blob: 68e4e0e0337ea9810eeccaad507cbfc72b2a2b8e [file] [log] [blame]
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00001/*
2 * jchuff.c
3 *
noel@chromium.org3395bcc2014-04-14 06:56:00 +00004 * This file was part of the Independent JPEG Group's software:
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00005 * Copyright (C) 1991-1997, Thomas G. Lane.
noel@chromium.org3395bcc2014-04-14 06:56:00 +00006 * libjpeg-turbo Modifications:
hbono@chromium.org98626972011-08-03 03:13:08 +00007 * Copyright (C) 2009-2011, D. R. Commander.
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +00008 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains Huffman entropy encoding routines.
11 *
12 * Much of the complexity here has to do with supporting output suspension.
13 * If the data destination module demands suspension, we want to be able to
14 * back up to the start of the current MCU. To do this, we copy state
15 * variables into local working storage, and update them back to the
16 * permanent JPEG objects only upon successful completion of an MCU.
17 */
18
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +000019#define JPEG_INTERNALS
20#include "jinclude.h"
21#include "jpeglib.h"
22#include "jchuff.h" /* Declarations shared with jcphuff.c */
23#include <limits.h>
24
noel@chromium.org841fff82014-05-23 23:38:59 +000025/*
26 * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
27 * used for bit counting rather than the lookup table. This will reduce the
28 * memory footprint by 64k, which is important for some mobile applications
29 * that create many isolated instances of libjpeg-turbo (web browsers, for
30 * instance.) This may improve performance on some mobile platforms as well.
31 * This feature is enabled by default only on ARM processors, because some x86
32 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
33 * shown to have a significant performance impact even on the x86 chips that
34 * have a fast implementation of it. When building for ARMv6, you can
35 * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
36 * flags (this defines __thumb__).
37 */
38
39/* NOTE: Both GCC and Clang define __GNUC__ */
40#if defined __GNUC__ && defined __arm__
41#if !defined __thumb__ || defined __thumb2__
42#define USE_CLZ_INTRINSIC
43#endif
44#endif
45
46#ifdef USE_CLZ_INTRINSIC
47#define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
48#define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
49#else
hbono@chromium.org98626972011-08-03 03:13:08 +000050static unsigned char jpeg_nbits_table[65536];
51static int jpeg_nbits_table_init = 0;
noel@chromium.org841fff82014-05-23 23:38:59 +000052#define JPEG_NBITS(x) (jpeg_nbits_table[x])
53#define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
54#endif
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +000055
56#ifndef min
57 #define min(a,b) ((a)<(b)?(a):(b))
58#endif
59
hbono@chromium.org98626972011-08-03 03:13:08 +000060
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +000061/* Expanded entropy encoder object for Huffman encoding.
62 *
63 * The savable_state subrecord contains fields that change within an MCU,
64 * but must not be updated permanently until we complete the MCU.
65 */
66
67typedef struct {
68 size_t put_buffer; /* current bit-accumulation buffer */
69 int put_bits; /* # of bits now in it */
70 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
71} savable_state;
72
73/* This macro is to work around compilers with missing or broken
74 * structure assignment. You'll need to fix this code if you have
75 * such a compiler and you change MAX_COMPS_IN_SCAN.
76 */
77
78#ifndef NO_STRUCT_ASSIGN
79#define ASSIGN_STATE(dest,src) ((dest) = (src))
80#else
81#if MAX_COMPS_IN_SCAN == 4
82#define ASSIGN_STATE(dest,src) \
83 ((dest).put_buffer = (src).put_buffer, \
84 (dest).put_bits = (src).put_bits, \
85 (dest).last_dc_val[0] = (src).last_dc_val[0], \
86 (dest).last_dc_val[1] = (src).last_dc_val[1], \
87 (dest).last_dc_val[2] = (src).last_dc_val[2], \
88 (dest).last_dc_val[3] = (src).last_dc_val[3])
89#endif
90#endif
91
92
93typedef struct {
94 struct jpeg_entropy_encoder pub; /* public fields */
95
96 savable_state saved; /* Bit buffer & DC state at start of MCU */
97
98 /* These fields are NOT loaded into local working state. */
99 unsigned int restarts_to_go; /* MCUs left in this restart interval */
100 int next_restart_num; /* next restart number to write (0-7) */
101
102 /* Pointers to derived tables (these workspaces have image lifespan) */
103 c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
104 c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
105
106#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
107 long * dc_count_ptrs[NUM_HUFF_TBLS];
108 long * ac_count_ptrs[NUM_HUFF_TBLS];
109#endif
110} huff_entropy_encoder;
111
112typedef huff_entropy_encoder * huff_entropy_ptr;
113
114/* Working state while writing an MCU.
115 * This struct contains all the fields that are needed by subroutines.
116 */
117
118typedef struct {
119 JOCTET * next_output_byte; /* => next byte to write in buffer */
120 size_t free_in_buffer; /* # of byte spaces remaining in buffer */
121 savable_state cur; /* Current bit buffer & DC state */
122 j_compress_ptr cinfo; /* dump_buffer needs access to this */
123} working_state;
124
125
126/* Forward declarations */
127METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
128 JBLOCKROW *MCU_data));
129METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
130#ifdef ENTROPY_OPT_SUPPORTED
131METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
132 JBLOCKROW *MCU_data));
133METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
134#endif
135
136
137/*
138 * Initialize for a Huffman-compressed scan.
139 * If gather_statistics is TRUE, we do not output anything during the scan,
140 * just count the Huffman symbols used and generate Huffman code tables.
141 */
142
143METHODDEF(void)
144start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
145{
146 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
147 int ci, dctbl, actbl;
148 jpeg_component_info * compptr;
149
150 if (gather_statistics) {
151#ifdef ENTROPY_OPT_SUPPORTED
152 entropy->pub.encode_mcu = encode_mcu_gather;
153 entropy->pub.finish_pass = finish_pass_gather;
154#else
155 ERREXIT(cinfo, JERR_NOT_COMPILED);
156#endif
157 } else {
158 entropy->pub.encode_mcu = encode_mcu_huff;
159 entropy->pub.finish_pass = finish_pass_huff;
160 }
161
162 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
163 compptr = cinfo->cur_comp_info[ci];
164 dctbl = compptr->dc_tbl_no;
165 actbl = compptr->ac_tbl_no;
166 if (gather_statistics) {
167#ifdef ENTROPY_OPT_SUPPORTED
168 /* Check for invalid table indexes */
169 /* (make_c_derived_tbl does this in the other path) */
170 if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
171 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
172 if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
173 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
174 /* Allocate and zero the statistics tables */
175 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
176 if (entropy->dc_count_ptrs[dctbl] == NULL)
177 entropy->dc_count_ptrs[dctbl] = (long *)
178 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
179 257 * SIZEOF(long));
180 MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
181 if (entropy->ac_count_ptrs[actbl] == NULL)
182 entropy->ac_count_ptrs[actbl] = (long *)
183 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
184 257 * SIZEOF(long));
185 MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
186#endif
187 } else {
188 /* Compute derived values for Huffman tables */
189 /* We may do this more than once for a table, but it's not expensive */
190 jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
191 & entropy->dc_derived_tbls[dctbl]);
192 jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
193 & entropy->ac_derived_tbls[actbl]);
194 }
195 /* Initialize DC predictions to 0 */
196 entropy->saved.last_dc_val[ci] = 0;
197 }
198
199 /* Initialize bit buffer to empty */
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000200 entropy->saved.put_buffer = 0;
201 entropy->saved.put_bits = 0;
202
203 /* Initialize restart stuff */
204 entropy->restarts_to_go = cinfo->restart_interval;
205 entropy->next_restart_num = 0;
206}
207
208
209/*
210 * Compute the derived values for a Huffman table.
211 * This routine also performs some validation checks on the table.
212 *
213 * Note this is also used by jcphuff.c.
214 */
215
216GLOBAL(void)
217jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
218 c_derived_tbl ** pdtbl)
219{
220 JHUFF_TBL *htbl;
221 c_derived_tbl *dtbl;
222 int p, i, l, lastp, si, maxsymbol;
223 char huffsize[257];
224 unsigned int huffcode[257];
225 unsigned int code;
226
227 /* Note that huffsize[] and huffcode[] are filled in code-length order,
228 * paralleling the order of the symbols themselves in htbl->huffval[].
229 */
230
231 /* Find the input Huffman table */
232 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
233 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
234 htbl =
235 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
236 if (htbl == NULL)
237 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
238
239 /* Allocate a workspace if we haven't already done so. */
240 if (*pdtbl == NULL)
241 *pdtbl = (c_derived_tbl *)
242 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
243 SIZEOF(c_derived_tbl));
244 dtbl = *pdtbl;
245
246 /* Figure C.1: make table of Huffman code length for each symbol */
247
248 p = 0;
249 for (l = 1; l <= 16; l++) {
250 i = (int) htbl->bits[l];
251 if (i < 0 || p + i > 256) /* protect against table overrun */
252 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
253 while (i--)
254 huffsize[p++] = (char) l;
255 }
256 huffsize[p] = 0;
257 lastp = p;
258
259 /* Figure C.2: generate the codes themselves */
260 /* We also validate that the counts represent a legal Huffman code tree. */
261
262 code = 0;
263 si = huffsize[0];
264 p = 0;
265 while (huffsize[p]) {
266 while (((int) huffsize[p]) == si) {
267 huffcode[p++] = code;
268 code++;
269 }
270 /* code is now 1 more than the last code used for codelength si; but
271 * it must still fit in si bits, since no code is allowed to be all ones.
272 */
273 if (((INT32) code) >= (((INT32) 1) << si))
274 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
275 code <<= 1;
276 si++;
277 }
278
279 /* Figure C.3: generate encoding tables */
280 /* These are code and size indexed by symbol value */
281
282 /* Set all codeless symbols to have code length 0;
283 * this lets us detect duplicate VAL entries here, and later
284 * allows emit_bits to detect any attempt to emit such symbols.
285 */
286 MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
287
288 /* This is also a convenient place to check for out-of-range
289 * and duplicated VAL entries. We allow 0..255 for AC symbols
290 * but only 0..15 for DC. (We could constrain them further
291 * based on data depth and mode, but this seems enough.)
292 */
293 maxsymbol = isDC ? 15 : 255;
294
295 for (p = 0; p < lastp; p++) {
296 i = htbl->huffval[p];
297 if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
298 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
299 dtbl->ehufco[i] = huffcode[p];
300 dtbl->ehufsi[i] = huffsize[p];
301 }
302
noel@chromium.org841fff82014-05-23 23:38:59 +0000303#ifndef USE_CLZ_INTRINSIC
hbono@chromium.org98626972011-08-03 03:13:08 +0000304 if(!jpeg_nbits_table_init) {
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000305 for(i = 0; i < 65536; i++) {
hbono@chromium.org98626972011-08-03 03:13:08 +0000306 int nbits = 0, temp = i;
307 while (temp) {temp >>= 1; nbits++;}
308 jpeg_nbits_table[i] = nbits;
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000309 }
hbono@chromium.org98626972011-08-03 03:13:08 +0000310 jpeg_nbits_table_init = 1;
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000311 }
noel@chromium.org841fff82014-05-23 23:38:59 +0000312#endif
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000313}
314
315
316/* Outputting bytes to the file */
317
318/* Emit a byte, taking 'action' if must suspend. */
319#define emit_byte(state,val,action) \
320 { *(state)->next_output_byte++ = (JOCTET) (val); \
321 if (--(state)->free_in_buffer == 0) \
322 if (! dump_buffer(state)) \
323 { action; } }
324
325
326LOCAL(boolean)
327dump_buffer (working_state * state)
328/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
329{
330 struct jpeg_destination_mgr * dest = state->cinfo->dest;
331
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000332 if (! (*dest->empty_output_buffer) (state->cinfo))
333 return FALSE;
334 /* After a successful buffer dump, must reset buffer pointers */
335 state->next_output_byte = dest->next_output_byte;
336 state->free_in_buffer = dest->free_in_buffer;
337 return TRUE;
338}
339
340
341/* Outputting bits to the file */
342
hbono@chromium.org98626972011-08-03 03:13:08 +0000343/* These macros perform the same task as the emit_bits() function in the
344 * original libjpeg code. In addition to reducing overhead by explicitly
345 * inlining the code, additional performance is achieved by taking into
346 * account the size of the bit buffer and waiting until it is almost full
347 * before emptying it. This mostly benefits 64-bit platforms, since 6
348 * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000349 */
350
hbono@chromium.org98626972011-08-03 03:13:08 +0000351#define EMIT_BYTE() { \
352 JOCTET c; \
353 put_bits -= 8; \
354 c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
355 *buffer++ = c; \
356 if (c == 0xFF) /* need to stuff a zero byte? */ \
357 *buffer++ = 0; \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000358 }
359
hbono@chromium.org98626972011-08-03 03:13:08 +0000360#define PUT_BITS(code, size) { \
361 put_bits += size; \
362 put_buffer = (put_buffer << size) | code; \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000363}
364
hbono@chromium.org98626972011-08-03 03:13:08 +0000365#define CHECKBUF15() { \
366 if (put_bits > 15) { \
367 EMIT_BYTE() \
368 EMIT_BYTE() \
369 } \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000370}
371
hbono@chromium.org98626972011-08-03 03:13:08 +0000372#define CHECKBUF31() { \
373 if (put_bits > 31) { \
374 EMIT_BYTE() \
375 EMIT_BYTE() \
376 EMIT_BYTE() \
377 EMIT_BYTE() \
378 } \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000379}
380
hbono@chromium.org98626972011-08-03 03:13:08 +0000381#define CHECKBUF47() { \
382 if (put_bits > 47) { \
383 EMIT_BYTE() \
384 EMIT_BYTE() \
385 EMIT_BYTE() \
386 EMIT_BYTE() \
387 EMIT_BYTE() \
388 EMIT_BYTE() \
389 } \
390}
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000391
392#if __WORDSIZE==64 || defined(_WIN64)
393
hbono@chromium.org98626972011-08-03 03:13:08 +0000394#define EMIT_BITS(code, size) { \
395 CHECKBUF47() \
396 PUT_BITS(code, size) \
397}
398
399#define EMIT_CODE(code, size) { \
400 temp2 &= (((INT32) 1)<<nbits) - 1; \
401 CHECKBUF31() \
402 PUT_BITS(code, size) \
403 PUT_BITS(temp2, nbits) \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000404 }
405
406#else
407
hbono@chromium.org98626972011-08-03 03:13:08 +0000408#define EMIT_BITS(code, size) { \
409 PUT_BITS(code, size) \
410 CHECKBUF15() \
411}
412
413#define EMIT_CODE(code, size) { \
414 temp2 &= (((INT32) 1)<<nbits) - 1; \
415 PUT_BITS(code, size) \
416 CHECKBUF15() \
417 PUT_BITS(temp2, nbits) \
418 CHECKBUF15() \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000419 }
420
421#endif
422
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000423
424#define BUFSIZE (DCTSIZE2 * 2)
425
hbono@chromium.org98626972011-08-03 03:13:08 +0000426#define LOAD_BUFFER() { \
427 if (state->free_in_buffer < BUFSIZE) { \
428 localbuf = 1; \
429 buffer = _buffer; \
430 } \
431 else buffer = state->next_output_byte; \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000432 }
433
hbono@chromium.org98626972011-08-03 03:13:08 +0000434#define STORE_BUFFER() { \
435 if (localbuf) { \
436 bytes = buffer - _buffer; \
437 buffer = _buffer; \
438 while (bytes > 0) { \
439 bytestocopy = min(bytes, state->free_in_buffer); \
440 MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
441 state->next_output_byte += bytestocopy; \
442 buffer += bytestocopy; \
443 state->free_in_buffer -= bytestocopy; \
444 if (state->free_in_buffer == 0) \
445 if (! dump_buffer(state)) return FALSE; \
446 bytes -= bytestocopy; \
447 } \
448 } \
449 else { \
450 state->free_in_buffer -= (buffer - state->next_output_byte); \
451 state->next_output_byte = buffer; \
452 } \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000453 }
454
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000455
456LOCAL(boolean)
457flush_bits (working_state * state)
458{
hbono@chromium.org98626972011-08-03 03:13:08 +0000459 JOCTET _buffer[BUFSIZE], *buffer;
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000460 size_t put_buffer; int put_bits;
461 size_t bytes, bytestocopy; int localbuf = 0;
462
463 put_buffer = state->cur.put_buffer;
464 put_bits = state->cur.put_bits;
465 LOAD_BUFFER()
466
hbono@chromium.org98626972011-08-03 03:13:08 +0000467 /* fill any partial byte with ones */
468 PUT_BITS(0x7F, 7)
469 while (put_bits >= 8) EMIT_BYTE()
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000470
471 state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
472 state->cur.put_bits = 0;
473 STORE_BUFFER()
474
475 return TRUE;
476}
477
hbono@chromium.org98626972011-08-03 03:13:08 +0000478
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000479/* Encode a single block's worth of coefficients */
480
481LOCAL(boolean)
482encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
483 c_derived_tbl *dctbl, c_derived_tbl *actbl)
484{
hbono@chromium.org98626972011-08-03 03:13:08 +0000485 int temp, temp2, temp3;
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000486 int nbits;
hbono@chromium.org98626972011-08-03 03:13:08 +0000487 int r, code, size;
488 JOCTET _buffer[BUFSIZE], *buffer;
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000489 size_t put_buffer; int put_bits;
490 int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
491 size_t bytes, bytestocopy; int localbuf = 0;
492
493 put_buffer = state->cur.put_buffer;
494 put_bits = state->cur.put_bits;
495 LOAD_BUFFER()
496
497 /* Encode the DC coefficient difference per section F.1.2.1 */
498
499 temp = temp2 = block[0] - last_dc_val;
500
hbono@chromium.org98626972011-08-03 03:13:08 +0000501 /* This is a well-known technique for obtaining the absolute value without a
502 * branch. It is derived from an assembly language technique presented in
503 * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
504 * Agner Fog.
505 */
506 temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
507 temp ^= temp3;
508 temp -= temp3;
509
510 /* For a negative input, want temp2 = bitwise complement of abs(input) */
511 /* This code assumes we are on a two's complement machine */
512 temp2 += temp3;
513
514 /* Find the number of bits needed for the magnitude of the coefficient */
noel@chromium.org841fff82014-05-23 23:38:59 +0000515 nbits = JPEG_NBITS(temp);
hbono@chromium.org98626972011-08-03 03:13:08 +0000516
517 /* Emit the Huffman-coded symbol for the number of bits */
518 code = dctbl->ehufco[nbits];
519 size = dctbl->ehufsi[nbits];
520 PUT_BITS(code, size)
521 CHECKBUF15()
522
523 /* Mask off any extra bits in code */
524 temp2 &= (((INT32) 1)<<nbits) - 1;
525
526 /* Emit that number of bits of the value, if positive, */
527 /* or the complement of its magnitude, if negative. */
528 PUT_BITS(temp2, nbits)
529 CHECKBUF15()
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000530
531 /* Encode the AC coefficients per section F.1.2.2 */
532
533 r = 0; /* r = run length of zeros */
534
hbono@chromium.org98626972011-08-03 03:13:08 +0000535/* Manually unroll the k loop to eliminate the counter variable. This
536 * improves performance greatly on systems with a limited number of
537 * registers (such as x86.)
538 */
539#define kloop(jpeg_natural_order_of_k) { \
540 if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
541 r++; \
542 } else { \
543 temp2 = temp; \
544 /* Branch-less absolute value, bitwise complement, etc., same as above */ \
545 temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
546 temp ^= temp3; \
547 temp -= temp3; \
548 temp2 += temp3; \
noel@chromium.org841fff82014-05-23 23:38:59 +0000549 nbits = JPEG_NBITS_NONZERO(temp); \
hbono@chromium.org98626972011-08-03 03:13:08 +0000550 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
551 while (r > 15) { \
552 EMIT_BITS(code_0xf0, size_0xf0) \
553 r -= 16; \
554 } \
555 /* Emit Huffman symbol for run length / number of bits */ \
556 temp3 = (r << 4) + nbits; \
557 code = actbl->ehufco[temp3]; \
558 size = actbl->ehufsi[temp3]; \
559 EMIT_CODE(code, size) \
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000560 r = 0; \
hbono@chromium.org98626972011-08-03 03:13:08 +0000561 } \
562}
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000563
hbono@chromium.org98626972011-08-03 03:13:08 +0000564 /* One iteration for each value in jpeg_natural_order[] */
565 kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
566 kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
567 kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
568 kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
569 kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
570 kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
571 kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
572 kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
573 kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
574 kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
575 kloop(55); kloop(62); kloop(63);
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000576
577 /* If the last coef(s) were zero, emit an end-of-block code */
hbono@chromium.org98626972011-08-03 03:13:08 +0000578 if (r > 0) {
579 code = actbl->ehufco[0];
580 size = actbl->ehufsi[0];
581 EMIT_BITS(code, size)
582 }
hbono@chromium.orgf0c4f332010-11-01 05:14:55 +0000583
584 state->cur.put_buffer = put_buffer;
585 state->cur.put_bits = put_bits;
586 STORE_BUFFER()
587
588 return TRUE;
589}
590
591
592/*
593 * Emit a restart marker & resynchronize predictions.
594 */
595
596LOCAL(boolean)
597emit_restart (working_state * state, int restart_num)
598{
599 int ci;
600
601 if (! flush_bits(state))
602 return FALSE;
603
604 emit_byte(state, 0xFF, return FALSE);
605 emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
606
607 /* Re-initialize DC predictions to 0 */
608 for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
609 state->cur.last_dc_val[ci] = 0;
610
611 /* The restart counter is not updated until we successfully write the MCU. */
612
613 return TRUE;
614}
615
616
617/*
618 * Encode and output one MCU's worth of Huffman-compressed coefficients.
619 */
620
621METHODDEF(boolean)
622encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
623{
624 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
625 working_state state;
626 int blkn, ci;
627 jpeg_component_info * compptr;
628
629 /* Load up working state */
630 state.next_output_byte = cinfo->dest->next_output_byte;
631 state.free_in_buffer = cinfo->dest->free_in_buffer;
632 ASSIGN_STATE(state.cur, entropy->saved);
633 state.cinfo = cinfo;
634
635 /* Emit restart marker if needed */
636 if (cinfo->restart_interval) {
637 if (entropy->restarts_to_go == 0)
638 if (! emit_restart(&state, entropy->next_restart_num))
639 return FALSE;
640 }
641
642 /* Encode the MCU data blocks */
643 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
644 ci = cinfo->MCU_membership[blkn];
645 compptr = cinfo->cur_comp_info[ci];
646 if (! encode_one_block(&state,
647 MCU_data[blkn][0], state.cur.last_dc_val[ci],
648 entropy->dc_derived_tbls[compptr->dc_tbl_no],
649 entropy->ac_derived_tbls[compptr->ac_tbl_no]))
650 return FALSE;
651 /* Update last_dc_val */
652 state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
653 }
654
655 /* Completed MCU, so update state */
656 cinfo->dest->next_output_byte = state.next_output_byte;
657 cinfo->dest->free_in_buffer = state.free_in_buffer;
658 ASSIGN_STATE(entropy->saved, state.cur);
659
660 /* Update restart-interval state too */
661 if (cinfo->restart_interval) {
662 if (entropy->restarts_to_go == 0) {
663 entropy->restarts_to_go = cinfo->restart_interval;
664 entropy->next_restart_num++;
665 entropy->next_restart_num &= 7;
666 }
667 entropy->restarts_to_go--;
668 }
669
670 return TRUE;
671}
672
673
674/*
675 * Finish up at the end of a Huffman-compressed scan.
676 */
677
678METHODDEF(void)
679finish_pass_huff (j_compress_ptr cinfo)
680{
681 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
682 working_state state;
683
684 /* Load up working state ... flush_bits needs it */
685 state.next_output_byte = cinfo->dest->next_output_byte;
686 state.free_in_buffer = cinfo->dest->free_in_buffer;
687 ASSIGN_STATE(state.cur, entropy->saved);
688 state.cinfo = cinfo;
689
690 /* Flush out the last data */
691 if (! flush_bits(&state))
692 ERREXIT(cinfo, JERR_CANT_SUSPEND);
693
694 /* Update state */
695 cinfo->dest->next_output_byte = state.next_output_byte;
696 cinfo->dest->free_in_buffer = state.free_in_buffer;
697 ASSIGN_STATE(entropy->saved, state.cur);
698}
699
700
701/*
702 * Huffman coding optimization.
703 *
704 * We first scan the supplied data and count the number of uses of each symbol
705 * that is to be Huffman-coded. (This process MUST agree with the code above.)
706 * Then we build a Huffman coding tree for the observed counts.
707 * Symbols which are not needed at all for the particular image are not
708 * assigned any code, which saves space in the DHT marker as well as in
709 * the compressed data.
710 */
711
712#ifdef ENTROPY_OPT_SUPPORTED
713
714
715/* Process a single block's worth of coefficients */
716
717LOCAL(void)
718htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
719 long dc_counts[], long ac_counts[])
720{
721 register int temp;
722 register int nbits;
723 register int k, r;
724
725 /* Encode the DC coefficient difference per section F.1.2.1 */
726
727 temp = block[0] - last_dc_val;
728 if (temp < 0)
729 temp = -temp;
730
731 /* Find the number of bits needed for the magnitude of the coefficient */
732 nbits = 0;
733 while (temp) {
734 nbits++;
735 temp >>= 1;
736 }
737 /* Check for out-of-range coefficient values.
738 * Since we're encoding a difference, the range limit is twice as much.
739 */
740 if (nbits > MAX_COEF_BITS+1)
741 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
742
743 /* Count the Huffman symbol for the number of bits */
744 dc_counts[nbits]++;
745
746 /* Encode the AC coefficients per section F.1.2.2 */
747
748 r = 0; /* r = run length of zeros */
749
750 for (k = 1; k < DCTSIZE2; k++) {
751 if ((temp = block[jpeg_natural_order[k]]) == 0) {
752 r++;
753 } else {
754 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
755 while (r > 15) {
756 ac_counts[0xF0]++;
757 r -= 16;
758 }
759
760 /* Find the number of bits needed for the magnitude of the coefficient */
761 if (temp < 0)
762 temp = -temp;
763
764 /* Find the number of bits needed for the magnitude of the coefficient */
765 nbits = 1; /* there must be at least one 1 bit */
766 while ((temp >>= 1))
767 nbits++;
768 /* Check for out-of-range coefficient values */
769 if (nbits > MAX_COEF_BITS)
770 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
771
772 /* Count Huffman symbol for run length / number of bits */
773 ac_counts[(r << 4) + nbits]++;
774
775 r = 0;
776 }
777 }
778
779 /* If the last coef(s) were zero, emit an end-of-block code */
780 if (r > 0)
781 ac_counts[0]++;
782}
783
784
785/*
786 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
787 * No data is actually output, so no suspension return is possible.
788 */
789
790METHODDEF(boolean)
791encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
792{
793 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
794 int blkn, ci;
795 jpeg_component_info * compptr;
796
797 /* Take care of restart intervals if needed */
798 if (cinfo->restart_interval) {
799 if (entropy->restarts_to_go == 0) {
800 /* Re-initialize DC predictions to 0 */
801 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
802 entropy->saved.last_dc_val[ci] = 0;
803 /* Update restart state */
804 entropy->restarts_to_go = cinfo->restart_interval;
805 }
806 entropy->restarts_to_go--;
807 }
808
809 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
810 ci = cinfo->MCU_membership[blkn];
811 compptr = cinfo->cur_comp_info[ci];
812 htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
813 entropy->dc_count_ptrs[compptr->dc_tbl_no],
814 entropy->ac_count_ptrs[compptr->ac_tbl_no]);
815 entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
816 }
817
818 return TRUE;
819}
820
821
822/*
823 * Generate the best Huffman code table for the given counts, fill htbl.
824 * Note this is also used by jcphuff.c.
825 *
826 * The JPEG standard requires that no symbol be assigned a codeword of all
827 * one bits (so that padding bits added at the end of a compressed segment
828 * can't look like a valid code). Because of the canonical ordering of
829 * codewords, this just means that there must be an unused slot in the
830 * longest codeword length category. Section K.2 of the JPEG spec suggests
831 * reserving such a slot by pretending that symbol 256 is a valid symbol
832 * with count 1. In theory that's not optimal; giving it count zero but
833 * including it in the symbol set anyway should give a better Huffman code.
834 * But the theoretically better code actually seems to come out worse in
835 * practice, because it produces more all-ones bytes (which incur stuffed
836 * zero bytes in the final file). In any case the difference is tiny.
837 *
838 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
839 * If some symbols have a very small but nonzero probability, the Huffman tree
840 * must be adjusted to meet the code length restriction. We currently use
841 * the adjustment method suggested in JPEG section K.2. This method is *not*
842 * optimal; it may not choose the best possible limited-length code. But
843 * typically only very-low-frequency symbols will be given less-than-optimal
844 * lengths, so the code is almost optimal. Experimental comparisons against
845 * an optimal limited-length-code algorithm indicate that the difference is
846 * microscopic --- usually less than a hundredth of a percent of total size.
847 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
848 */
849
850GLOBAL(void)
851jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
852{
853#define MAX_CLEN 32 /* assumed maximum initial code length */
854 UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
855 int codesize[257]; /* codesize[k] = code length of symbol k */
856 int others[257]; /* next symbol in current branch of tree */
857 int c1, c2;
858 int p, i, j;
859 long v;
860
861 /* This algorithm is explained in section K.2 of the JPEG standard */
862
863 MEMZERO(bits, SIZEOF(bits));
864 MEMZERO(codesize, SIZEOF(codesize));
865 for (i = 0; i < 257; i++)
866 others[i] = -1; /* init links to empty */
867
868 freq[256] = 1; /* make sure 256 has a nonzero count */
869 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
870 * that no real symbol is given code-value of all ones, because 256
871 * will be placed last in the largest codeword category.
872 */
873
874 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
875
876 for (;;) {
877 /* Find the smallest nonzero frequency, set c1 = its symbol */
878 /* In case of ties, take the larger symbol number */
879 c1 = -1;
880 v = 1000000000L;
881 for (i = 0; i <= 256; i++) {
882 if (freq[i] && freq[i] <= v) {
883 v = freq[i];
884 c1 = i;
885 }
886 }
887
888 /* Find the next smallest nonzero frequency, set c2 = its symbol */
889 /* In case of ties, take the larger symbol number */
890 c2 = -1;
891 v = 1000000000L;
892 for (i = 0; i <= 256; i++) {
893 if (freq[i] && freq[i] <= v && i != c1) {
894 v = freq[i];
895 c2 = i;
896 }
897 }
898
899 /* Done if we've merged everything into one frequency */
900 if (c2 < 0)
901 break;
902
903 /* Else merge the two counts/trees */
904 freq[c1] += freq[c2];
905 freq[c2] = 0;
906
907 /* Increment the codesize of everything in c1's tree branch */
908 codesize[c1]++;
909 while (others[c1] >= 0) {
910 c1 = others[c1];
911 codesize[c1]++;
912 }
913
914 others[c1] = c2; /* chain c2 onto c1's tree branch */
915
916 /* Increment the codesize of everything in c2's tree branch */
917 codesize[c2]++;
918 while (others[c2] >= 0) {
919 c2 = others[c2];
920 codesize[c2]++;
921 }
922 }
923
924 /* Now count the number of symbols of each code length */
925 for (i = 0; i <= 256; i++) {
926 if (codesize[i]) {
927 /* The JPEG standard seems to think that this can't happen, */
928 /* but I'm paranoid... */
929 if (codesize[i] > MAX_CLEN)
930 ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
931
932 bits[codesize[i]]++;
933 }
934 }
935
936 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
937 * Huffman procedure assigned any such lengths, we must adjust the coding.
938 * Here is what the JPEG spec says about how this next bit works:
939 * Since symbols are paired for the longest Huffman code, the symbols are
940 * removed from this length category two at a time. The prefix for the pair
941 * (which is one bit shorter) is allocated to one of the pair; then,
942 * skipping the BITS entry for that prefix length, a code word from the next
943 * shortest nonzero BITS entry is converted into a prefix for two code words
944 * one bit longer.
945 */
946
947 for (i = MAX_CLEN; i > 16; i--) {
948 while (bits[i] > 0) {
949 j = i - 2; /* find length of new prefix to be used */
950 while (bits[j] == 0)
951 j--;
952
953 bits[i] -= 2; /* remove two symbols */
954 bits[i-1]++; /* one goes in this length */
955 bits[j+1] += 2; /* two new symbols in this length */
956 bits[j]--; /* symbol of this length is now a prefix */
957 }
958 }
959
960 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
961 while (bits[i] == 0) /* find largest codelength still in use */
962 i--;
963 bits[i]--;
964
965 /* Return final symbol counts (only for lengths 0..16) */
966 MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
967
968 /* Return a list of the symbols sorted by code length */
969 /* It's not real clear to me why we don't need to consider the codelength
970 * changes made above, but the JPEG spec seems to think this works.
971 */
972 p = 0;
973 for (i = 1; i <= MAX_CLEN; i++) {
974 for (j = 0; j <= 255; j++) {
975 if (codesize[j] == i) {
976 htbl->huffval[p] = (UINT8) j;
977 p++;
978 }
979 }
980 }
981
982 /* Set sent_table FALSE so updated table will be written to JPEG file. */
983 htbl->sent_table = FALSE;
984}
985
986
987/*
988 * Finish up a statistics-gathering pass and create the new Huffman tables.
989 */
990
991METHODDEF(void)
992finish_pass_gather (j_compress_ptr cinfo)
993{
994 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
995 int ci, dctbl, actbl;
996 jpeg_component_info * compptr;
997 JHUFF_TBL **htblptr;
998 boolean did_dc[NUM_HUFF_TBLS];
999 boolean did_ac[NUM_HUFF_TBLS];
1000
1001 /* It's important not to apply jpeg_gen_optimal_table more than once
1002 * per table, because it clobbers the input frequency counts!
1003 */
1004 MEMZERO(did_dc, SIZEOF(did_dc));
1005 MEMZERO(did_ac, SIZEOF(did_ac));
1006
1007 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1008 compptr = cinfo->cur_comp_info[ci];
1009 dctbl = compptr->dc_tbl_no;
1010 actbl = compptr->ac_tbl_no;
1011 if (! did_dc[dctbl]) {
1012 htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
1013 if (*htblptr == NULL)
1014 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1015 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1016 did_dc[dctbl] = TRUE;
1017 }
1018 if (! did_ac[actbl]) {
1019 htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
1020 if (*htblptr == NULL)
1021 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1022 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1023 did_ac[actbl] = TRUE;
1024 }
1025 }
1026}
1027
1028
1029#endif /* ENTROPY_OPT_SUPPORTED */
1030
1031
1032/*
1033 * Module initialization routine for Huffman entropy encoding.
1034 */
1035
1036GLOBAL(void)
1037jinit_huff_encoder (j_compress_ptr cinfo)
1038{
1039 huff_entropy_ptr entropy;
1040 int i;
1041
1042 entropy = (huff_entropy_ptr)
1043 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1044 SIZEOF(huff_entropy_encoder));
1045 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
1046 entropy->pub.start_pass = start_pass_huff;
1047
1048 /* Mark tables unallocated */
1049 for (i = 0; i < NUM_HUFF_TBLS; i++) {
1050 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1051#ifdef ENTROPY_OPT_SUPPORTED
1052 entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1053#endif
1054 }
1055}