blob: 2f70331327c939bd22e1e5ff1613c4692402824f [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/planar_functions.h"
#include <string.h> // for memset()
#include "libyuv/cpu_id.h"
#ifdef HAVE_JPEG
#include "libyuv/mjpeg_decoder.h"
#endif
#include "libyuv/row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// Copy a plane of data
LIBYUV_API
void CopyPlane(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
// Coalesce contiguous rows.
if (src_stride_y == width &&
dst_stride_y == width) {
CopyPlane(src_y, 0,
dst_y, 0,
width * height, 1);
return;
}
void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C;
#if defined(HAS_COPYROW_X86)
if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) {
CopyRow = CopyRow_X86;
}
#endif
#if defined(HAS_COPYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
CopyRow = CopyRow_SSE2;
}
#endif
#if defined(HAS_COPYROW_ERMS)
if (TestCpuFlag(kCpuHasERMS)) {
CopyRow = CopyRow_ERMS;
}
#endif
#if defined(HAS_COPYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 32)) {
CopyRow = CopyRow_NEON;
}
#endif
#if defined(HAS_COPYROW_MIPS)
if (TestCpuFlag(kCpuHasMIPS)) {
CopyRow = CopyRow_MIPS;
}
#endif
// Copy plane
for (int y = 0; y < height; ++y) {
CopyRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
}
// Copy I422.
LIBYUV_API
int I422Copy(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height);
return 0;
}
// Copy I444.
LIBYUV_API
int I444Copy(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
return 0;
}
// Copy I400.
LIBYUV_API
int I400ToI400(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
if (!src_y || !dst_y || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
}
// Convert I420 to I400.
LIBYUV_API
int I420ToI400(const uint8* src_y, int src_stride_y,
uint8*, int, // src_u
uint8*, int, // src_v
uint8* dst_y, int dst_stride_y,
int width, int height) {
if (!src_y || !dst_y || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
}
// Mirror a plane of data
void MirrorPlane(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C;
#if defined(HAS_MIRRORROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) {
MirrorRow = MirrorRow_NEON;
}
#endif
#if defined(HAS_MIRRORROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) {
MirrorRow = MirrorRow_SSE2;
}
#endif
#if defined(HAS_MIRRORROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
MirrorRow = MirrorRow_SSSE3;
}
#endif
#if defined(HAS_MIRRORROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && IS_ALIGNED(width, 32)) {
MirrorRow = MirrorRow_AVX2;
}
#endif
// Mirror plane
for (int y = 0; y < height; ++y) {
MirrorRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
}
// Convert YUY2 to I422.
LIBYUV_API
int YUY2ToI422(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
src_stride_yuy2 = -src_stride_yuy2;
}
// Coalesce contiguous rows.
if (src_stride_yuy2 == width * 2 &&
dst_stride_y == width &&
dst_stride_u * 2 == width &&
dst_stride_v * 2 == width) {
return YUY2ToI422(src_yuy2, 0,
dst_y, 0,
dst_u, 0,
dst_v, 0,
width * height, 1);
}
void (*YUY2ToUV422Row)(const uint8* src_yuy2,
uint8* dst_u, uint8* dst_v, int pix);
void (*YUY2ToYRow)(const uint8* src_yuy2,
uint8* dst_y, int pix);
YUY2ToYRow = YUY2ToYRow_C;
YUY2ToUV422Row = YUY2ToUV422Row_C;
#if defined(HAS_YUY2TOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && width >= 16) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2;
YUY2ToYRow = YUY2ToYRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
YUY2ToUV422Row = YUY2ToUV422Row_Unaligned_SSE2;
YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2;
if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) {
YUY2ToUV422Row = YUY2ToUV422Row_SSE2;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
YUY2ToYRow = YUY2ToYRow_SSE2;
}
}
}
}
#endif
#if defined(HAS_YUY2TOYROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && width >= 32) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_AVX2;
YUY2ToYRow = YUY2ToYRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
YUY2ToUV422Row = YUY2ToUV422Row_AVX2;
YUY2ToYRow = YUY2ToYRow_AVX2;
}
}
#endif
#if defined(HAS_YUY2TOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
YUY2ToYRow = YUY2ToYRow_Any_NEON;
if (width >= 16) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON;
}
if (IS_ALIGNED(width, 16)) {
YUY2ToYRow = YUY2ToYRow_NEON;
YUY2ToUV422Row = YUY2ToUV422Row_NEON;
}
}
#endif
for (int y = 0; y < height; ++y) {
YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width);
YUY2ToYRow(src_yuy2, dst_y, width);
src_yuy2 += src_stride_yuy2;
dst_y += dst_stride_y;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
return 0;
}
// Convert UYVY to I422.
LIBYUV_API
int UYVYToI422(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
src_stride_uyvy = -src_stride_uyvy;
}
// Coalesce contiguous rows.
if (src_stride_uyvy == width * 2 &&
dst_stride_y == width &&
dst_stride_u * 2 == width &&
dst_stride_v * 2 == width) {
return UYVYToI422(src_uyvy, 0,
dst_y, 0,
dst_u, 0,
dst_v, 0,
width * height, 1);
}
void (*UYVYToUV422Row)(const uint8* src_uyvy,
uint8* dst_u, uint8* dst_v, int pix);
void (*UYVYToYRow)(const uint8* src_uyvy,
uint8* dst_y, int pix);
UYVYToYRow = UYVYToYRow_C;
UYVYToUV422Row = UYVYToUV422Row_C;
#if defined(HAS_UYVYTOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && width >= 16) {
UYVYToUV422Row = UYVYToUV422Row_Any_SSE2;
UYVYToYRow = UYVYToYRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
UYVYToUV422Row = UYVYToUV422Row_Unaligned_SSE2;
UYVYToYRow = UYVYToYRow_Unaligned_SSE2;
if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) {
UYVYToUV422Row = UYVYToUV422Row_SSE2;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
UYVYToYRow = UYVYToYRow_SSE2;
}
}
}
}
#endif
#if defined(HAS_UYVYTOYROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && width >= 32) {
UYVYToUV422Row = UYVYToUV422Row_Any_AVX2;
UYVYToYRow = UYVYToYRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
UYVYToUV422Row = UYVYToUV422Row_AVX2;
UYVYToYRow = UYVYToYRow_AVX2;
}
}
#endif
#if defined(HAS_UYVYTOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
UYVYToYRow = UYVYToYRow_Any_NEON;
if (width >= 16) {
UYVYToUV422Row = UYVYToUV422Row_Any_NEON;
}
if (IS_ALIGNED(width, 16)) {
UYVYToYRow = UYVYToYRow_NEON;
UYVYToUV422Row = UYVYToUV422Row_NEON;
}
}
#endif
for (int y = 0; y < height; ++y) {
UYVYToUV422Row(src_uyvy, dst_u, dst_v, width);
UYVYToYRow(src_uyvy, dst_y, width);
src_uyvy += src_stride_uyvy;
dst_y += dst_stride_y;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
return 0;
}
// Mirror I400 with optional flipping
LIBYUV_API
int I400Mirror(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
if (!src_y || !dst_y ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
}
// Mirror I420 with optional flipping
LIBYUV_API
int I420Mirror(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
int halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if (dst_y) {
MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
}
MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
return 0;
}
// ARGB mirror.
LIBYUV_API
int ARGBMirror(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) =
ARGBMirrorRow_C;
#if defined(HAS_ARGBMIRRORROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBMirrorRow = ARGBMirrorRow_SSSE3;
}
#endif
#if defined(HAS_ARGBMIRRORROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && IS_ALIGNED(width, 8)) {
ARGBMirrorRow = ARGBMirrorRow_AVX2;
}
#endif
#if defined(HAS_ARGBMIRRORROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 4)) {
ARGBMirrorRow = ARGBMirrorRow_NEON;
}
#endif
// Mirror plane
for (int y = 0; y < height; ++y) {
ARGBMirrorRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Get a blender that optimized for the CPU, alignment and pixel count.
// As there are 6 blenders to choose from, the caller should try to use
// the same blend function for all pixels if possible.
LIBYUV_API
ARGBBlendRow GetARGBBlend() {
void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
uint8* dst_argb, int width) = ARGBBlendRow_C;
#if defined(HAS_ARGBBLENDROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ARGBBlendRow = ARGBBlendRow_SSSE3;
return ARGBBlendRow;
}
#endif
#if defined(HAS_ARGBBLENDROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBBlendRow = ARGBBlendRow_SSE2;
}
#endif
#if defined(HAS_ARGBBLENDROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ARGBBlendRow = ARGBBlendRow_NEON;
}
#endif
return ARGBBlendRow;
}
// Alpha Blend 2 ARGB images and store to destination.
LIBYUV_API
int ARGBBlend(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBBlend(src_argb0, 0,
src_argb1, 0,
dst_argb, 0,
width * height, 1);
}
void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
uint8* dst_argb, int width) = GetARGBBlend();
for (int y = 0; y < height; ++y) {
ARGBBlendRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Multiply 2 ARGB images and store to destination.
LIBYUV_API
int ARGBMultiply(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBMultiply(src_argb0, 0,
src_argb1, 0,
dst_argb, 0,
width * height, 1);
}
void (*ARGBMultiplyRow)(const uint8* src0, const uint8* src1, uint8* dst,
int width) = ARGBMultiplyRow_C;
#if defined(HAS_ARGBMULTIPLYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && width >= 4) {
ARGBMultiplyRow = ARGBMultiplyRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBMultiplyRow = ARGBMultiplyRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBMULTIPLYROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && width >= 8) {
ARGBMultiplyRow = ARGBMultiplyRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBMultiplyRow = ARGBMultiplyRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBMULTIPLYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
ARGBMultiplyRow = ARGBMultiplyRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBMultiplyRow = ARGBMultiplyRow_NEON;
}
}
#endif
// Multiply plane
for (int y = 0; y < height; ++y) {
ARGBMultiplyRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Add 2 ARGB images and store to destination.
LIBYUV_API
int ARGBAdd(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBAdd(src_argb0, 0,
src_argb1, 0,
dst_argb, 0,
width * height, 1);
}
void (*ARGBAddRow)(const uint8* src0, const uint8* src1, uint8* dst,
int width) = ARGBAddRow_C;
#if defined(HAS_ARGBADDROW_SSE2) && defined(_MSC_VER)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBAddRow = ARGBAddRow_SSE2;
}
#endif
#if defined(HAS_ARGBADDROW_SSE2) && !defined(_MSC_VER)
if (TestCpuFlag(kCpuHasSSE2) && width >= 4) {
ARGBAddRow = ARGBAddRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBAddRow = ARGBAddRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBADDROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && width >= 8) {
ARGBAddRow = ARGBAddRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBAddRow = ARGBAddRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBADDROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
ARGBAddRow = ARGBAddRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBAddRow = ARGBAddRow_NEON;
}
}
#endif
// Add plane
for (int y = 0; y < height; ++y) {
ARGBAddRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Subtract 2 ARGB images and store to destination.
LIBYUV_API
int ARGBSubtract(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBSubtract(src_argb0, 0,
src_argb1, 0,
dst_argb, 0,
width * height, 1);
}
void (*ARGBSubtractRow)(const uint8* src0, const uint8* src1, uint8* dst,
int width) = ARGBSubtractRow_C;
#if defined(HAS_ARGBSUBTRACTROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && width >= 4) {
ARGBSubtractRow = ARGBSubtractRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBSubtractRow = ARGBSubtractRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBSUBTRACTROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && width >= 8) {
ARGBSubtractRow = ARGBSubtractRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBSubtractRow = ARGBSubtractRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBSUBTRACTROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
ARGBSubtractRow = ARGBSubtractRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBSubtractRow = ARGBSubtractRow_NEON;
}
}
#endif
// Subtract plane
for (int y = 0; y < height; ++y) {
ARGBSubtractRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert I422 to BGRA.
LIBYUV_API
int I422ToBGRA(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_bgra, int dst_stride_bgra,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_bgra ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_bgra = dst_bgra + (height - 1) * dst_stride_bgra;
dst_stride_bgra = -dst_stride_bgra;
}
// Coalesce contiguous rows.
if (src_stride_y == width &&
src_stride_u * 2 == width &&
src_stride_v * 2 == width &&
dst_stride_bgra == width * 4) {
return I422ToBGRA(src_y, 0,
src_u, 0,
src_v, 0,
dst_bgra, 0,
width * height, 1);
}
void (*I422ToBGRARow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I422ToBGRARow_C;
#if defined(HAS_I422TOBGRAROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I422ToBGRARow = I422ToBGRARow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I422ToBGRARow = I422ToBGRARow_NEON;
}
}
#elif defined(HAS_I422TOBGRAROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I422ToBGRARow = I422ToBGRARow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
I422ToBGRARow = I422ToBGRARow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_bgra, 16) && IS_ALIGNED(dst_stride_bgra, 16)) {
I422ToBGRARow = I422ToBGRARow_SSSE3;
}
}
}
#elif defined(HAS_I422TOBGRAROW_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) && IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) &&
IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) &&
IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) &&
IS_ALIGNED(dst_bgra, 4) && IS_ALIGNED(dst_stride_bgra, 4)) {
I422ToBGRARow = I422ToBGRARow_MIPS_DSPR2;
}
#endif
for (int y = 0; y < height; ++y) {
I422ToBGRARow(src_y, src_u, src_v, dst_bgra, width);
dst_bgra += dst_stride_bgra;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I422 to ABGR.
LIBYUV_API
int I422ToABGR(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_abgr, int dst_stride_abgr,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_abgr ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_abgr = dst_abgr + (height - 1) * dst_stride_abgr;
dst_stride_abgr = -dst_stride_abgr;
}
// Coalesce contiguous rows.
if (src_stride_y == width &&
src_stride_u * 2 == width &&
src_stride_v * 2 == width &&
dst_stride_abgr == width * 4) {
return I422ToABGR(src_y, 0,
src_u, 0,
src_v, 0,
dst_abgr, 0,
width * height, 1);
}
void (*I422ToABGRRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I422ToABGRRow_C;
#if defined(HAS_I422TOABGRROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I422ToABGRRow = I422ToABGRRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I422ToABGRRow = I422ToABGRRow_NEON;
}
}
#elif defined(HAS_I422TOABGRROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I422ToABGRRow = I422ToABGRRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
I422ToABGRRow = I422ToABGRRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_abgr, 16) && IS_ALIGNED(dst_stride_abgr, 16)) {
I422ToABGRRow = I422ToABGRRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height; ++y) {
I422ToABGRRow(src_y, src_u, src_v, dst_abgr, width);
dst_abgr += dst_stride_abgr;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I422 to RGBA.
LIBYUV_API
int I422ToRGBA(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_rgba, int dst_stride_rgba,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_rgba ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_rgba = dst_rgba + (height - 1) * dst_stride_rgba;
dst_stride_rgba = -dst_stride_rgba;
}
// Coalesce contiguous rows.
if (src_stride_y == width &&
src_stride_u * 2 == width &&
src_stride_v * 2 == width &&
dst_stride_rgba == width * 4) {
return I422ToRGBA(src_y, 0,
src_u, 0,
src_v, 0,
dst_rgba, 0,
width * height, 1);
}
void (*I422ToRGBARow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I422ToRGBARow_C;
#if defined(HAS_I422TORGBAROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I422ToRGBARow = I422ToRGBARow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I422ToRGBARow = I422ToRGBARow_NEON;
}
}
#elif defined(HAS_I422TORGBAROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I422ToRGBARow = I422ToRGBARow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
I422ToRGBARow = I422ToRGBARow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_rgba, 16) && IS_ALIGNED(dst_stride_rgba, 16)) {
I422ToRGBARow = I422ToRGBARow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height; ++y) {
I422ToRGBARow(src_y, src_u, src_v, dst_rgba, width);
dst_rgba += dst_stride_rgba;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert NV12 to RGB565.
LIBYUV_API
int NV12ToRGB565(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_rgb565, int dst_stride_rgb565,
int width, int height) {
if (!src_y || !src_uv || !dst_rgb565 ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565;
dst_stride_rgb565 = -dst_stride_rgb565;
}
void (*NV12ToRGB565Row)(const uint8* y_buf,
const uint8* uv_buf,
uint8* rgb_buf,
int width) = NV12ToRGB565Row_C;
#if defined(HAS_NV12TORGB565ROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8 && width * 4 <= kMaxStride) {
NV12ToRGB565Row = NV12ToRGB565Row_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
NV12ToRGB565Row = NV12ToRGB565Row_SSSE3;
}
}
#elif defined(HAS_NV12TORGB565ROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
NV12ToRGB565Row = NV12ToRGB565Row_Any_NEON;
if (IS_ALIGNED(width, 8)) {
NV12ToRGB565Row = NV12ToRGB565Row_NEON;
}
}
#endif
for (int y = 0; y < height; ++y) {
NV12ToRGB565Row(src_y, src_uv, dst_rgb565, width);
dst_rgb565 += dst_stride_rgb565;
src_y += src_stride_y;
if (y & 1) {
src_uv += src_stride_uv;
}
}
return 0;
}
// Convert NV21 to RGB565.
LIBYUV_API
int NV21ToRGB565(const uint8* src_y, int src_stride_y,
const uint8* src_vu, int src_stride_vu,
uint8* dst_rgb565, int dst_stride_rgb565,
int width, int height) {
if (!src_y || !src_vu || !dst_rgb565 ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565;
dst_stride_rgb565 = -dst_stride_rgb565;
}
void (*NV21ToRGB565Row)(const uint8* y_buf,
const uint8* src_vu,
uint8* rgb_buf,
int width) = NV21ToRGB565Row_C;
#if defined(HAS_NV21TORGB565ROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8 && width * 4 <= kMaxStride) {
NV21ToRGB565Row = NV21ToRGB565Row_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
NV21ToRGB565Row = NV21ToRGB565Row_SSSE3;
}
}
#elif defined(HAS_NV21TORGB565ROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
NV21ToRGB565Row = NV21ToRGB565Row_Any_NEON;
if (IS_ALIGNED(width, 8)) {
NV21ToRGB565Row = NV21ToRGB565Row_NEON;
}
}
#endif
for (int y = 0; y < height; ++y) {
NV21ToRGB565Row(src_y, src_vu, dst_rgb565, width);
dst_rgb565 += dst_stride_rgb565;
src_y += src_stride_y;
if (y & 1) {
src_vu += src_stride_vu;
}
}
return 0;
}
LIBYUV_API
void SetPlane(uint8* dst_y, int dst_stride_y,
int width, int height,
uint32 value) {
// Coalesce contiguous rows.
if (dst_stride_y == width) {
SetPlane(dst_y, 0,
width * height, 1,
value);
return;
}
void (*SetRow)(uint8* dst, uint32 value, int pix) = SetRow_C;
#if defined(HAS_SETROW_NEON)
if (TestCpuFlag(kCpuHasNEON) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
SetRow = SetRow_NEON;
}
#endif
#if defined(HAS_SETROW_X86)
if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) {
SetRow = SetRow_X86;
}
#endif
uint32 v32 = value | (value << 8) | (value << 16) | (value << 24);
// Set plane
for (int y = 0; y < height; ++y) {
SetRow(dst_y, v32, width);
dst_y += dst_stride_y;
}
}
// Draw a rectangle into I420
LIBYUV_API
int I420Rect(uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int x, int y,
int width, int height,
int value_y, int value_u, int value_v) {
if (!dst_y || !dst_u || !dst_v ||
width <= 0 || height <= 0 ||
x < 0 || y < 0 ||
value_y < 0 || value_y > 255 ||
value_u < 0 || value_u > 255 ||
value_v < 0 || value_v > 255) {
return -1;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
uint8* start_y = dst_y + y * dst_stride_y + x;
uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2);
uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2);
SetPlane(start_y, dst_stride_y, width, height, value_y);
SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u);
SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v);
return 0;
}
// Draw a rectangle into ARGB
LIBYUV_API
int ARGBRect(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y,
int width, int height,
uint32 value) {
if (!dst_argb ||
width <= 0 || height <= 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce contiguous rows.
if (dst_stride_argb == width * 4) {
return ARGBRect(dst_argb, dst_stride_argb,
dst_x, dst_y,
width * height, 1, value);
}
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
#if defined(HAS_SETROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBSetRows_NEON(dst, value, width, dst_stride_argb, height);
return 0;
}
#endif
#if defined(HAS_SETROW_X86)
if (TestCpuFlag(kCpuHasX86)) {
ARGBSetRows_X86(dst, value, width, dst_stride_argb, height);
return 0;
}
#endif
ARGBSetRows_C(dst, value, width, dst_stride_argb, height);
return 0;
}
// Convert unattentuated ARGB to preattenuated ARGB.
// An unattenutated ARGB alpha blend uses the formula
// p = a * f + (1 - a) * b
// where
// p is output pixel
// f is foreground pixel
// b is background pixel
// a is alpha value from foreground pixel
// An preattenutated ARGB alpha blend uses the formula
// p = f + (1 - a) * b
// where
// f is foreground pixel premultiplied by alpha
LIBYUV_API
int ARGBAttenuate(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBAttenuate(src_argb, 0,
dst_argb, 0,
width * height, 1);
}
void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBAttenuateRow_C;
#if defined(HAS_ARGBATTENUATEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && width >= 4 &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBAttenuateRow = ARGBAttenuateRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBAttenuateRow = ARGBAttenuateRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBATTENUATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 4 &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBAttenuateRow = ARGBAttenuateRow_Any_SSSE3;
if (IS_ALIGNED(width, 4)) {
ARGBAttenuateRow = ARGBAttenuateRow_SSSE3;
}
}
#endif
#if defined(HAS_ARGBATTENUATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && width >= 8) {
ARGBAttenuateRow = ARGBAttenuateRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBAttenuateRow = ARGBAttenuateRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBATTENUATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
ARGBAttenuateRow = ARGBAttenuateRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBAttenuateRow = ARGBAttenuateRow_NEON;
}
}
#endif
for (int y = 0; y < height; ++y) {
ARGBAttenuateRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert preattentuated ARGB to unattenuated ARGB.
LIBYUV_API
int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBUnattenuate(src_argb, 0,
dst_argb, 0,
width * height, 1);
}
void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBUnattenuateRow_C;
#if defined(HAS_ARGBUNATTENUATEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && width >= 4 &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBUnattenuateRow = ARGBUnattenuateRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2;
}
}
#endif
#if defined(HAS_ARGBUNATTENUATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && width >= 8) {
ARGBUnattenuateRow = ARGBUnattenuateRow_Any_AVX2;
if (IS_ALIGNED(width, 8)) {
ARGBUnattenuateRow = ARGBUnattenuateRow_AVX2;
}
}
#endif
// TODO(fbarchard): Neon version.
for (int y = 0; y < height; ++y) {
ARGBUnattenuateRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert ARGB to Grayed ARGB.
LIBYUV_API
int ARGBGrayTo(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBGrayTo(src_argb, 0,
dst_argb, 0,
width * height, 1);
}
void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBGrayRow_C;
#if defined(HAS_ARGBGRAYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBGrayRow = ARGBGrayRow_SSSE3;
}
#elif defined(HAS_ARGBGRAYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBGrayRow = ARGBGrayRow_NEON;
}
#endif
for (int y = 0; y < height; ++y) {
ARGBGrayRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Make a rectangle of ARGB gray scale.
LIBYUV_API
int ARGBGray(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y,
int width, int height) {
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce contiguous rows.
if (dst_stride_argb == width * 4) {
return ARGBGray(dst_argb, dst_stride_argb,
dst_x, dst_y,
width * height, 1);
}
void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBGrayRow_C;
#if defined(HAS_ARGBGRAYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBGrayRow = ARGBGrayRow_SSSE3;
}
#elif defined(HAS_ARGBGRAYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBGrayRow = ARGBGrayRow_NEON;
}
#endif
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
for (int y = 0; y < height; ++y) {
ARGBGrayRow(dst, dst, width);
dst += dst_stride_argb;
}
return 0;
}
// Make a rectangle of ARGB Sepia tone.
LIBYUV_API
int ARGBSepia(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y, int width, int height) {
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce contiguous rows.
if (dst_stride_argb == width * 4) {
return ARGBSepia(dst_argb, dst_stride_argb,
dst_x, dst_y,
width * height, 1);
}
void (*ARGBSepiaRow)(uint8* dst_argb, int width) = ARGBSepiaRow_C;
#if defined(HAS_ARGBSEPIAROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBSepiaRow = ARGBSepiaRow_SSSE3;
}
#elif defined(HAS_ARGBSEPIAROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBSepiaRow = ARGBSepiaRow_NEON;
}
#endif
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
for (int y = 0; y < height; ++y) {
ARGBSepiaRow(dst, width);
dst += dst_stride_argb;
}
return 0;
}
// Apply a 4x3 matrix rotation to each ARGB pixel.
LIBYUV_API
int ARGBColorMatrix(uint8* dst_argb, int dst_stride_argb,
const int8* matrix_argb,
int dst_x, int dst_y, int width, int height) {
if (!dst_argb || !matrix_argb || width <= 0 || height <= 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce contiguous rows.
if (dst_stride_argb == width * 4) {
return ARGBColorMatrix(dst_argb, dst_stride_argb,
matrix_argb,
dst_x, dst_y,
width * height, 1);
}
void (*ARGBColorMatrixRow)(uint8* dst_argb, const int8* matrix_argb,
int width) = ARGBColorMatrixRow_C;
#if defined(HAS_ARGBCOLORMATRIXROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3;
}
#elif defined(HAS_ARGBCOLORMATRIXROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBColorMatrixRow = ARGBColorMatrixRow_NEON;
}
#endif
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
for (int y = 0; y < height; ++y) {
ARGBColorMatrixRow(dst, matrix_argb, width);
dst += dst_stride_argb;
}
return 0;
}
// Apply a color table each ARGB pixel.
// Table contains 256 ARGB values.
LIBYUV_API
int ARGBColorTable(uint8* dst_argb, int dst_stride_argb,
const uint8* table_argb,
int dst_x, int dst_y, int width, int height) {
if (!dst_argb || !table_argb || width <= 0 || height <= 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
// Coalesce contiguous rows.
if (dst_stride_argb == width * 4) {
return ARGBColorTable(dst_argb, dst_stride_argb,
table_argb,
dst_x, dst_y,
width * height, 1);
}
void (*ARGBColorTableRow)(uint8* dst_argb, const uint8* table_argb,
int width) = ARGBColorTableRow_C;
#if defined(HAS_ARGBCOLORTABLEROW_X86)
if (TestCpuFlag(kCpuHasX86)) {
ARGBColorTableRow = ARGBColorTableRow_X86;
}
#endif
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
for (int y = 0; y < height; ++y) {
ARGBColorTableRow(dst, table_argb, width);
dst += dst_stride_argb;
}
return 0;
}
// ARGBQuantize is used to posterize art.
// e.g. rgb / qvalue * qvalue + qvalue / 2
// But the low levels implement efficiently with 3 parameters, and could be
// used for other high level operations.
// dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset;
// where scale is 1 / interval_size as a fixed point value.
// The divide is replaces with a multiply by reciprocal fixed point multiply.
// Caveat - although SSE2 saturates, the C function does not and should be used
// with care if doing anything but quantization.
LIBYUV_API
int ARGBQuantize(uint8* dst_argb, int dst_stride_argb,
int scale, int interval_size, int interval_offset,
int dst_x, int dst_y, int width, int height) {
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 ||
interval_size < 1 || interval_size > 255) {
return -1;
}
// Coalesce contiguous rows.
if (dst_stride_argb == width * 4) {
return ARGBQuantize(dst_argb, dst_stride_argb,
scale, interval_size, interval_offset,
dst_x, dst_y,
width * height, 1);
}
void (*ARGBQuantizeRow)(uint8* dst_argb, int scale, int interval_size,
int interval_offset, int width) = ARGBQuantizeRow_C;
#if defined(HAS_ARGBQUANTIZEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBQuantizeRow = ARGBQuantizeRow_SSE2;
}
#elif defined(HAS_ARGBQUANTIZEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBQuantizeRow = ARGBQuantizeRow_NEON;
}
#endif
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
for (int y = 0; y < height; ++y) {
ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width);
dst += dst_stride_argb;
}
return 0;
}
// Computes table of cumulative sum for image where the value is the sum
// of all values above and to the left of the entry. Used by ARGBBlur.
LIBYUV_API
int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb,
int32* dst_cumsum, int dst_stride32_cumsum,
int width, int height) {
if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) {
return -1;
}
void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum,
const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C;
#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
}
#endif
memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel.
int32* previous_cumsum = dst_cumsum;
for (int y = 0; y < height; ++y) {
ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width);
previous_cumsum = dst_cumsum;
dst_cumsum += dst_stride32_cumsum;
src_argb += src_stride_argb;
}
return 0;
}
// Blur ARGB image.
// Caller should allocate CumulativeSum table of width * height * 16 bytes
// aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory
// as the buffer is treated as circular.
LIBYUV_API
int ARGBBlur(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int32* dst_cumsum, int dst_stride32_cumsum,
int width, int height, int radius) {
if (!src_argb || !dst_argb || width <= 0 || height == 0) {
return -1;
}
void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum,
const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C;
void (*CUMULATIVESUMTOAVERAGEROW)(const int32* topleft, const int32* botleft,
int width, int area, uint8* dst, int count) = CumulativeSumToAverageRow_C;
#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
CUMULATIVESUMTOAVERAGEROW = CumulativeSumToAverageRow_SSE2;
}
#endif
// Compute enough CumulativeSum for first row to be blurred. After this
// one row of CumulativeSum is updated at a time.
ARGBComputeCumulativeSum(src_argb, src_stride_argb,
dst_cumsum, dst_stride32_cumsum,
width, radius);
src_argb = src_argb + radius * src_stride_argb;
int32* cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum];
const int32* max_cumsum_bot_row =
&dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum];
const int32* cumsum_top_row = &dst_cumsum[0];
for (int y = 0; y < height; ++y) {
int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0;
int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1);
int area = radius * (bot_y - top_y);
// Increment cumsum_top_row pointer with circular buffer wrap around.
if (top_y) {
cumsum_top_row += dst_stride32_cumsum;
if (cumsum_top_row >= max_cumsum_bot_row) {
cumsum_top_row = dst_cumsum;
}
}
// Increment cumsum_bot_row pointer with circular buffer wrap around and
// then fill in a row of CumulativeSum.
if ((y + radius) < height) {
const int32* prev_cumsum_bot_row = cumsum_bot_row;
cumsum_bot_row += dst_stride32_cumsum;
if (cumsum_bot_row >= max_cumsum_bot_row) {
cumsum_bot_row = dst_cumsum;
}
ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row,
width);
src_argb += src_stride_argb;
}
// Left clipped.
int boxwidth = radius * 4;
int x;
for (x = 0; x < radius + 1; ++x) {
CUMULATIVESUMTOAVERAGEROW(cumsum_top_row, cumsum_bot_row,
boxwidth, area, &dst_argb[x * 4], 1);
area += (bot_y - top_y);
boxwidth += 4;
}
// Middle unclipped.
int n = (width - 1) - radius - x + 1;
CUMULATIVESUMTOAVERAGEROW(cumsum_top_row, cumsum_bot_row,
boxwidth, area, &dst_argb[x * 4], n);
// Right clipped.
for (x += n; x <= width - 1; ++x) {
area -= (bot_y - top_y);
boxwidth -= 4;
CUMULATIVESUMTOAVERAGEROW(cumsum_top_row + (x - radius - 1) * 4,
cumsum_bot_row + (x - radius - 1) * 4,
boxwidth, area, &dst_argb[x * 4], 1);
}
dst_argb += dst_stride_argb;
}
return 0;
}
// Multiply ARGB image by a specified ARGB value.
LIBYUV_API
int ARGBShade(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height, uint32 value) {
if (!src_argb || !dst_argb || width <= 0 || height == 0 || value == 0u) {
return -1;
}
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBShade(src_argb, 0,
dst_argb, 0,
width * height, 1,
value);
}
void (*ARGBShadeRow)(const uint8* src_argb, uint8* dst_argb,
int width, uint32 value) = ARGBShadeRow_C;
#if defined(HAS_ARGBSHADEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBShadeRow = ARGBShadeRow_SSE2;
}
#elif defined(HAS_ARGBSHADEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
ARGBShadeRow = ARGBShadeRow_NEON;
}
#endif
for (int y = 0; y < height; ++y) {
ARGBShadeRow(src_argb, dst_argb, width, value);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Interpolate 2 ARGB images by specified amount (0 to 255).
// TODO(fbarchard): Consider selecting a specialization for interpolation so
// row function doesn't need to check interpolation on each row.
LIBYUV_API
int ARGBInterpolate(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height, int interpolation) {
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
// Coalesce contiguous rows.
if (src_stride_argb0 == width * 4 &&
src_stride_argb1 == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBInterpolate(src_argb0, 0,
src_argb1, 0,
dst_argb, 0,
width * height, 1,
interpolation);
}
void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
#if defined(HAS_INTERPOLATEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && width >= 4) {
InterpolateRow = InterpolateRow_Any_SSE2;
if (IS_ALIGNED(width, 4)) {
InterpolateRow = InterpolateRow_Unaligned_SSE2;
if (IS_ALIGNED(src_argb0, 16) && IS_ALIGNED(src_stride_argb0, 16) &&
IS_ALIGNED(src_argb1, 16) && IS_ALIGNED(src_stride_argb1, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
InterpolateRow = InterpolateRow_SSE2;
}
}
}
#endif
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 4) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(width, 4)) {
InterpolateRow = InterpolateRow_Unaligned_SSSE3;
if (IS_ALIGNED(src_argb0, 16) && IS_ALIGNED(src_stride_argb0, 16) &&
IS_ALIGNED(src_argb1, 16) && IS_ALIGNED(src_stride_argb1, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 4) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(width, 4)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROWS_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) && width >= 1 &&
IS_ALIGNED(src_argb0, 4) && IS_ALIGNED(src_stride_argb0, 4) &&
IS_ALIGNED(src_argb1, 4) && IS_ALIGNED(src_stride_argb1, 4) &&
IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) {
ScaleARGBFilterRows = InterpolateRow_MIPS_DSPR2;
}
#endif
for (int y = 0; y < height; ++y) {
InterpolateRow(dst_argb, src_argb0, src_argb1 - src_argb0,
width * 4, interpolation);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Shuffle ARGB channel order. e.g. BGRA to ARGB.
LIBYUV_API
int ARGBShuffle(const uint8* src_bgra, int src_stride_bgra,
uint8* dst_argb, int dst_stride_argb,
const uint8* shuffler, int width, int height) {
if (!src_bgra || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_bgra = src_bgra + (height - 1) * src_stride_bgra;
src_stride_bgra = -src_stride_bgra;
}
// Coalesce contiguous rows.
if (src_stride_bgra == width * 4 &&
dst_stride_argb == width * 4) {
return ARGBShuffle(src_bgra, 0,
dst_argb, 0,
shuffler,
width * height, 1);
}
void (*ARGBShuffleRow)(const uint8* src_bgra, uint8* dst_argb,
const uint8* shuffler, int pix) = ARGBShuffleRow_C;
#if defined(HAS_ARGBSHUFFLEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
ARGBShuffleRow = ARGBShuffleRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
ARGBShuffleRow = ARGBShuffleRow_Unaligned_SSSE3;
if (IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBShuffleRow = ARGBShuffleRow_SSSE3;
}
}
}
#endif
#if defined(HAS_ARGBSHUFFLEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && width >= 16) {
ARGBShuffleRow = ARGBShuffleRow_Any_AVX2;
if (IS_ALIGNED(width, 16)) {
ARGBShuffleRow = ARGBShuffleRow_AVX2;
}
}
#endif
#if defined(HAS_ARGBSHUFFLEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 4) {
ARGBShuffleRow = ARGBShuffleRow_Any_NEON;
if (IS_ALIGNED(width, 4)) {
ARGBShuffleRow = ARGBShuffleRow_NEON;
}
}
#endif
for (int y = 0; y < height; ++y) {
ARGBShuffleRow(src_bgra, dst_argb, shuffler, width);
src_bgra += src_stride_bgra;
dst_argb += dst_stride_argb;
}
return 0;
}
// Sobel ARGB effect.
LIBYUV_API
int ARGBSobel(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb || !dst_argb ||
width <= 0 || height == 0 || width > (kMaxStride / 4)) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// ARGBToBayer used to select G channel from ARGB.
void (*ARGBToBayerRow)(const uint8* src_argb, uint8* dst_bayer,
uint32 selector, int pix) = ARGBToBayerRow_C;
#if defined(HAS_ARGBTOBAYERROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8 &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
ARGBToBayerRow = ARGBToBayerRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
ARGBToBayerRow = ARGBToBayerRow_SSSE3;
}
}
#elif defined(HAS_ARGBTOBAYERROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
ARGBToBayerRow = ARGBToBayerRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBToBayerRow = ARGBToBayerRow_NEON;
}
}
#endif
void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1,
uint8* dst_sobely, int width) = SobelYRow_C;
#if defined(HAS_SOBELYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
SobelYRow = SobelYRow_SSSE3;
}
#endif
#if defined(HAS_SOBELYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelYRow = SobelYRow_NEON;
}
#endif
void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1,
const uint8* src_y2, uint8* dst_sobely, int width) =
SobelXRow_C;
#if defined(HAS_SOBELXROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
SobelXRow = SobelXRow_SSSE3;
}
#endif
#if defined(HAS_SOBELXROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelXRow = SobelXRow_NEON;
}
#endif
void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely,
uint8* dst_argb, int width) = SobelRow_C;
#if defined(HAS_SOBELROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
SobelRow = SobelRow_SSE2;
}
#endif
#if defined(HAS_SOBELROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
SobelRow = SobelRow_NEON;
}
#endif
const int kEdge = 16; // Extra pixels at start of row for extrude/align.
SIMD_ALIGNED(uint8 row_y[(kMaxStride / 4 + kEdge) * 3 + kEdge]);
SIMD_ALIGNED(uint8 row_sobelx[kMaxStride / 4]);
SIMD_ALIGNED(uint8 row_sobely[kMaxStride / 4]);
// Convert first row.
uint8* row_y0 = row_y + kEdge;
uint8* row_y1 = row_y0 + kMaxStride / 4;
uint8* row_y2 = row_y1 + kMaxStride / 4;
ARGBToBayerRow(src_argb, row_y0, 0x0d090501, width);
row_y0[-1] = row_y0[0];
row_y0[width] = row_y0[width - 1];
ARGBToBayerRow(src_argb, row_y1, 0x0d090501, width);
row_y1[-1] = row_y1[0];
row_y1[width] = row_y1[width - 1];
for (int y = 0; y < height; ++y) {
// Convert next row of ARGB to Y.
if (y < (height - 1)) {
src_argb += src_stride_argb;
}
ARGBToBayerRow(src_argb, row_y2, 0x0d090501, width);
row_y2[-1] = row_y2[0];
row_y2[width] = row_y2[width - 1];
SobelXRow(row_y0 - 1, row_y1 - 1, row_y2 - 1, row_sobelx, width);
SobelYRow(row_y0 - 1, row_y2 - 1, row_sobely, width);
SobelRow(row_sobelx, row_sobely, dst_argb, width);
// Cycle thru circular queue of 3 row_y buffers.
uint8* row_yt = row_y0;
row_y0 = row_y1;
row_y1 = row_y2;
row_y2 = row_yt;
dst_argb += dst_stride_argb;
}
return 0;
}
// SobelXY ARGB effect.
// Similar to Sobel, but also stores Sobel X in R and Sobel Y in B. G = Sobel.
LIBYUV_API
int ARGBSobelXY(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb || !dst_argb ||
width <= 0 || height == 0 || width > kMaxStride / 4) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
// ARGBToBayer used to select G channel from ARGB.
void (*ARGBToBayerRow)(const uint8* src_argb, uint8* dst_bayer,
uint32 selector, int pix) = ARGBToBayerRow_C;
#if defined(HAS_ARGBTOBAYERROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8 &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
ARGBToBayerRow = ARGBToBayerRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
ARGBToBayerRow = ARGBToBayerRow_SSSE3;
}
}
#elif defined(HAS_ARGBTOBAYERROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && width >= 8) {
ARGBToBayerRow = ARGBToBayerRow_Any_NEON;
if (IS_ALIGNED(width, 8)) {
ARGBToBayerRow = ARGBToBayerRow_NEON;
}
}
#endif
void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1,
uint8* dst_sobely, int width) = SobelYRow_C;
#if defined(HAS_SOBELYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
SobelYRow = SobelYRow_SSSE3;
}
#endif
#if defined(HAS_SOBELYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelYRow = SobelYRow_NEON;
}
#endif
void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1,
const uint8* src_y2, uint8* dst_sobely, int width) =
SobelXRow_C;
#if defined(HAS_SOBELXROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
SobelXRow = SobelXRow_SSSE3;
}
#endif
#if defined(HAS_SOBELXROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SobelXRow = SobelXRow_NEON;
}
#endif
void (*SobelXYRow)(const uint8* src_sobelx, const uint8* src_sobely,
uint8* dst_argb, int width) = SobelXYRow_C;
#if defined(HAS_SOBELXYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
SobelXYRow = SobelXYRow_SSE2;
}
#endif
#if defined(HAS_SOBELXYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
SobelXYRow = SobelXYRow_NEON;
}
#endif
const int kEdge = 16; // Extra pixels at start of row for extrude/align.
SIMD_ALIGNED(uint8 row_y[(kMaxStride / 4 + kEdge) * 3 + kEdge]);
SIMD_ALIGNED(uint8 row_sobelx[kMaxStride / 4]);
SIMD_ALIGNED(uint8 row_sobely[kMaxStride / 4]);
// Convert first row.
uint8* row_y0 = row_y + kEdge;
uint8* row_y1 = row_y0 + kMaxStride / 4;
uint8* row_y2 = row_y1 + kMaxStride / 4;
ARGBToBayerRow(src_argb, row_y0, 0x0d090501, width);
row_y0[-1] = row_y0[0];
row_y0[width] = row_y0[width - 1];
ARGBToBayerRow(src_argb, row_y1, 0x0d090501, width);
row_y1[-1] = row_y1[0];
row_y1[width] = row_y1[width - 1];
for (int y = 0; y < height; ++y) {
// Convert next row of ARGB to Y.
if (y < (height - 1)) {
src_argb += src_stride_argb;
}
ARGBToBayerRow(src_argb, row_y2, 0x0d090501, width);
row_y2[-1] = row_y2[0];
row_y2[width] = row_y2[width - 1];
SobelXRow(row_y0 - 1, row_y1 - 1, row_y2 - 1, row_sobelx, width);
SobelYRow(row_y0 - 1, row_y2 - 1, row_sobely, width);
SobelXYRow(row_sobelx, row_sobely, dst_argb, width);
// Cycle thru circular queue of 3 row_y buffers.
uint8* row_yt = row_y0;
row_y0 = row_y1;
row_y1 = row_y2;
row_y2 = row_yt;
dst_argb += dst_stride_argb;
}
return 0;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif