terms all zero */
208 int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
209
210 wsptr[DCTSIZE*0] = dcval;
211 wsptr[DCTSIZE*1] = dcval;
212 wsptr[DCTSIZE*2] = dcval;
213 wsptr[DCTSIZE*3] = dcval;
214 wsptr[DCTSIZE*4] = dcval;
215 wsptr[DCTSIZE*5] = dcval;
216 wsptr[DCTSIZE*6] = dcval;
217 wsptr[DCTSIZE*7] = dcval;
218
219 inptr++; /* advance pointers to next column */
220 quantptr++;
221 wsptr++;
222 continue;
223 }
224
225 /* Even part: reverse the even part of the forward DCT. */
226 /* The rotator is sqrt(2)*c(-6). */
227
228 z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
229 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
230
231 z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
232 tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
233 tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
234
235 z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
236 z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
237
238 tmp0 = (z2 + z3) << CONST_BITS;
239 tmp1 = (z2 - z3) << CONST_BITS;
240
241 tmp10 = tmp0 + tmp3;
242 tmp13 = tmp0 - tmp3;
243 tmp11 = tmp1 + tmp2;
244 tmp12 = tmp1 - tmp2;
245
246 /* Odd part per figure 8; the matrix is unitary and hence its
247 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
248 */
249
250 tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
251 tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
252 tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
253 tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
254
255 z1 = tmp0 + tmp3;
256 z2 = tmp1 + tmp2;
257 z3 = tmp0 + tmp2;
258 z4 = tmp1 + tmp3;
259 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
260
261 tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
262 tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
263 tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
264 tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
265 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
266 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
267 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
268 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
269
270 z3 += z5;
271 z4 += z5;
272
273 tmp0 += z1 + z3;
274 tmp1 += z2 + z4;
275 tmp2 += z2 + z3;
276 tmp3 += z1 + z4;
277
278 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
279
280 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
281 wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
282 wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
283 wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
284 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
285 wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
286 wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
287 wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
288
289 inptr++; /* advance pointers to next column */
290 quantptr++;
291 wsptr++;
292 }
293
294 /* Pass 2: process rows from work array, store into output array. */
295 /* Note that we must descale the results by a factor of 8 == 2**3, */
296 /* and also undo the PASS1_BITS scaling. */
297
298 wsptr = workspace;
299 for (ctr = 0; ctr < DCTSIZE; ctr++) {
300 outptr = output_buf[ctr] + output_col;
301 /* Rows of zeroes can be exploited in the same way as we did with columns.
302 * However, the column calculation has created many nonzero AC terms, so
303 * the simplification applies less often (typically 5% to 10% of the time).
304 * On machines with very fast multiplication, it's possible that the
305 * test takes more time than it's worth. In that case this section
306 * may be commented out.
307 */
308
309#ifndef NO_ZERO_ROW_TEST
310 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
311 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
312 /* AC terms all zero */
313 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
314 & RANGE_MASK];
315
316 outptr[0] = dcval;
317 outptr[1] = dcval;
318 outptr[2] = dcval;
319 outptr[3] = dcval;
320 outptr[4] = dcval;
321 outptr[5] = dcval;
322 outptr[6] = dcval;
323 outptr[7] = dcval;
324
325 wsptr += DCTSIZE; /* advance pointer to next row */
326 continue;
327 }
328#endif
329
330 /* Even part: reverse the even part of the forward DCT. */
331 /* The rotator is sqrt(2)*c(-6). */
332
333 z2 = (INT32) wsptr[2];
334 z3 = (INT32) wsptr[6];
335
336 z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
337 tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
338 tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
339
340 tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
341 tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
342
343 tmp10 = tmp0 + tmp3;
344 tmp13 = tmp0 - tmp3;
345 tmp11 = tmp1 + tmp2;
346 tmp12 = tmp1 - tmp2;
347
348 /* Odd part per figure 8; the matrix is unitary and hence its
349 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
350 */
351
352 tmp0 = (INT32) wsptr[7];
353 tmp1 = (INT32) wsptr[5];
354 tmp2 = (INT32) wsptr[3];
355 tmp3 = (INT32) wsptr[1];
356
357 z1 = tmp0 + tmp3;
358 z2 = tmp1 + tmp2;
359 z3 = tmp0 + tmp2;
360 z4 = tmp1 + tmp3;
361 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
362
363 tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
364 tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
365 tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
366 tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
367 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
368 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
369 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
370 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
371
372 z3 += z5;
373 z4 += z5;
374
375 tmp0 += z1 + z3;
376 tmp1 += z2 + z4;
377 tmp2 += z2 + z3;
378 tmp3 += z1 + z4;
379
380 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
381
382 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
383 CONST_BITS+PASS1_BITS+3)
384 & RANGE_MASK];
385 outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
386 CONST_BITS+PASS1_BITS+3)
387 & RANGE_MASK];
388 outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
389 CONST_BITS+PASS1_BITS+3)
390 & RANGE_MASK];
391 outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
392 CONST_BITS+PASS1_BITS+3)
393 & RANGE_MASK];
394 outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
395 CONST_BITS+PASS1_BITS+3)
396 & RANGE_MASK];
397 outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
398 CONST_BITS+PASS1_BITS+3)
399 & RANGE_MASK];
400 outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
401 CONST_BITS+PASS1_BITS+3)
402 & RANGE_MASK];
403 outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
404 CONST_BITS+PASS1_BITS+3)
405 & RANGE_MASK];
406
407 wsptr += DCTSIZE; /* advance pointer to next row */
408 }
409}
410
hbono@chromium.orgdf5ffdd2012-05-11 07:46:03 +0000411#ifdef IDCT_SCALING_SUPPORTED
412
413
414/*
415 * Perform dequantization and inverse DCT on one block of coefficients,
416 * producing a 7x7 output block.
417 *
418 * Optimized algorithm with 12 multiplications in the 1-D kernel.
419 * cK represents sqrt(2) * cos(K*pi/14).
420 */
421
422GLOBAL(void)
423jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
424 JCOEFPTR coef_block,
425 JSAMPARRAY output_buf, JDIMENSION output_col)
426{
427 INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13;
428 INT32 z1, z2, z3;
429 JCOEFPTR inptr;
430 ISLOW_MULT_TYPE * quantptr;
431 int * wsptr;
432 JSAMPROW outptr;
433 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
434 int ctr;
435 int workspace[7*7]; /* buffers data between passes */
436 SHIFT_TEMPS
437
438 /* Pass 1: process columns from input, store into work array. */
439
440 inptr = coef_block;
441 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
442 wsptr = workspace;
443 for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
444 /* Even part */
445
446 tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
447 tmp13 <<= CONST_BITS;
448 /* Add fudge factor here for final descale. */
449 tmp13 += ONE << (CONST_BITS-PASS1_BITS-1);
450
451 z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
452 z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
453 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
454
455 tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
456 tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
457 tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
458 tmp0 = z1 + z3;
459 z2 -= tmp0;
460 tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
461 tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
462 tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
463 tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
464
465 /* Odd part */
466
467 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
468 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
469 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
470
471 tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
472 tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
473 tmp0 = tmp1 - tmp2;
474 tmp1 += tmp2;
475 tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
476 tmp1 += tmp2;
477 z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
478 tmp0 += z2;
479 tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
480
481 /* Final output stage */
482
483 wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
484 wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
485 wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
486 wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
487 wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
488 wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
489 wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS);
490 }
491
492 /* Pass 2: process 7 rows from work array, store into output array. */
493
494 wsptr = workspace;
495 for (ctr = 0; ctr < 7; ctr++) {
496 outptr = output_buf[ctr] + output_col;
497
498 /* Even part */
499
500 /* Add fudge factor here for final descale. */
501 tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
502 tmp13 <<= CONST_BITS;
503
504 z1 = (INT32) wsptr[2];
505 z2 = (INT32) wsptr[4];
506 z3 = (INT32) wsptr[6];
507
508 tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
509 tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
510 tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
511 tmp0 = z1 + z3;
512 z2 -= tmp0;
513 tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
514 tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
515 tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
516 tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
517
518 /* Odd part */
519
520 z1 = (INT32) wsptr[1];
521 z2 = (INT32) wsptr[3];
522 z3 = (INT32) wsptr[5];
523
524 tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
525 tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
526 tmp0 = tmp1 - tmp2;
527 tmp1 += tmp2;
528 tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
529 tmp1 += tmp2;
530 z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
531 tmp0 += z2;
532 tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
533
534 /* Final output stage */
535
536 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
537 CONST_BITS+PASS1_BITS+3)
538 & RANGE_MASK];
539 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
540 CONST_BITS+PASS1_BITS+3)
541 & RANGE_MASK];
542 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
543 CONST_BITS+PASS1_BITS+3)
544 & RANGE_MASK];
545 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
546 CONST_BITS+PASS1_BITS+3)
547 & RANGE_MASK];
548 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
549 CONST_BITS+PASS1_BITS+3)
550 & RANGE_MASK];
551 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
552 CONST_BITS+PASS1_BITS+3)
553 & RANGE_MASK];
554 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13,
555 CONST_BITS+PASS1_BITS+3)
556 & RANGE_MASK];
557
558 wsptr += 7; /* advance pointer to next row */
559 }
560}
561
562
563/*
564 * Perform dequantization and inverse DCT on one block of coefficients,
565 * producing a reduced-size 6x6 output block.
566 *
567 * Optimized algorithm with 3 multiplications in the 1-D kernel.
568 * cK represents sqrt(2) * cos(K*pi/12).
569 */
570
571GLOBAL(void)
572jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
573 JCOEFPTR coef_block,
574 JSAMPARRAY output_buf, JDIMENSION output_col)
575{
576 INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
577 INT32 z1, z2, z3;
578 JCOEFPTR inptr;
579 ISLOW_MULT_TYPE * quantptr;
580 int * wsptr;
581 JSAMPROW outptr;
582 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
583 int ctr;
584 int workspace[6*6]; /* buffers data between passes */
585 SHIFT_TEMPS
586
587 /* Pass 1: process columns from input, store into work array. */
588
589 inptr = coef_block;
590 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
591 wsptr = workspace;
592 for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
593 /* Even part */
594
595 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
596 tmp0 <<= CONST_BITS;
597 /* Add fudge factor here for final descale. */
598 tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
599 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
600 tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
601 tmp1 = tmp0 + tmp10;
602 tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
603 tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
604 tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
605 tmp10 = tmp1 + tmp0;
606 tmp12 = tmp1 - tmp0;
607
608 /* Odd part */
609
610 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
611 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
612 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
613 tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
614 tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
615 tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
616 tmp1 = (z1 - z2 - z3) << PASS1_BITS;
617
618 /* Final output stage */
619
620 wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
621 wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
622 wsptr[6*1] = (int) (tmp11 + tmp1);
623 wsptr[6*4] = (int) (tmp11 - tmp1);
624 wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
625 wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
626 }
627
628 /* Pass 2: process 6 rows from work array, store into output array. */
629
630 wsptr = workspace;
631 for (ctr = 0; ctr < 6; ctr++) {
632 outptr = output_buf[ctr] + output_col;
633
634 /* Even part */
635
636 /* Add fudge factor here for final descale. */
637 tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
638 tmp0 <<= CONST_BITS;
639 tmp2 = (INT32) wsptr[4];
640 tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
641 tmp1 = tmp0 + tmp10;
642 tmp11 = tmp0 - tmp10 - tmp10;
643 tmp10 = (INT32) wsptr[2];
644 tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
645 tmp10 = tmp1 + tmp0;
646 tmp12 = tmp1 - tmp0;
647
648 /* Odd part */
649
650 z1 = (INT32) wsptr[1];
651 z2 = (INT32) wsptr[3];
652 z3 = (INT32) wsptr[5];
653 tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
654 tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
655 tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
656 tmp1 = (z1 - z2 - z3) << CONST_BITS;
657
658 /* Final output stage */
659
660 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
661 CONST_BITS+PASS1_BITS+3)
662 & RANGE_MASK];
663 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
664 CONST_BITS+PASS1_BITS+3)
665 & RANGE_MASK];
666 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
667 CONST_BITS+PASS1_BITS+3)
668 & RANGE_MASK];
669 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
670 CONST_BITS+PASS1_BITS+3)
671 & RANGE_MASK];
672 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
673 CONST_BITS+PASS1_BITS+3)
674 & RANGE_MASK];
675 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
676 CONST_BITS+PASS1_BITS+3)
677 & RANGE_MASK];
678
679 wsptr += 6; /* advance pointer to next row */
680 }
681}
682
683
684/*
685 * Perform dequantization and inverse DCT on one block of coefficients,
686 * producing a reduced-size 5x5 output block.
687 *
688 * Optimized algorithm with 5 multiplications in the 1-D kernel.
689 * cK represents sqrt(2) * cos(K*pi/10).
690 */
691
692GLOBAL(void)
693jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
694 JCOEFPTR coef_block,
695 JSAMPARRAY output_buf, JDIMENSION output_col)
696{
697 INT32 tmp0, tmp1, tmp10, tmp11, tmp12;
698 INT32 z1, z2, z3;
699 JCOEFPTR inptr;
700 ISLOW_MULT_TYPE * quantptr;
701 int * wsptr;
702 JSAMPROW outptr;
703 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
704 int ctr;
705 int workspace[5*5]; /* buffers data between passes */
706 SHIFT_TEMPS
707
708 /* Pass 1: process columns from input, store into work array. */
709
710 inptr = coef_block;
711 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
712 wsptr = workspace;
713 for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
714 /* Even part */
715
716 tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
717 tmp12 <<= CONST_BITS;
718 /* Add fudge factor here for final descale. */
719 tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
720 tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
721 tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
722 z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
723 z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
724 z3 = tmp12 + z2;
725 tmp10 = z3 + z1;
726 tmp11 = z3 - z1;
727 tmp12 -= z2 << 2;
728
729 /* Odd part */
730
731 z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
732 z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
733
734 z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
735 tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
736 tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
737
738 /* Final output stage */
739
740 wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
741 wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
742 wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
743 wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
744 wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
745 }
746
747 /* Pass 2: process 5 rows from work array, store into output array. */
748
749 wsptr = workspace;
750 for (ctr = 0; ctr < 5; ctr++) {
751 outptr = output_buf[ctr] + output_col;
752
753 /* Even part */
754
755 /* Add fudge factor here for final descale. */
756 tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
757 tmp12 <<= CONST_BITS;
758 tmp0 = (INT32) wsptr[2];
759 tmp1 = (INT32) wsptr[4];
760 z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
761 z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
762 z3 = tmp12 + z2;
763 tmp10 = z3 + z1;
764 tmp11 = z3 - z1;
765 tmp12 -= z2 << 2;
766
767 /* Odd part */
768
769 z2 = (INT32) wsptr[1];
770 z3 = (INT32) wsptr[3];
771
772 z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
773 tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
774 tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
775
776 /* Final output stage */
777
778 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
779 CONST_BITS+PASS1_BITS+3)
780 & RANGE_MASK];
781 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
782 CONST_BITS+PASS1_BITS+3)
783 & RANGE_MASK];
784 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
785 CONST_BITS+PASS1_BITS+3)
786 & RANGE_MASK];
787 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
788 CONST_BITS+PASS1_BITS+3)
789 & RANGE_MASK];
790 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
791 CONST_BITS+PASS1_BITS+3)
792 & RANGE_MASK];
793
794 wsptr += 5; /* advance pointer to next row */
795 }
796}
797
798
799/*
800 * Perform dequantization and inverse DCT on one block of coefficients,
801 * producing a reduced-size 3x3 output block.
802 *
803 * Optimized algorithm with 2 multiplications in the 1-D kernel.
804 * cK represents sqrt(2) * cos(K*pi/6).
805 */
806
807GLOBAL(void)
808jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
809 JCOEFPTR coef_block,
810 JSAMPARRAY output_buf, JDIMENSION output_col)
811{
812 INT32 tmp0, tmp2, tmp10, tmp12;
813 JCOEFPTR inptr;
814 ISLOW_MULT_TYPE * quantptr;
815 int * wsptr;
816 JSAMPROW outptr;
817 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
818 int ctr;
819 int workspace[3*3]; /* buffers data between passes */
820 SHIFT_TEMPS
821
822 /* Pass 1: process columns from input, store into work array. */
823
824 inptr = coef_block;
825 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
826 wsptr = workspace;
827 for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
828 /* Even part */
829
830 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
831 tmp0 <<= CONST_BITS;
832 /* Add fudge factor here for final descale. */
833 tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
834 tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
835 tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
836 tmp10 = tmp0 + tmp12;
837 tmp2 = tmp0 - tmp12 - tmp12;
838
839 /* Odd part */
840
841 tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
842 tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
843
844 /* Final output stage */
845
846 wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
847 wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
848 wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
849 }
850
851 /* Pass 2: process 3 rows from work array, store into output array. */
852
853 wsptr = workspace;
854 for (ctr = 0; ctr < 3; ctr++) {
855 outptr = output_buf[ctr] + output_col;
856
857 /* Even part */
858
859 /* Add fudge factor here for final descale. */
860 tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
861 tmp0 <<= CONST_BITS;
862 tmp2 = (INT32) wsptr[2];
863 tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
864 tmp10 = tmp0 + tmp12;
865 tmp2 = tmp0 - tmp12 - tmp12;
866
867 /* Odd part */
868
869 tmp12 = (INT32) wsptr[1];
870 tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
871
872 /* Final output stage */
873
874 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
875 CONST_BITS+PASS1_BITS+3)
876 & RANGE_MASK];
877 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
878 CONST_BITS+PASS1_BITS+3)
879 & RANGE_MASK];
880 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
881 CONST_BITS+PASS1_BITS+3)
882 & RANGE_MASK];
883
884 wsptr += 3; /* advance pointer to next row */
885 }
886}
887
888
889/*
890 * Perform dequantization and inverse DCT on one block of coefficients,
891 * producing a 9x9 output block.
892 *
893 * Optimized algorithm with 10 multiplications in the 1-D kernel.
894 * cK represents sqrt(2) * cos(K*pi/18).
895 */
896
897GLOBAL(void)
898jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
899 JCOEFPTR coef_block,
900 JSAMPARRAY output_buf, JDIMENSION output_col)
901{
902 INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14;
903 INT32 z1, z2, z3, z4;
904 JCOEFPTR inptr;
905 ISLOW_MULT_TYPE * quantptr;
906 int * wsptr;
907 JSAMPROW outptr;
908 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
909 int ctr;
910 int workspace[8*9]; /* buffers data between passes */
911 SHIFT_TEMPS
912
913 /* Pass 1: process columns from input, store into work array. */
914
915 inptr = coef_block;
916 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
917 wsptr = workspace;
918 for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
919 /* Even part */
920
921 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
922 tmp0 <<= CONST_BITS;
923 /* Add fudge factor here for final descale. */
924 tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
925
926 z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
927 z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
928 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
929
930 tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
931 tmp1 = tmp0 + tmp3;
932 tmp2 = tmp0 - tmp3 - tmp3;
933
934 tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
935 tmp11 = tmp2 + tmp0;
936 tmp14 = tmp2 - tmp0 - tmp0;
937
938 tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
939 tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
940 tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
941
942 tmp10 = tmp1 + tmp0 - tmp3;
943 tmp12 = tmp1 - tmp0 + tmp2;
944 tmp13 = tmp1 - tmp2 + tmp3;
945
946 /* Odd part */
947
948 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
949 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
950 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
951 z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
952
953 z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
954
955 tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
956 tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
957 tmp0 = tmp2 + tmp3 - z2;
958 tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
959 tmp2 += z2 - tmp1;
960 tmp3 += z2 + tmp1;
961 tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
962
963 /* Final output stage */
964
965 wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
966 wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
967 wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
968 wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
969 wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
970 wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
971 wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS);
972 wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS);
973 wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS);
974 }
975
976 /* Pass 2: process 9 rows from work array, store into output array. */
977
978 wsptr = workspace;
979 for (ctr = 0; ctr < 9; ctr++) {
980 outptr = output_buf[ctr] + output_col;
981
982 /* Even part */
983
984 /* Add fudge factor here for final descale. */
985 tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
986 tmp0 <<= CONST_BITS;
987
988 z1 = (INT32) wsptr[2];
989 z2 = (INT32) wsptr[4];
990 z3 = (INT32) wsptr[6];
991
992 tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
993 tmp1 = tmp0 + tmp3;
994 tmp2 = tmp0 - tmp3 - tmp3;
995
996 tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
997 tmp11 = tmp2 + tmp0;
998 tmp14 = tmp2 - tmp0 - tmp0;
999
1000 tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
1001 tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
1002 tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
1003
1004 tmp10 = tmp1 + tmp0 - tmp3;
1005 tmp12 = tmp1 - tmp0 + tmp2;
1006 tmp13 = tmp1 - tmp2 + tmp3;
1007
1008 /* Odd part */
1009
1010 z1 = (INT32) wsptr[1];
1011 z2 = (INT32) wsptr[3];
1012 z3 = (INT32) wsptr[5];
1013 z4 = (INT32) wsptr[7];
1014
1015 z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
1016
1017 tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
1018 tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
1019 tmp0 = tmp2 + tmp3 - z2;
1020 tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
1021 tmp2 += z2 - tmp1;
1022 tmp3 += z2 + tmp1;
1023 tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
1024
1025 /* Final output stage */
1026
1027 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
1028 CONST_BITS+PASS1_BITS+3)
1029 & RANGE_MASK];
1030 outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
1031 CONST_BITS+PASS1_BITS+3)
1032 & RANGE_MASK];
1033 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
1034 CONST_BITS+PASS1_BITS+3)
1035 & RANGE_MASK];
1036 outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
1037 CONST_BITS+PASS1_BITS+3)
1038 & RANGE_MASK];
1039 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
1040 CONST_BITS+PASS1_BITS+3)
1041 & RANGE_MASK];
1042 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
1043 CONST_BITS+PASS1_BITS+3)
1044 & RANGE_MASK];
1045 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3,
1046 CONST_BITS+PASS1_BITS+3)
1047 & RANGE_MASK];
1048 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3,
1049 CONST_BITS+PASS1_BITS+3)
1050 & RANGE_MASK];
1051 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14,
1052 CONST_BITS+PASS1_BITS+3)
1053 & RANGE_MASK];
1054
1055 wsptr += 8; /* advance pointer to next row */
1056 }
1057}
1058
1059
1060/*
1061 * Perform dequantization and inverse DCT on one block of coefficients,
1062 * producing a 10x10 output block.
1063 *
1064 * Optimized algorithm with 12 multiplications in the 1-D kernel.
1065 * cK represents sqrt(2) * cos(K*pi/20).
1066 */
1067
1068GLOBAL(void)
1069jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
1070 JCOEFPTR coef_block,
1071 JSAMPARRAY output_buf, JDIMENSION output_col)
1072{
1073 INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
1074 INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
1075 INT32 z1, z2, z3, z4, z5;
1076 JCOEFPTR inptr;
1077 ISLOW_MULT_TYPE * quantptr;
1078 int * wsptr;
1079 JSAMPROW outptr;
1080 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1081 int ctr;
1082 int workspace[8*10]; /* buffers data between passes */
1083 SHIFT_TEMPS
1084
1085 /* Pass 1: process columns from input, store into work array. */
1086
1087 inptr = coef_block;
1088 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
1089 wsptr = workspace;
1090 for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1091 /* Even part */
1092
1093 z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
1094 z3 <<= CONST_BITS;
1095 /* Add fudge factor here for final descale. */
1096 z3 += ONE << (CONST_BITS-PASS1_BITS-1);
1097 z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
1098 z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
1099 z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
1100 tmp10 = z3 + z1;
1101 tmp11 = z3 - z2;
1102
1103 tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
1104 CONST_BITS-PASS1_BITS);
1105
1106 z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
1107 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
1108
1109 z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
1110 tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
1111 tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
1112
1113 tmp20 = tmp10 + tmp12;
1114 tmp24 = tmp10 - tmp12;
1115 tmp21 = tmp11 + tmp13;
1116 tmp23 = tmp11 - tmp13;
1117
1118 /* Odd part */
1119
1120 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
1121 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
1122 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
1123 z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
1124
1125 tmp11 = z2 + z4;
1126 tmp13 = z2 - z4;
1127
1128 tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
1129 z5 = z3 << CONST_BITS;
1130
1131 z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
1132 z4 = z5 + tmp12;
1133
1134 tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
1135 tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
1136
1137 z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
1138 z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
1139
1140 tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
1141
1142 tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
1143 tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
1144
1145 /* Final output stage */
1146
1147 wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
1148 wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
1149 wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
1150 wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
1151 wsptr[8*2] = (int) (tmp22 + tmp12);
1152 wsptr[8*7] = (int) (tmp22 - tmp12);
1153 wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
1154 wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
1155 wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
1156 wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
1157 }
1158
1159 /* Pass 2: process 10 rows from work array, store into output array. */
1160
1161 wsptr = workspace;
1162 for (ctr = 0; ctr < 10; ctr++) {
1163 outptr = output_buf[ctr] + output_col;
1164
1165 /* Even part */
1166
1167 /* Add fudge factor here for final descale. */
1168 z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
1169 z3 <<= CONST_BITS;
1170 z4 = (INT32) wsptr[4];
1171 z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
1172 z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
1173 tmp10 = z3 + z1;
1174 tmp11 = z3 - z2;
1175
1176 tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
1177
1178 z2 = (INT32) wsptr[2];
1179 z3 = (INT32) wsptr[6];
1180
1181 z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
1182 tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
1183 tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
1184
1185 tmp20 = tmp10 + tmp12;
1186 tmp24 = tmp10 - tmp12;
1187 tmp21 = tmp11 + tmp13;
1188 tmp23 = tmp11 - tmp13;
1189
1190 /* Odd part */
1191
1192 z1 = (INT32) wsptr[1];
1193 z2 = (INT32) wsptr[3];
1194 z3 = (INT32) wsptr[5];
1195 z3 <<= CONST_BITS;
1196 z4 = (INT32) wsptr[7];
1197
1198 tmp11 = z2 + z4;
1199 tmp13 = z2 - z4;
1200
1201 tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
1202
1203 z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
1204 z4 = z3 + tmp12;
1205
1206 tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
1207 tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
1208
1209 z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
1210 z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
1211
1212 tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
1213
1214 tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
1215 tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
1216
1217 /* Final output stage */
1218
1219 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
1220 CONST_BITS+PASS1_BITS+3)
1221 & RANGE_MASK];
1222 outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
1223 CONST_BITS+PASS1_BITS+3)
1224 & RANGE_MASK];
1225 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
1226 CONST_BITS+PASS1_BITS+3)
1227 & RANGE_MASK];
1228 outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
1229 CONST_BITS+PASS1_BITS+3)
1230 & RANGE_MASK];
1231 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
1232 CONST_BITS+PASS1_BITS+3)
1233 & RANGE_MASK];
1234 outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
1235 CONST_BITS+PASS1_BITS+3)
1236 & RANGE_MASK];
1237 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
1238 CONST_BITS+PASS1_BITS+3)
1239 & RANGE_MASK];
1240 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
1241 CONST_BITS+PASS1_BITS+3)
1242 & RANGE_MASK];
1243 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
1244 CONST_BITS+PASS1_BITS+3)
1245 & RANGE_MASK];
1246 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
1247 CONST_BITS+PASS1_BITS+3)
1248 & RANGE_MASK];
1249
1250 wsptr += 8; /* advance pointer to next row */
1251 }
1252}
1253
1254
1255/*
1256 * Perform dequantization and inverse DCT on one block of coefficients,
1257 * producing a 11x11 output block.
1258 *
1259 * Optimized algorithm with 24 multiplications in the 1-D kernel.
1260 * cK represents sqrt(2) * cos(K*pi/22).
1261 */
1262
1263GLOBAL(void)
1264jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
1265 JCOEFPTR coef_block,
1266 JSAMPARRAY output_buf, JDIMENSION output_col)
1267{
1268 INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
1269 INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
1270 INT32 z1, z2, z3, z4;
1271 JCOEFPTR inptr;
1272 ISLOW_MULT_TYPE * quantptr;
1273 int * wsptr;
1274 JSAMPROW outptr;
1275 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1276 int ctr;
1277 int workspace[8*11]; /* buffers data between passes */
1278 SHIFT_TEMPS
1279
1280 /* Pass 1: process columns from input, store into work array. */
1281
1282 inptr = coef_block;
1283 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
1284 wsptr = workspace;
1285 for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1286 /* Even part */
1287
1288 tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
1289 tmp10 <<= CONST_BITS;
1290 /* Add fudge factor here for final descale. */
1291 tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
1292
1293 z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
1294 z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
1295 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
1296
1297 tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
1298 tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
1299 z4 = z1 + z3;
1300 tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
1301 z4 -= z2;
1302 tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
1303 tmp21 = tmp20 + tmp23 + tmp25 -
1304 MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
1305 tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
1306 tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
1307 tmp24 += tmp25;
1308 tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
1309 tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
1310 MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
1311 tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
1312
1313 /* Odd part */
1314
1315 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
1316 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
1317 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
1318 z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
1319
1320 tmp11 = z1 + z2;
1321 tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
1322 tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
1323 tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
1324 tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
1325 tmp10 = tmp11 + tmp12 + tmp13 -
1326 MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
1327 z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
1328 tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
1329 tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
1330 z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
1331 tmp11 += z1;
1332 tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
1333 tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
1334 MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
1335 MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
1336
1337 /* Final output stage */
1338
1339 wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
1340 wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
1341 wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
1342 wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
1343 wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
1344 wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
1345 wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
1346 wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
1347 wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
1348 wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
1349 wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS);
1350 }
1351
1352 /* Pass 2: process 11 rows from work array, store into output array. */
1353
1354 wsptr = workspace;
1355 for (ctr = 0; ctr < 11; ctr++) {
1356 outptr = output_buf[ctr] + output_col;
1357
1358 /* Even part */
1359
1360 /* Add fudge factor here for final descale. */
1361 tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
1362 tmp10 <<= CONST_BITS;
1363
1364 z1 = (INT32) wsptr[2];
1365 z2 = (INT32) wsptr[4];
1366 z3 = (INT32) wsptr[6];
1367
1368 tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
1369 tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
1370 z4 = z1 + z3;
1371 tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
1372 z4 -= z2;
1373 tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
1374 tmp21 = tmp20 + tmp23 + tmp25 -
1375 MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
1376 tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
1377 tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
1378 tmp24 += tmp25;
1379 tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
1380 tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
1381 MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
1382 tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
1383
1384 /* Odd part */
1385
1386 z1 = (INT32) wsptr[1];
1387 z2 = (INT32) wsptr[3];
1388 z3 = (INT32) wsptr[5];
1389 z4 = (INT32) wsptr[7];
1390
1391 tmp11 = z1 + z2;
1392 tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
1393 tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
1394 tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
1395 tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
1396 tmp10 = tmp11 + tmp12 + tmp13 -
1397 MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
1398 z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
1399 tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
1400 tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
1401 z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
1402 tmp11 += z1;
1403 tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
1404 tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
1405 MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
1406 MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
1407
1408 /* Final output stage */
1409
1410 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
1411 CONST_BITS+PASS1_BITS+3)
1412 & RANGE_MASK];
1413 outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
1414 CONST_BITS+PASS1_BITS+3)
1415 & RANGE_MASK];
1416 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
1417 CONST_BITS+PASS1_BITS+3)
1418 & RANGE_MASK];
1419 outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
1420 CONST_BITS+PASS1_BITS+3)
1421 & RANGE_MASK];
1422 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
1423 CONST_BITS+PASS1_BITS+3)
1424 & RANGE_MASK];
1425 outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
1426 CONST_BITS+PASS1_BITS+3)
1427 & RANGE_MASK];
1428 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
1429 CONST_BITS+PASS1_BITS+3)
1430 & RANGE_MASK];
1431 outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
1432 CONST_BITS+PASS1_BITS+3)
1433 & RANGE_MASK];
1434 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
1435 CONST_BITS+PASS1_BITS+3)
1436 & RANGE_MASK];
1437 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
1438 CONST_BITS+PASS1_BITS+3)
1439 & RANGE_MASK];
1440 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25,
1441 CONST_BITS+PASS1_BITS+3)
1442 & RANGE_MASK];
1443
1444 wsptr += 8; /* advance pointer to next row */
1445 }
1446}
1447
1448
1449/*
1450 * Perform dequantization and inverse DCT on one block of coefficients,
1451 * producing a 12x12 output block.
1452 *
1453 * Optimized algorithm with 15 multiplications in the 1-D kernel.
1454 * cK represents sqrt(2) * cos(K*pi/24).
1455 */
1456
1457GLOBAL(void)
1458jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
1459 JCOEFPTR coef_block,
1460 JSAMPARRAY output_buf, JDIMENSION output_col)
1461{
1462 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
1463 INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
1464 INT32 z1, z2, z3, z4;
1465 JCOEFPTR inptr;
1466 ISLOW_MULT_TYPE * quantptr;
1467 int * wsptr;
1468 JSAMPROW outptr;
1469 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1470 int ctr;
1471 int workspace[8*12]; /* buffers data between passes */
1472 SHIFT_TEMPS
1473
1474 /* Pass 1: process columns from input, store into work array. */
1475
1476 inptr = coef_block;
1477 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
1478 wsptr = workspace;
1479 for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1480 /* Even part */
1481
1482 z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
1483 z3 <<= CONST_BITS;
1484 /* Add fudge factor here for final descale. */
1485 z3 += ONE << (CONST_BITS-PASS1_BITS-1);
1486
1487 z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
1488 z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
1489
1490 tmp10 = z3 + z4;
1491 tmp11 = z3 - z4;
1492
1493 z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
1494 z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
1495 z1 <<= CONST_BITS;
1496 z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
1497 z2 <<= CONST_BITS;
1498
1499 tmp12 = z1 - z2;
1500
1501 tmp21 = z3 + tmp12;
1502 tmp24 = z3 - tmp12;
1503
1504 tmp12 = z4 + z2;
1505
1506 tmp20 = tmp10 + tmp12;
1507 tmp25 = tmp10 - tmp12;
1508
1509 tmp12 = z4 - z1 - z2;
1510
1511 tmp22 = tmp11 + tmp12;
1512 tmp23 = tmp11 - tmp12;
1513
1514 /* Odd part */
1515
1516 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
1517 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
1518 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
1519 z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
1520
1521 tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
1522 tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
1523
1524 tmp10 = z1 + z3;
1525 tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
1526 tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
1527 tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
1528 tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
1529 tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
1530 tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
1531 tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
1532 MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
1533
1534 z1 -= z4;
1535 z2 -= z3;
1536 z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
1537 tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
1538 tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
1539
1540 /* Final output stage */
1541
1542 wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
1543 wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
1544 wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
1545 wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
1546 wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
1547 wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
1548 wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
1549 wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
1550 wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
1551 wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
1552 wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
1553 wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
1554 }
1555
1556 /* Pass 2: process 12 rows from work array, store into output array. */
1557
1558 wsptr = workspace;
1559 for (ctr = 0; ctr < 12; ctr++) {
1560 outptr = output_buf[ctr] + output_col;
1561
1562 /* Even part */
1563
1564 /* Add fudge factor here for final descale. */
1565 z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
1566 z3 <<= CONST_BITS;
1567
1568 z4 = (INT32) wsptr[4];
1569 z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
1570
1571 tmp10 = z3 + z4;
1572 tmp11 = z3 - z4;
1573
1574 z1 = (INT32) wsptr[2];
1575 z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
1576 z1 <<= CONST_BITS;
1577 z2 = (INT32) wsptr[6];
1578 z2 <<= CONST_BITS;
1579
1580 tmp12 = z1 - z2;
1581
1582 tmp21 = z3 + tmp12;
1583 tmp24 = z3 - tmp12;
1584
1585 tmp12 = z4 + z2;
1586
1587 tmp20 = tmp10 + tmp12;
1588 tmp25 = tmp10 - tmp12;
1589
1590 tmp12 = z4 - z1 - z2;
1591
1592 tmp22 = tmp11 + tmp12;
1593 tmp23 = tmp11 - tmp12;
1594
1595 /* Odd part */
1596
1597 z1 = (INT32) wsptr[1];
1598 z2 = (INT32) wsptr[3];
1599 z3 = (INT32) wsptr[5];
1600 z4 = (INT32) wsptr[7];
1601
1602 tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
1603 tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
1604
1605 tmp10 = z1 + z3;
1606 tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
1607 tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
1608 tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
1609 tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
1610 tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
1611 tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
1612 tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
1613 MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
1614
1615 z1 -= z4;
1616 z2 -= z3;
1617 z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
1618 tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
1619 tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
1620
1621 /* Final output stage */
1622
1623 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
1624 CONST_BITS+PASS1_BITS+3)
1625 & RANGE_MASK];
1626 outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
1627 CONST_BITS+PASS1_BITS+3)
1628 & RANGE_MASK];
1629 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
1630 CONST_BITS+PASS1_BITS+3)
1631 & RANGE_MASK];
1632 outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
1633 CONST_BITS+PASS1_BITS+3)
1634 & RANGE_MASK];
1635 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
1636 CONST_BITS+PASS1_BITS+3)
1637 & RANGE_MASK];
1638 outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
1639 CONST_BITS+PASS1_BITS+3)
1640 & RANGE_MASK];
1641 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
1642 CONST_BITS+PASS1_BITS+3)
1643 & RANGE_MASK];
1644 outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
1645 CONST_BITS+PASS1_BITS+3)
1646 & RANGE_MASK];
1647 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
1648 CONST_BITS+PASS1_BITS+3)
1649 & RANGE_MASK];
1650 outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
1651 CONST_BITS+PASS1_BITS+3)
1652 & RANGE_MASK];
1653 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
1654 CONST_BITS+PASS1_BITS+3)
1655 & RANGE_MASK];
1656 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
1657 CONST_BITS+PASS1_BITS+3)
1658 & RANGE_MASK];
1659
1660 wsptr += 8; /* advance pointer to next row */
1661 }
1662}
1663
1664
1665/*
1666 * Perform dequantization and inverse DCT on one block of coefficients,
1667 * producing a 13x13 output block.
1668 *
1669 * Optimized algorithm with 29 multiplications in the 1-D kernel.
1670 * cK represents sqrt(2) * cos(K*pi/26).
1671 */
1672
1673GLOBAL(void)
1674jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
1675 JCOEFPTR coef_block,
1676 JSAMPARRAY output_buf, JDIMENSION output_col)
1677{
1678 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
1679 INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
1680 INT32 z1, z2, z3, z4;
1681 JCOEFPTR inptr;
1682 ISLOW_MULT_TYPE * quantptr;
1683 int * wsptr;
1684 JSAMPROW outptr;
1685 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1686 int ctr;
1687 int workspace[8*13]; /* buffers data between passes */
1688 SHIFT_TEMPS
1689
1690 /* Pass 1: process columns from input, store into work array. */
1691
1692 inptr = coef_block;
1693 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
1694 wsptr = workspace;
1695 for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1696 /* Even part */
1697
1698 z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
1699 z1 <<= CONST_BITS;
1700 /* Add fudge factor here for final descale. */
1701 z1 += ONE << (CONST_BITS-PASS1_BITS-1);
1702
1703 z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
1704 z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
1705 z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
1706
1707 tmp10 = z3 + z4;
1708 tmp11 = z3 - z4;
1709
1710 tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
1711 tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
1712
1713 tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
1714 tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
1715
1716 tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
1717 tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
1718
1719 tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
1720 tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
1721
1722 tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
1723 tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
1724
1725 tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
1726 tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
1727
1728 tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
1729
1730 /* Odd part */
1731
1732 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
1733 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
1734 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
1735 z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
1736
1737 tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
1738 tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
1739 tmp15 = z1 + z4;
1740 tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
1741 tmp10 = tmp11 + tmp12 + tmp13 -
1742 MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
1743 tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
1744 tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
1745 tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
1746 tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
1747 tmp11 += tmp14;
1748 tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
1749 tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
1750 tmp12 += tmp14;
1751 tmp13 += tmp14;
1752 tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
1753 tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
1754 MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
1755 z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
1756 tmp14 += z1;
1757 tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
1758 MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
1759
1760 /* Final output stage */
1761
1762 wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
1763 wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
1764 wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
1765 wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
1766 wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
1767 wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
1768 wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
1769 wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
1770 wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
1771 wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
1772 wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
1773 wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
1774 wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS);
1775 }
1776
1777 /* Pass 2: process 13 rows from work array, store into output array. */
1778
1779 wsptr = workspace;
1780 for (ctr = 0; ctr < 13; ctr++) {
1781 outptr = output_buf[ctr] + output_col;
1782
1783 /* Even part */
1784
1785 /* Add fudge factor here for final descale. */
1786 z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
1787 z1 <<= CONST_BITS;
1788
1789 z2 = (INT32) wsptr[2];
1790 z3 = (INT32) wsptr[4];
1791 z4 = (INT32) wsptr[6];
1792
1793 tmp10 = z3 + z4;
1794 tmp11 = z3 - z4;
1795
1796 tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
1797 tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
1798
1799 tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
1800 tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
1801
1802 tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
1803 tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
1804
1805 tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
1806 tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
1807
1808 tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
1809 tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
1810
1811 tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
1812 tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
1813
1814 tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
1815
1816 /* Odd part */
1817
1818 z1 = (INT32) wsptr[1];
1819 z2 = (INT32) wsptr[3];
1820 z3 = (INT32) wsptr[5];
1821 z4 = (INT32) wsptr[7];
1822
1823 tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
1824 tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
1825 tmp15 = z1 + z4;
1826 tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
1827 tmp10 = tmp11 + tmp12 + tmp13 -
1828 MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
1829 tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
1830 tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
1831 tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
1832 tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
1833 tmp11 += tmp14;
1834 tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
1835 tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
1836 tmp12 += tmp14;
1837 tmp13 += tmp14;
1838 tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
1839 tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
1840 MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
1841 z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
1842 tmp14 += z1;
1843 tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
1844 MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
1845
1846 /* Final output stage */
1847
1848 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
1849 CONST_BITS+PASS1_BITS+3)
1850 & RANGE_MASK];
1851 outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
1852 CONST_BITS+PASS1_BITS+3)
1853 & RANGE_MASK];
1854 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
1855 CONST_BITS+PASS1_BITS+3)
1856 & RANGE_MASK];
1857 outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
1858 CONST_BITS+PASS1_BITS+3)
1859 & RANGE_MASK];
1860 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
1861 CONST_BITS+PASS1_BITS+3)
1862 & RANGE_MASK];
1863 outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
1864 CONST_BITS+PASS1_BITS+3)
1865 & RANGE_MASK];
1866 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
1867 CONST_BITS+PASS1_BITS+3)
1868 & RANGE_MASK];
1869 outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
1870 CONST_BITS+PASS1_BITS+3)
1871 & RANGE_MASK];
1872 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
1873 CONST_BITS+PASS1_BITS+3)
1874 & RANGE_MASK];
1875 outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
1876 CONST_BITS+PASS1_BITS+3)
1877 & RANGE_MASK];
1878 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
1879 CONST_BITS+PASS1_BITS+3)
1880 & RANGE_MASK];
1881 outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
1882 CONST_BITS+PASS1_BITS+3)
1883 & RANGE_MASK];
1884 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26,
1885 CONST_BITS+PASS1_BITS+3)
1886 & RANGE_MASK];
1887
1888 wsptr += 8; /* advance pointer to next row */
1889 }
1890}
1891
1892
1893/*
1894 * Perform dequantization and inverse DCT on one block of coefficients,
1895 * producing a 14x14 output block.
1896 *
1897 * Optimized algorithm with 20 multiplications in the 1-D kernel.
1898 * cK represents sqrt(2) * cos(K*pi/28).
1899 */
1900
1901GLOBAL(void)
1902jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
1903 JCOEFPTR coef_block,
1904 JSAMPARRAY output_buf, JDIMENSION output_col)
1905{
1906 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
1907 INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
1908 INT32 z1, z2, z3, z4;
1909 JCOEFPTR inptr;
1910 ISLOW_MULT_TYPE * quantptr;
1911 int * wsptr;
1912 JSAMPROW outptr;
1913 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1914 int ctr;
1915 int workspace[8*14]; /* buffers data between passes */
1916 SHIFT_TEMPS
1917
1918 /* Pass 1: process columns from input, store into work array. */
1919
1920 inptr = coef_block;
1921 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
1922 wsptr = workspace;
1923 for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1924 /* Even part */
1925
1926 z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
1927 z1 <<= CONST_BITS;
1928 /* Add fudge factor here for final descale. */
1929 z1 += ONE << (CONST_BITS-PASS1_BITS-1);
1930 z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
1931 z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
1932 z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
1933 z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
1934
1935 tmp10 = z1 + z2;
1936 tmp11 = z1 + z3;
1937 tmp12 = z1 - z4;
1938
1939 tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
1940 CONST_BITS-PASS1_BITS);
1941
1942 z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
1943 z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
1944
1945 z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
1946
1947 tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
1948 tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
1949 tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
1950 MULTIPLY(z2, FIX(1.378756276)); /* c2 */
1951
1952 tmp20 = tmp10 + tmp13;
1953 tmp26 = tmp10 - tmp13;
1954 tmp21 = tmp11 + tmp14;
1955 tmp25 = tmp11 - tmp14;
1956 tmp22 = tmp12 + tmp15;
1957 tmp24 = tmp12 - tmp15;
1958
1959 /* Odd part */
1960
1961 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
1962 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
1963 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
1964 z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
1965 tmp13 = z4 << CONST_BITS;
1966
1967 tmp14 = z1 + z3;
1968 tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
1969 tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
1970 tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
1971 tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
1972 tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
1973 z1 -= z2;
1974 tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
1975 tmp16 += tmp15;
1976 z1 += z4;
1977 z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
1978 tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
1979 tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
1980 z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
1981 tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
1982 tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
1983
1984 tmp13 = (z1 - z3) << PASS1_BITS;
1985
1986 /* Final output stage */
1987
1988 wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
1989 wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
1990 wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
1991 wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
1992 wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
1993 wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
1994 wsptr[8*3] = (int) (tmp23 + tmp13);
1995 wsptr[8*10] = (int) (tmp23 - tmp13);
1996 wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
1997 wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
1998 wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
1999 wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
2000 wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
2001 wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
2002 }
2003
2004 /* Pass 2: process 14 rows from work array, store into output array. */
2005
2006 wsptr = workspace;
2007 for (ctr = 0; ctr < 14; ctr++) {
2008 outptr = output_buf[ctr] + output_col;
2009
2010 /* Even part */
2011
2012 /* Add fudge factor here for final descale. */
2013 z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
2014 z1 <<= CONST_BITS;
2015 z4 = (INT32) wsptr[4];
2016 z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
2017 z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
2018 z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
2019
2020 tmp10 = z1 + z2;
2021 tmp11 = z1 + z3;
2022 tmp12 = z1 - z4;
2023
2024 tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
2025
2026 z1 = (INT32) wsptr[2];
2027 z2 = (INT32) wsptr[6];
2028
2029 z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
2030
2031 tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
2032 tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
2033 tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
2034 MULTIPLY(z2, FIX(1.378756276)); /* c2 */
2035
2036 tmp20 = tmp10 + tmp13;
2037 tmp26 = tmp10 - tmp13;
2038 tmp21 = tmp11 + tmp14;
2039 tmp25 = tmp11 - tmp14;
2040 tmp22 = tmp12 + tmp15;
2041 tmp24 = tmp12 - tmp15;
2042
2043 /* Odd part */
2044
2045 z1 = (INT32) wsptr[1];
2046 z2 = (INT32) wsptr[3];
2047 z3 = (INT32) wsptr[5];
2048 z4 = (INT32) wsptr[7];
2049 z4 <<= CONST_BITS;
2050
2051 tmp14 = z1 + z3;
2052 tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
2053 tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
2054 tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
2055 tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
2056 tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
2057 z1 -= z2;
2058 tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
2059 tmp16 += tmp15;
2060 tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
2061 tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
2062 tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
2063 tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
2064 tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
2065 tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
2066
2067 tmp13 = ((z1 - z3) << CONST_BITS) + z4;
2068
2069 /* Final output stage */
2070
2071 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
2072 CONST_BITS+PASS1_BITS+3)
2073 & RANGE_MASK];
2074 outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
2075 CONST_BITS+PASS1_BITS+3)
2076 & RANGE_MASK];
2077 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
2078 CONST_BITS+PASS1_BITS+3)
2079 & RANGE_MASK];
2080 outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
2081 CONST_BITS+PASS1_BITS+3)
2082 & RANGE_MASK];
2083 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
2084 CONST_BITS+PASS1_BITS+3)
2085 & RANGE_MASK];
2086 outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
2087 CONST_BITS+PASS1_BITS+3)
2088 & RANGE_MASK];
2089 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
2090 CONST_BITS+PASS1_BITS+3)
2091 & RANGE_MASK];
2092 outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
2093 CONST_BITS+PASS1_BITS+3)
2094 & RANGE_MASK];
2095 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
2096 CONST_BITS+PASS1_BITS+3)
2097 & RANGE_MASK];
2098 outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
2099 CONST_BITS+PASS1_BITS+3)
2100 & RANGE_MASK];
2101 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
2102 CONST_BITS+PASS1_BITS+3)
2103 & RANGE_MASK];
2104 outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
2105 CONST_BITS+PASS1_BITS+3)
2106 & RANGE_MASK];
2107 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
2108 CONST_BITS+PASS1_BITS+3)
2109 & RANGE_MASK];
2110 outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
2111 CONST_BITS+PASS1_BITS+3)
2112 & RANGE_MASK];
2113
2114 wsptr += 8; /* advance pointer to next row */
2115 }
2116}
2117
2118
2119/*
2120 * Perform dequantization and inverse DCT on one block of coefficients,
2121 * producing a 15x15 output block.
2122 *
2123 * Optimized algorithm with 22 multiplications in the 1-D kernel.
2124 * cK represents sqrt(2) * cos(K*pi/30).
2125 */
2126
2127GLOBAL(void)
2128jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
2129 JCOEFPTR coef_block,
2130 JSAMPARRAY output_buf, JDIMENSION output_col)
2131{
2132 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
2133 INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
2134 INT32 z1, z2, z3, z4;
2135 JCOEFPTR inptr;
2136 ISLOW_MULT_TYPE * quantptr;
2137 int * wsptr;
2138 JSAMPROW outptr;
2139 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
2140 int ctr;
2141 int workspace[8*15]; /* buffers data between passes */
2142 SHIFT_TEMPS
2143
2144 /* Pass 1: process columns from input, store into work array. */
2145
2146 inptr = coef_block;
2147 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
2148 wsptr = workspace;
2149 for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
2150 /* Even part */
2151
2152 z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
2153 z1 <<= CONST_BITS;
2154 /* Add fudge factor here for final descale. */
2155 z1 += ONE << (CONST_BITS-PASS1_BITS-1);
2156
2157 z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
2158 z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
2159 z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
2160
2161 tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
2162 tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
2163
2164 tmp12 = z1 - tmp10;
2165 tmp13 = z1 + tmp11;
2166 z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
2167
2168 z4 = z2 - z3;
2169 z3 += z2;
2170 tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
2171 tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
2172 z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
2173
2174 tmp20 = tmp13 + tmp10 + tmp11;
2175 tmp23 = tmp12 - tmp10 + tmp11 + z2;
2176
2177 tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
2178 tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
2179
2180 tmp25 = tmp13 - tmp10 - tmp11;
2181 tmp26 = tmp12 + tmp10 - tmp11 - z2;
2182
2183 tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
2184 tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
2185
2186 tmp21 = tmp12 + tmp10 + tmp11;
2187 tmp24 = tmp13 - tmp10 + tmp11;
2188 tmp11 += tmp11;
2189 tmp22 = z1 + tmp11; /* c10 = c6-c12 */
2190 tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
2191
2192 /* Odd part */
2193
2194 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
2195 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
2196 z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
2197 z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
2198 z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
2199
2200 tmp13 = z2 - z4;
2201 tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
2202 tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
2203 tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
2204
2205 tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
2206 tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
2207 z2 = z1 - z4;
2208 tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
2209
2210 tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
2211 tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
2212 tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
2213 z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
2214 tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
2215 tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
2216
2217 /* Final output stage */
2218
2219 wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
2220 wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
2221 wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
2222 wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
2223 wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
2224 wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
2225 wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
2226 wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
2227 wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
2228 wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
2229 wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
2230 wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
2231 wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
2232 wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
2233 wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS);
2234 }
2235
2236 /* Pass 2: process 15 rows from work array, store into output array. */
2237
2238 wsptr = workspace;
2239 for (ctr = 0; ctr < 15; ctr++) {
2240 outptr = output_buf[ctr] + output_col;
2241
2242 /* Even part */
2243
2244 /* Add fudge factor here for final descale. */
2245 z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
2246 z1 <<= CONST_BITS;
2247
2248 z2 = (INT32) wsptr[2];
2249 z3 = (INT32) wsptr[4];
2250 z4 = (INT32) wsptr[6];
2251
2252 tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
2253 tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
2254
2255 tmp12 = z1 - tmp10;
2256 tmp13 = z1 + tmp11;
2257 z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
2258
2259 z4 = z2 - z3;
2260 z3 += z2;
2261 tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
2262 tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
2263 z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
2264
2265 tmp20 = tmp13 + tmp10 + tmp11;
2266 tmp23 = tmp12 - tmp10 + tmp11 + z2;
2267
2268 tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
2269 tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
2270
2271 tmp25 = tmp13 - tmp10 - tmp11;
2272 tmp26 = tmp12 + tmp10 - tmp11 - z2;
2273
2274 tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
2275 tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
2276
2277 tmp21 = tmp12 + tmp10 + tmp11;
2278 tmp24 = tmp13 - tmp10 + tmp11;
2279 tmp11 += tmp11;
2280 tmp22 = z1 + tmp11; /* c10 = c6-c12 */
2281 tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
2282
2283 /* Odd part */
2284
2285 z1 = (INT32) wsptr[1];
2286 z2 = (INT32) wsptr[3];
2287 z4 = (INT32) wsptr[5];
2288 z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
2289 z4 = (INT32) wsptr[7];
2290
2291 tmp13 = z2 - z4;
2292 tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
2293 tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
2294 tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
2295
2296 tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
2297 tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
2298 z2 = z1 - z4;
2299 tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
2300
2301 tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
2302 tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
2303 tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
2304 z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
2305 tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
2306 tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
2307
2308 /* Final output stage */
2309
2310 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
2311 CONST_BITS+PASS1_BITS+3)
2312 & RANGE_MASK];
2313 outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
2314 CONST_BITS+PASS1_BITS+3)
2315 & RANGE_MASK];
2316 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
2317 CONST_BITS+PASS1_BITS+3)
2318 & RANGE_MASK];
2319 outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
2320 CONST_BITS+PASS1_BITS+3)
2321 & RANGE_MASK];
2322 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
2323 CONST_BITS+PASS1_BITS+3)
2324 & RANGE_MASK];
2325 outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
2326 CONST_BITS+PASS1_BITS+3)
2327 & RANGE_MASK];
2328 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
2329 CONST_BITS+PASS1_BITS+3)
2330 & RANGE_MASK];
2331 outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
2332 CONST_BITS+PASS1_BITS+3)
2333 & RANGE_MASK];
2334 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
2335 CONST_BITS+PASS1_BITS+3)
2336 & RANGE_MASK];
2337 outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
2338 CONST_BITS+PASS1_BITS+3)
2339 & RANGE_MASK];
2340 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
2341 CONST_BITS+PASS1_BITS+3)
2342 & RANGE_MASK];
2343 outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
2344 CONST_BITS+PASS1_BITS+3)
2345 & RANGE_MASK];
2346 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
2347 CONST_BITS+PASS1_BITS+3)
2348 & RANGE_MASK];
2349 outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
2350 CONST_BITS+PASS1_BITS+3)
2351 & RANGE_MASK];
2352 outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27,
2353 CONST_BITS+PASS1_BITS+3)
2354 & RANGE_MASK];
2355
2356 wsptr += 8; /* advance pointer to next row */
2357 }
2358}
2359
2360
2361/*
2362 * Perform dequantization and inverse DCT on one block of coefficients,
2363 * producing a 16x16 output block.
2364 *
2365 * Optimized algorithm with 28 multiplications in the 1-D kernel.
2366 * cK represents sqrt(2) * cos(K*pi/32).
2367 */
2368
2369GLOBAL(void)
2370jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
2371 JCOEFPTR coef_block,
2372 JSAMPARRAY output_buf, JDIMENSION output_col)
2373{
2374 INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
2375 INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
2376 INT32 z1, z2, z3, z4;
2377 JCOEFPTR inptr;
2378 ISLOW_MULT_TYPE * quantptr;
2379 int * wsptr;
2380 JSAMPROW outptr;
2381 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
2382 int ctr;
2383 int workspace[8*16]; /* buffers data between passes */
2384 SHIFT_TEMPS
2385
2386 /* Pass 1: process columns from input, store into work array. */
2387
2388 inptr = coef_block;
2389 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
2390 wsptr = workspace;
2391 for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
2392 /* Even part */
2393
2394 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
2395 tmp0 <<= CONST_BITS;
2396 /* Add fudge factor here for final descale. */
2397 tmp0 += 1 << (CONST_BITS-PASS1_BITS-1);
2398
2399 z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
2400 tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
2401 tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
2402
2403 tmp10 = tmp0 + tmp1;
2404 tmp11 = tmp0 - tmp1;
2405 tmp12 = tmp0 + tmp2;
2406 tmp13 = tmp0 - tmp2;
2407
2408 z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
2409 z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
2410 z3 = z1 - z2;
2411 z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
2412 z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
2413
2414 tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
2415 tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
2416 tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
2417 tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
2418
2419 tmp20 = tmp10 + tmp0;
2420 tmp27 = tmp10 - tmp0;
2421 tmp21 = tmp12 + tmp1;
2422 tmp26 = tmp12 - tmp1;
2423 tmp22 = tmp13 + tmp2;
2424 tmp25 = tmp13 - tmp2;
2425 tmp23 = tmp11 + tmp3;
2426 tmp24 = tmp11 - tmp3;
2427
2428 /* Odd part */
2429
2430 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
2431 z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
2432 z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
2433 z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
2434
2435 tmp11 = z1 + z3;
2436
2437 tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
2438 tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
2439 tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
2440 tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
2441 tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
2442 tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
2443 tmp0 = tmp1 + tmp2 + tmp3 -
2444 MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
2445 tmp13 = tmp10 + tmp11 + tmp12 -
2446 MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
2447 z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
2448 tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
2449 tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
2450 z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
2451 tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
2452 tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
2453 z2 += z4;
2454 z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
2455 tmp1 += z1;
2456 tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
2457 z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
2458 tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
2459 tmp12 += z2;
2460 z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
2461 tmp2 += z2;
2462 tmp3 += z2;
2463 z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
2464 tmp10 += z2;
2465 tmp11 += z2;
2466
2467 /* Final output stage */
2468
2469 wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
2470 wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
2471 wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
2472 wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
2473 wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
2474 wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
2475 wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
2476 wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
2477 wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
2478 wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
2479 wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
2480 wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
2481 wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
2482 wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
2483 wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
2484 wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
2485 }
2486
2487 /* Pass 2: process 16 rows from work array, store into output array. */
2488
2489 wsptr = workspace;
2490 for (ctr = 0; ctr < 16; ctr++) {
2491 outptr = output_buf[ctr] + output_col;
2492
2493 /* Even part */
2494
2495 /* Add fudge factor here for final descale. */
2496 tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
2497 tmp0 <<= CONST_BITS;
2498
2499 z1 = (INT32) wsptr[4];
2500 tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
2501 tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
2502
2503 tmp10 = tmp0 + tmp1;
2504 tmp11 = tmp0 - tmp1;
2505 tmp12 = tmp0 + tmp2;
2506 tmp13 = tmp0 - tmp2;
2507
2508 z1 = (INT32) wsptr[2];
2509 z2 = (INT32) wsptr[6];
2510 z3 = z1 - z2;
2511 z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
2512 z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
2513
2514 tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
2515 tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
2516 tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
2517 tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
2518
2519 tmp20 = tmp10 + tmp0;
2520 tmp27 = tmp10 - tmp0;
2521 tmp21 = tmp12 + tmp1;
2522 tmp26 = tmp12 - tmp1;
2523 tmp22 = tmp13 + tmp2;
2524 tmp25 = tmp13 - tmp2;
2525 tmp23 = tmp11 + tmp3;
2526 tmp24 = tmp11 - tmp3;
2527
2528 /* Odd part */
2529
2530 z1 = (INT32) wsptr[1];
2531 z2 = (INT32) wsptr[3];
2532 z3 = (INT32) wsptr[5];
2533 z4 = (INT32) wsptr[7];
2534
2535 tmp11 = z1 + z3;
2536
2537 tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
2538 tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
2539 tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
2540 tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
2541 tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
2542 tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
2543 tmp0 = tmp1 + tmp2 + tmp3 -
2544 MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
2545 tmp13 = tmp10 + tmp11 + tmp12 -
2546 MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
2547 z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
2548 tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
2549 tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
2550 z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
2551 tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
2552 tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
2553 z2 += z4;
2554 z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
2555 tmp1 += z1;
2556 tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
2557 z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
2558 tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
2559 tmp12 += z2;
2560 z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
2561 tmp2 += z2;
2562 tmp3 += z2;
2563 z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
2564 tmp10 += z2;
2565 tmp11 += z2;
2566
2567 /* Final output stage */
2568
2569 outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
2570 CONST_BITS+PASS1_BITS+3)
2571 & RANGE_MASK];
2572 outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
2573 CONST_BITS+PASS1_BITS+3)
2574 & RANGE_MASK];
2575 outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
2576 CONST_BITS+PASS1_BITS+3)
2577 & RANGE_MASK];
2578 outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
2579 CONST_BITS+PASS1_BITS+3)
2580 & RANGE_MASK];
2581 outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
2582 CONST_BITS+PASS1_BITS+3)
2583 & RANGE_MASK];
2584 outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
2585 CONST_BITS+PASS1_BITS+3)
2586 & RANGE_MASK];
2587 outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
2588 CONST_BITS+PASS1_BITS+3)
2589 & RANGE_MASK];
2590 outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
2591 CONST_BITS+PASS1_BITS+3)
2592 & RANGE_MASK];
2593 outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
2594 CONST_BITS+PASS1_BITS+3)
2595 & RANGE_MASK];
2596 outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
2597 CONST_BITS+PASS1_BITS+3)
2598 & RANGE_MASK];
2599 outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
2600 CONST_BITS+PASS1_BITS+3)
2601 & RANGE_MASK];
2602 outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
2603 CONST_BITS+PASS1_BITS+3)
2604 & RANGE_MASK];
2605 outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
2606 CONST_BITS+PASS1_BITS+3)
2607 & RANGE_MASK];
2608 outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
2609 CONST_BITS+PASS1_BITS+3)
2610 & RANGE_MASK];
2611 outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
2612 CONST_BITS+PASS1_BITS+3)
2613 & RANGE_MASK];
2614 outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
2615 CONST_BITS+PASS1_BITS+3)
2616 & RANGE_MASK];
2617
2618 wsptr += 8; /* advance pointer to next row */
2619 }
2620}
2621
2622#endif /* IDCT_SCALING_SUPPORTED */
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00002623#endif /* DCT_ISLOW_SUPPORTED */