blob: aa2c59a4be82fe181f7737c0baacc13ab9632b8d [file] [log] [blame]
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00001/*
2 * jquant1.c
3 *
noel@chromium.org3395bcc2014-04-14 06:56:00 +00004 * This file was part of the Independent JPEG Group's software:
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00005 * Copyright (C) 1991-1996, Thomas G. Lane.
noel@chromium.org3395bcc2014-04-14 06:56:00 +00006 * libjpeg-turbo Modifications:
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00007 * Copyright (C) 2009, D. R. Commander
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00008 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains 1-pass color quantization (color mapping) routines.
11 * These routines provide mapping to a fixed color map using equally spaced
12 * color values. Optional Floyd-Steinberg or ordered dithering is available.
13 */
14
15#define JPEG_INTERNALS
16#include "jinclude.h"
17#include "jpeglib.h"
18
19#ifdef QUANT_1PASS_SUPPORTED
20
21
22/*
23 * The main purpose of 1-pass quantization is to provide a fast, if not very
24 * high quality, colormapped output capability. A 2-pass quantizer usually
25 * gives better visual quality; however, for quantized grayscale output this
26 * quantizer is perfectly adequate. Dithering is highly recommended with this
27 * quantizer, though you can turn it off if you really want to.
28 *
29 * In 1-pass quantization the colormap must be chosen in advance of seeing the
30 * image. We use a map consisting of all combinations of Ncolors[i] color
31 * values for the i'th component. The Ncolors[] values are chosen so that
32 * their product, the total number of colors, is no more than that requested.
33 * (In most cases, the product will be somewhat less.)
34 *
35 * Since the colormap is orthogonal, the representative value for each color
36 * component can be determined without considering the other components;
37 * then these indexes can be combined into a colormap index by a standard
38 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
39 * can be precalculated and stored in the lookup table colorindex[].
40 * colorindex[i][j] maps pixel value j in component i to the nearest
41 * representative value (grid plane) for that component; this index is
42 * multiplied by the array stride for component i, so that the
43 * index of the colormap entry closest to a given pixel value is just
44 * sum( colorindex[component-number][pixel-component-value] )
45 * Aside from being fast, this scheme allows for variable spacing between
46 * representative values with no additional lookup cost.
47 *
48 * If gamma correction has been applied in color conversion, it might be wise
49 * to adjust the color grid spacing so that the representative colors are
50 * equidistant in linear space. At this writing, gamma correction is not
51 * implemented by jdcolor, so nothing is done here.
52 */
53
54
55/* Declarations for ordered dithering.
56 *
57 * We use a standard 16x16 ordered dither array. The basic concept of ordered
58 * dithering is described in many references, for instance Dale Schumacher's
59 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
60 * In place of Schumacher's comparisons against a "threshold" value, we add a
61 * "dither" value to the input pixel and then round the result to the nearest
62 * output value. The dither value is equivalent to (0.5 - threshold) times
63 * the distance between output values. For ordered dithering, we assume that
64 * the output colors are equally spaced; if not, results will probably be
65 * worse, since the dither may be too much or too little at a given point.
66 *
67 * The normal calculation would be to form pixel value + dither, range-limit
68 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
69 * We can skip the separate range-limiting step by extending the colorindex
70 * table in both directions.
71 */
72
73#define ODITHER_SIZE 16 /* dimension of dither matrix */
74/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
75#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
76#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
77
78typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
79typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
80
81static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
82 /* Bayer's order-4 dither array. Generated by the code given in
83 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
84 * The values in this array must range from 0 to ODITHER_CELLS-1.
85 */
86 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
87 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
88 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
89 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
90 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
91 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
92 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
93 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
94 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
95 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
96 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
97 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
98 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
99 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
100 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
101 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
102};
103
104
105/* Declarations for Floyd-Steinberg dithering.
106 *
107 * Errors are accumulated into the array fserrors[], at a resolution of
108 * 1/16th of a pixel count. The error at a given pixel is propagated
109 * to its not-yet-processed neighbors using the standard F-S fractions,
110 * ... (here) 7/16
111 * 3/16 5/16 1/16
112 * We work left-to-right on even rows, right-to-left on odd rows.
113 *
114 * We can get away with a single array (holding one row's worth of errors)
115 * by using it to store the current row's errors at pixel columns not yet
116 * processed, but the next row's errors at columns already processed. We
117 * need only a few extra variables to hold the errors immediately around the
118 * current column. (If we are lucky, those variables are in registers, but
119 * even if not, they're probably cheaper to access than array elements are.)
120 *
121 * The fserrors[] array is indexed [component#][position].
122 * We provide (#columns + 2) entries per component; the extra entry at each
123 * end saves us from special-casing the first and last pixels.
124 *
125 * Note: on a wide image, we might not have enough room in a PC's near data
126 * segment to hold the error array; so it is allocated with alloc_large.
127 */
128
129#if BITS_IN_JSAMPLE == 8
130typedef INT16 FSERROR; /* 16 bits should be enough */
131typedef int LOCFSERROR; /* use 'int' for calculation temps */
132#else
133typedef INT32 FSERROR; /* may need more than 16 bits */
134typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
135#endif
136
137typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
138
139
140/* Private subobject */
141
142#define MAX_Q_COMPS 4 /* max components I can handle */
143
144typedef struct {
145 struct jpeg_color_quantizer pub; /* public fields */
146
147 /* Initially allocated colormap is saved here */
148 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
149 int sv_actual; /* number of entries in use */
150
151 JSAMPARRAY colorindex; /* Precomputed mapping for speed */
152 /* colorindex[i][j] = index of color closest to pixel value j in component i,
153 * premultiplied as described above. Since colormap indexes must fit into
154 * JSAMPLEs, the entries of this array will too.
155 */
156 boolean is_padded; /* is the colorindex padded for odither? */
157
158 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
159
160 /* Variables for ordered dithering */
161 int row_index; /* cur row's vertical index in dither matrix */
162 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
163
164 /* Variables for Floyd-Steinberg dithering */
165 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
166 boolean on_odd_row; /* flag to remember which row we are on */
167} my_cquantizer;
168
169typedef my_cquantizer * my_cquantize_ptr;
170
171
172/*
173 * Policy-making subroutines for create_colormap and create_colorindex.
174 * These routines determine the colormap to be used. The rest of the module
175 * only assumes that the colormap is orthogonal.
176 *
177 * * select_ncolors decides how to divvy up the available colors
178 * among the components.
179 * * output_value defines the set of representative values for a component.
180 * * largest_input_value defines the mapping from input values to
181 * representative values for a component.
182 * Note that the latter two routines may impose different policies for
183 * different components, though this is not currently done.
184 */
185
186
187LOCAL(int)
188select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
189/* Determine allocation of desired colors to components, */
190/* and fill in Ncolors[] array to indicate choice. */
191/* Return value is total number of colors (product of Ncolors[] values). */
192{
193 int nc = cinfo->out_color_components; /* number of color components */
194 int max_colors = cinfo->desired_number_of_colors;
195 int total_colors, iroot, i, j;
196 boolean changed;
197 long temp;
198 int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
199 RGB_order[0] = rgb_green[cinfo->out_color_space];
200 RGB_order[1] = rgb_red[cinfo->out_color_space];
201 RGB_order[2] = rgb_blue[cinfo->out_color_space];
202
203 /* We can allocate at least the nc'th root of max_colors per component. */
204 /* Compute floor(nc'th root of max_colors). */
205 iroot = 1;
206 do {
207 iroot++;
208 temp = iroot; /* set temp = iroot ** nc */
209 for (i = 1; i < nc; i++)
210 temp *= iroot;
211 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
212 iroot--; /* now iroot = floor(root) */
213
214 /* Must have at least 2 color values per component */
215 if (iroot < 2)
216 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
217
218 /* Initialize to iroot color values for each component */
219 total_colors = 1;
220 for (i = 0; i < nc; i++) {
221 Ncolors[i] = iroot;
222 total_colors *= iroot;
223 }
224 /* We may be able to increment the count for one or more components without
225 * exceeding max_colors, though we know not all can be incremented.
226 * Sometimes, the first component can be incremented more than once!
227 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
228 * In RGB colorspace, try to increment G first, then R, then B.
229 */
230 do {
231 changed = FALSE;
232 for (i = 0; i < nc; i++) {
233 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
234 /* calculate new total_colors if Ncolors[j] is incremented */
235 temp = total_colors / Ncolors[j];
236 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
237 if (temp > (long) max_colors)
238 break; /* won't fit, done with this pass */
239 Ncolors[j]++; /* OK, apply the increment */
240 total_colors = (int) temp;
241 changed = TRUE;
242 }
243 } while (changed);
244
245 return total_colors;
246}
247
248
249LOCAL(int)
250output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
251/* Return j'th output value, where j will range from 0 to maxj */
252/* The output values must fall in 0..MAXJSAMPLE in increasing order */
253{
254 /* We always provide values 0 and MAXJSAMPLE for each component;
255 * any additional values are equally spaced between these limits.
256 * (Forcing the upper and lower values to the limits ensures that
257 * dithering can't produce a color outside the selected gamut.)
258 */
259 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
260}
261
262
263LOCAL(int)
264largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
265/* Return largest input value that should map to j'th output value */
266/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
267{
268 /* Breakpoints are halfway between values returned by output_value */
269 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
270}
271
272
273/*
274 * Create the colormap.
275 */
276
277LOCAL(void)
278create_colormap (j_decompress_ptr cinfo)
279{
280 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
281 JSAMPARRAY colormap; /* Created colormap */
282 int total_colors; /* Number of distinct output colors */
283 int i,j,k, nci, blksize, blkdist, ptr, val;
284
285 /* Select number of colors for each component */
286 total_colors = select_ncolors(cinfo, cquantize->Ncolors);
287
288 /* Report selected color counts */
289 if (cinfo->out_color_components == 3)
290 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
291 total_colors, cquantize->Ncolors[0],
292 cquantize->Ncolors[1], cquantize->Ncolors[2]);
293 else
294 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
295
296 /* Allocate and fill in the colormap. */
297 /* The colors are ordered in the map in standard row-major order, */
298 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
299
300 colormap = (*cinfo->mem->alloc_sarray)
301 ((j_common_ptr) cinfo, JPOOL_IMAGE,
302 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
303
304 /* blksize is number of adjacent repeated entries for a component */
305 /* blkdist is distance between groups of identical entries for a component */
306 blkdist = total_colors;
307
308 for (i = 0; i < cinfo->out_color_components; i++) {
309 /* fill in colormap entries for i'th color component */
310 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
311 blksize = blkdist / nci;
312 for (j = 0; j < nci; j++) {
313 /* Compute j'th output value (out of nci) for component */
314 val = output_value(cinfo, i, j, nci-1);
315 /* Fill in all colormap entries that have this value of this component */
316 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
317 /* fill in blksize entries beginning at ptr */
318 for (k = 0; k < blksize; k++)
319 colormap[i][ptr+k] = (JSAMPLE) val;
320 }
321 }
322 blkdist = blksize; /* blksize of this color is blkdist of next */
323 }
324
325 /* Save the colormap in private storage,
326 * where it will survive color quantization mode changes.
327 */
328 cquantize->sv_colormap = colormap;
329 cquantize->sv_actual = total_colors;
330}
331
332
333/*
334 * Create the color index table.
335 */
336
337LOCAL(void)
338create_colorindex (j_decompress_ptr cinfo)
339{
340 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
341 JSAMPROW indexptr;
342 int i,j,k, nci, blksize, val, pad;
343
344 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
345 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
346 * This is not necessary in the other dithering modes. However, we
347 * flag whether it was done in case user changes dithering mode.
348 */
349 if (cinfo->dither_mode == JDITHER_ORDERED) {
350 pad = MAXJSAMPLE*2;
351 cquantize->is_padded = TRUE;
352 } else {
353 pad = 0;
354 cquantize->is_padded = FALSE;
355 }
356
357 cquantize->colorindex = (*cinfo->mem->alloc_sarray)
358 ((j_common_ptr) cinfo, JPOOL_IMAGE,
359 (JDIMENSION) (MAXJSAMPLE+1 + pad),
360 (JDIMENSION) cinfo->out_color_components);
361
362 /* blksize is number of adjacent repeated entries for a component */
363 blksize = cquantize->sv_actual;
364
365 for (i = 0; i < cinfo->out_color_components; i++) {
366 /* fill in colorindex entries for i'th color component */
367 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
368 blksize = blksize / nci;
369
370 /* adjust colorindex pointers to provide padding at negative indexes. */
371 if (pad)
372 cquantize->colorindex[i] += MAXJSAMPLE;
373
374 /* in loop, val = index of current output value, */
375 /* and k = largest j that maps to current val */
376 indexptr = cquantize->colorindex[i];
377 val = 0;
378 k = largest_input_value(cinfo, i, 0, nci-1);
379 for (j = 0; j <= MAXJSAMPLE; j++) {
380 while (j > k) /* advance val if past boundary */
381 k = largest_input_value(cinfo, i, ++val, nci-1);
382 /* premultiply so that no multiplication needed in main processing */
383 indexptr[j] = (JSAMPLE) (val * blksize);
384 }
385 /* Pad at both ends if necessary */
386 if (pad)
387 for (j = 1; j <= MAXJSAMPLE; j++) {
388 indexptr[-j] = indexptr[0];
389 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
390 }
391 }
392}
393
394
395/*
396 * Create an ordered-dither array for a component having ncolors
397 * distinct output values.
398 */
399
400LOCAL(ODITHER_MATRIX_PTR)
401make_odither_array (j_decompress_ptr cinfo, int ncolors)
402{
403 ODITHER_MATRIX_PTR odither;
404 int j,k;
405 INT32 num,den;
406
407 odither = (ODITHER_MATRIX_PTR)
408 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
409 SIZEOF(ODITHER_MATRIX));
410 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
411 * Hence the dither value for the matrix cell with fill order f
412 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
413 * On 16-bit-int machine, be careful to avoid overflow.
414 */
415 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
416 for (j = 0; j < ODITHER_SIZE; j++) {
417 for (k = 0; k < ODITHER_SIZE; k++) {
418 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
419 * MAXJSAMPLE;
420 /* Ensure round towards zero despite C's lack of consistency
421 * about rounding negative values in integer division...
422 */
423 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
424 }
425 }
426 return odither;
427}
428
429
430/*
431 * Create the ordered-dither tables.
432 * Components having the same number of representative colors may
433 * share a dither table.
434 */
435
436LOCAL(void)
437create_odither_tables (j_decompress_ptr cinfo)
438{
439 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
440 ODITHER_MATRIX_PTR odither;
441 int i, j, nci;
442
443 for (i = 0; i < cinfo->out_color_components; i++) {
444 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
445 odither = NULL; /* search for matching prior component */
446 for (j = 0; j < i; j++) {
447 if (nci == cquantize->Ncolors[j]) {
448 odither = cquantize->odither[j];
449 break;
450 }
451 }
452 if (odither == NULL) /* need a new table? */
453 odither = make_odither_array(cinfo, nci);
454 cquantize->odither[i] = odither;
455 }
456}
457
458
459/*
460 * Map some rows of pixels to the output colormapped representation.
461 */
462
463METHODDEF(void)
464color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
465 JSAMPARRAY output_buf, int num_rows)
466/* General case, no dithering */
467{
468 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
469 JSAMPARRAY colorindex = cquantize->colorindex;
470 register int pixcode, ci;
471 register JSAMPROW ptrin, ptrout;
472 int row;
473 JDIMENSION col;
474 JDIMENSION width = cinfo->output_width;
475 register int nc = cinfo->out_color_components;
476
477 for (row = 0; row < num_rows; row++) {
478 ptrin = input_buf[row];
479 ptrout = output_buf[row];
480 for (col = width; col > 0; col--) {
481 pixcode = 0;
482 for (ci = 0; ci < nc; ci++) {
483 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
484 }
485 *ptrout++ = (JSAMPLE) pixcode;
486 }
487 }
488}
489
490
491METHODDEF(void)
492color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
493 JSAMPARRAY output_buf, int num_rows)
494/* Fast path for out_color_components==3, no dithering */
495{
496 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
497 register int pixcode;
498 register JSAMPROW ptrin, ptrout;
499 JSAMPROW colorindex0 = cquantize->colorindex[0];
500 JSAMPROW colorindex1 = cquantize->colorindex[1];
501 JSAMPROW colorindex2 = cquantize->colorindex[2];
502 int row;
503 JDIMENSION col;
504 JDIMENSION width = cinfo->output_width;
505
506 for (row = 0; row < num_rows; row++) {
507 ptrin = input_buf[row];
508 ptrout = output_buf[row];
509 for (col = width; col > 0; col--) {
510 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
511 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
512 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
513 *ptrout++ = (JSAMPLE) pixcode;
514 }
515 }
516}
517
518
519METHODDEF(void)
520quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
521 JSAMPARRAY output_buf, int num_rows)
522/* General case, with ordered dithering */
523{
524 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
525 register JSAMPROW input_ptr;
526 register JSAMPROW output_ptr;
527 JSAMPROW colorindex_ci;
528 int * dither; /* points to active row of dither matrix */
529 int row_index, col_index; /* current indexes into dither matrix */
530 int nc = cinfo->out_color_components;
531 int ci;
532 int row;
533 JDIMENSION col;
534 JDIMENSION width = cinfo->output_width;
535
536 for (row = 0; row < num_rows; row++) {
537 /* Initialize output values to 0 so can process components separately */
538 jzero_far((void FAR *) output_buf[row],
539 (size_t) (width * SIZEOF(JSAMPLE)));
540 row_index = cquantize->row_index;
541 for (ci = 0; ci < nc; ci++) {
542 input_ptr = input_buf[row] + ci;
543 output_ptr = output_buf[row];
544 colorindex_ci = cquantize->colorindex[ci];
545 dither = cquantize->odither[ci][row_index];
546 col_index = 0;
547
548 for (col = width; col > 0; col--) {
549 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
550 * select output value, accumulate into output code for this pixel.
551 * Range-limiting need not be done explicitly, as we have extended
552 * the colorindex table to produce the right answers for out-of-range
553 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
554 * required amount of padding.
555 */
556 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
557 input_ptr += nc;
558 output_ptr++;
559 col_index = (col_index + 1) & ODITHER_MASK;
560 }
561 }
562 /* Advance row index for next row */
563 row_index = (row_index + 1) & ODITHER_MASK;
564 cquantize->row_index = row_index;
565 }
566}
567
568
569METHODDEF(void)
570quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
571 JSAMPARRAY output_buf, int num_rows)
572/* Fast path for out_color_components==3, with ordered dithering */
573{
574 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
575 register int pixcode;
576 register JSAMPROW input_ptr;
577 register JSAMPROW output_ptr;
578 JSAMPROW colorindex0 = cquantize->colorindex[0];
579 JSAMPROW colorindex1 = cquantize->colorindex[1];
580 JSAMPROW colorindex2 = cquantize->colorindex[2];
581 int * dither0; /* points to active row of dither matrix */
582 int * dither1;
583 int * dither2;
584 int row_index, col_index; /* current indexes into dither matrix */
585 int row;
586 JDIMENSION col;
587 JDIMENSION width = cinfo->output_width;
588
589 for (row = 0; row < num_rows; row++) {
590 row_index = cquantize->row_index;
591 input_ptr = input_buf[row];
592 output_ptr = output_buf[row];
593 dither0 = cquantize->odither[0][row_index];
594 dither1 = cquantize->odither[1][row_index];
595 dither2 = cquantize->odither[2][row_index];
596 col_index = 0;
597
598 for (col = width; col > 0; col--) {
599 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
600 dither0[col_index]]);
601 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
602 dither1[col_index]]);
603 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
604 dither2[col_index]]);
605 *output_ptr++ = (JSAMPLE) pixcode;
606 col_index = (col_index + 1) & ODITHER_MASK;
607 }
608 row_index = (row_index + 1) & ODITHER_MASK;
609 cquantize->row_index = row_index;
610 }
611}
612
613
614METHODDEF(void)
615quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
616 JSAMPARRAY output_buf, int num_rows)
617/* General case, with Floyd-Steinberg dithering */
618{
619 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
620 register LOCFSERROR cur; /* current error or pixel value */
621 LOCFSERROR belowerr; /* error for pixel below cur */
622 LOCFSERROR bpreverr; /* error for below/prev col */
623 LOCFSERROR bnexterr; /* error for below/next col */
624 LOCFSERROR delta;
625 register FSERRPTR errorptr; /* => fserrors[] at column before current */
626 register JSAMPROW input_ptr;
627 register JSAMPROW output_ptr;
628 JSAMPROW colorindex_ci;
629 JSAMPROW colormap_ci;
630 int pixcode;
631 int nc = cinfo->out_color_components;
632 int dir; /* 1 for left-to-right, -1 for right-to-left */
633 int dirnc; /* dir * nc */
634 int ci;
635 int row;
636 JDIMENSION col;
637 JDIMENSION width = cinfo->output_width;
638 JSAMPLE *range_limit = cinfo->sample_range_limit;
639 SHIFT_TEMPS
640
641 for (row = 0; row < num_rows; row++) {
642 /* Initialize output values to 0 so can process components separately */
643 jzero_far((void FAR *) output_buf[row],
644 (size_t) (width * SIZEOF(JSAMPLE)));
645 for (ci = 0; ci < nc; ci++) {
646 input_ptr = input_buf[row] + ci;
647 output_ptr = output_buf[row];
648 if (cquantize->on_odd_row) {
649 /* work right to left in this row */
650 input_ptr += (width-1) * nc; /* so point to rightmost pixel */
651 output_ptr += width-1;
652 dir = -1;
653 dirnc = -nc;
654 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
655 } else {
656 /* work left to right in this row */
657 dir = 1;
658 dirnc = nc;
659 errorptr = cquantize->fserrors[ci]; /* => entry before first column */
660 }
661 colorindex_ci = cquantize->colorindex[ci];
662 colormap_ci = cquantize->sv_colormap[ci];
663 /* Preset error values: no error propagated to first pixel from left */
664 cur = 0;
665 /* and no error propagated to row below yet */
666 belowerr = bpreverr = 0;
667
668 for (col = width; col > 0; col--) {
669 /* cur holds the error propagated from the previous pixel on the
670 * current line. Add the error propagated from the previous line
671 * to form the complete error correction term for this pixel, and
672 * round the error term (which is expressed * 16) to an integer.
673 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
674 * for either sign of the error value.
675 * Note: errorptr points to *previous* column's array entry.
676 */
677 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
678 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
679 * The maximum error is +- MAXJSAMPLE; this sets the required size
680 * of the range_limit array.
681 */
682 cur += GETJSAMPLE(*input_ptr);
683 cur = GETJSAMPLE(range_limit[cur]);
684 /* Select output value, accumulate into output code for this pixel */
685 pixcode = GETJSAMPLE(colorindex_ci[cur]);
686 *output_ptr += (JSAMPLE) pixcode;
687 /* Compute actual representation error at this pixel */
688 /* Note: we can do this even though we don't have the final */
689 /* pixel code, because the colormap is orthogonal. */
690 cur -= GETJSAMPLE(colormap_ci[pixcode]);
691 /* Compute error fractions to be propagated to adjacent pixels.
692 * Add these into the running sums, and simultaneously shift the
693 * next-line error sums left by 1 column.
694 */
695 bnexterr = cur;
696 delta = cur * 2;
697 cur += delta; /* form error * 3 */
698 errorptr[0] = (FSERROR) (bpreverr + cur);
699 cur += delta; /* form error * 5 */
700 bpreverr = belowerr + cur;
701 belowerr = bnexterr;
702 cur += delta; /* form error * 7 */
703 /* At this point cur contains the 7/16 error value to be propagated
704 * to the next pixel on the current line, and all the errors for the
705 * next line have been shifted over. We are therefore ready to move on.
706 */
707 input_ptr += dirnc; /* advance input ptr to next column */
708 output_ptr += dir; /* advance output ptr to next column */
709 errorptr += dir; /* advance errorptr to current column */
710 }
711 /* Post-loop cleanup: we must unload the final error value into the
712 * final fserrors[] entry. Note we need not unload belowerr because
713 * it is for the dummy column before or after the actual array.
714 */
715 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
716 }
717 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
718 }
719}
720
721
722/*
723 * Allocate workspace for Floyd-Steinberg errors.
724 */
725
726LOCAL(void)
727alloc_fs_workspace (j_decompress_ptr cinfo)
728{
729 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
730 size_t arraysize;
731 int i;
732
733 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
734 for (i = 0; i < cinfo->out_color_components; i++) {
735 cquantize->fserrors[i] = (FSERRPTR)
736 (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
737 }
738}
739
740
741/*
742 * Initialize for one-pass color quantization.
743 */
744
745METHODDEF(void)
746start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
747{
748 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
749 size_t arraysize;
750 int i;
751
752 /* Install my colormap. */
753 cinfo->colormap = cquantize->sv_colormap;
754 cinfo->actual_number_of_colors = cquantize->sv_actual;
755
756 /* Initialize for desired dithering mode. */
757 switch (cinfo->dither_mode) {
758 case JDITHER_NONE:
759 if (cinfo->out_color_components == 3)
760 cquantize->pub.color_quantize = color_quantize3;
761 else
762 cquantize->pub.color_quantize = color_quantize;
763 break;
764 case JDITHER_ORDERED:
765 if (cinfo->out_color_components == 3)
766 cquantize->pub.color_quantize = quantize3_ord_dither;
767 else
768 cquantize->pub.color_quantize = quantize_ord_dither;
769 cquantize->row_index = 0; /* initialize state for ordered dither */
770 /* If user changed to ordered dither from another mode,
771 * we must recreate the color index table with padding.
772 * This will cost extra space, but probably isn't very likely.
773 */
774 if (! cquantize->is_padded)
775 create_colorindex(cinfo);
776 /* Create ordered-dither tables if we didn't already. */
777 if (cquantize->odither[0] == NULL)
778 create_odither_tables(cinfo);
779 break;
780 case JDITHER_FS:
781 cquantize->pub.color_quantize = quantize_fs_dither;
782 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
783 /* Allocate Floyd-Steinberg workspace if didn't already. */
784 if (cquantize->fserrors[0] == NULL)
785 alloc_fs_workspace(cinfo);
786 /* Initialize the propagated errors to zero. */
787 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
788 for (i = 0; i < cinfo->out_color_components; i++)
789 jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
790 break;
791 default:
792 ERREXIT(cinfo, JERR_NOT_COMPILED);
793 break;
794 }
795}
796
797
798/*
799 * Finish up at the end of the pass.
800 */
801
802METHODDEF(void)
803finish_pass_1_quant (j_decompress_ptr cinfo)
804{
805 /* no work in 1-pass case */
806}
807
808
809/*
810 * Switch to a new external colormap between output passes.
811 * Shouldn't get to this module!
812 */
813
814METHODDEF(void)
815new_color_map_1_quant (j_decompress_ptr cinfo)
816{
817 ERREXIT(cinfo, JERR_MODE_CHANGE);
818}
819
820
821/*
822 * Module initialization routine for 1-pass color quantization.
823 */
824
825GLOBAL(void)
826jinit_1pass_quantizer (j_decompress_ptr cinfo)
827{
828 my_cquantize_ptr cquantize;
829
830 cquantize = (my_cquantize_ptr)
831 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
832 SIZEOF(my_cquantizer));
833 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
834 cquantize->pub.start_pass = start_pass_1_quant;
835 cquantize->pub.finish_pass = finish_pass_1_quant;
836 cquantize->pub.new_color_map = new_color_map_1_quant;
837 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
838 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
839
840 /* Make sure my internal arrays won't overflow */
841 if (cinfo->out_color_components > MAX_Q_COMPS)
842 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
843 /* Make sure colormap indexes can be represented by JSAMPLEs */
844 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
845 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
846
847 /* Create the colormap and color index table. */
848 create_colormap(cinfo);
849 create_colorindex(cinfo);
850
851 /* Allocate Floyd-Steinberg workspace now if requested.
852 * We do this now since it is FAR storage and may affect the memory
853 * manager's space calculations. If the user changes to FS dither
854 * mode in a later pass, we will allocate the space then, and will
855 * possibly overrun the max_memory_to_use setting.
856 */
857 if (cinfo->dither_mode == JDITHER_FS)
858 alloc_fs_workspace(cinfo);
859}
860
861#endif /* QUANT_1PASS_SUPPORTED */