blob: cbaa7654408c0df06066924a9937477a2ff229fe [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgram.h"
#include "GrAllocator.h"
#include "GrEffect.h"
#include "GrDrawEffect.h"
#include "GrGLEffect.h"
#include "GrGpuGL.h"
#include "GrGLShaderVar.h"
#include "SkTrace.h"
#include "SkXfermode.h"
#include "SkRTConf.h"
SK_DEFINE_INST_COUNT(GrGLProgram)
#define GL_CALL(X) GR_GL_CALL(fContext.interface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContext.interface(), R, X)
SK_CONF_DECLARE(bool, c_PrintShaders, "gpu.printShaders", false,
"Print the source code for all shaders generated.");
#define COL_ATTR_NAME "aColor"
#define COV_ATTR_NAME "aCoverage"
#define EDGE_ATTR_NAME "aEdge"
namespace {
inline const char* declared_color_output_name() { return "fsColorOut"; }
inline const char* dual_source_output_name() { return "dualSourceOut"; }
}
GrGLProgram* GrGLProgram::Create(const GrGLContext& gl,
const GrGLProgramDesc& desc,
const GrEffectStage* stages[]) {
GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, stages));
if (!program->succeeded()) {
delete program;
program = NULL;
}
return program;
}
GrGLProgram::GrGLProgram(const GrGLContext& gl,
const GrGLProgramDesc& desc,
const GrEffectStage* stages[])
: fContext(gl)
, fUniformManager(gl) {
fDesc = desc;
fVShaderID = 0;
fGShaderID = 0;
fFShaderID = 0;
fProgramID = 0;
fColor = GrColor_ILLEGAL;
fColorFilterColor = GrColor_ILLEGAL;
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
fEffects[s] = NULL;
}
this->genProgram(stages);
}
GrGLProgram::~GrGLProgram() {
if (fVShaderID) {
GL_CALL(DeleteShader(fVShaderID));
}
if (fGShaderID) {
GL_CALL(DeleteShader(fGShaderID));
}
if (fFShaderID) {
GL_CALL(DeleteShader(fFShaderID));
}
if (fProgramID) {
GL_CALL(DeleteProgram(fProgramID));
}
for (int i = 0; i < GrDrawState::kNumStages; ++i) {
delete fEffects[i];
}
}
void GrGLProgram::abandon() {
fVShaderID = 0;
fGShaderID = 0;
fFShaderID = 0;
fProgramID = 0;
}
void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
switch (fDesc.fDualSrcOutput) {
case GrGLProgramDesc::kNone_DualSrcOutput:
break;
// the prog will write a coverage value to the secondary
// output and the dst is blended by one minus that value.
case GrGLProgramDesc::kCoverage_DualSrcOutput:
case GrGLProgramDesc::kCoverageISA_DualSrcOutput:
case GrGLProgramDesc::kCoverageISC_DualSrcOutput:
*dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
break;
default:
GrCrash("Unexpected dual source blend output");
break;
}
}
namespace {
// given two blend coeffecients determine whether the src
// and/or dst computation can be omitted.
inline void need_blend_inputs(SkXfermode::Coeff srcCoeff,
SkXfermode::Coeff dstCoeff,
bool* needSrcValue,
bool* needDstValue) {
if (SkXfermode::kZero_Coeff == srcCoeff) {
switch (dstCoeff) {
// these all read the src
case SkXfermode::kSC_Coeff:
case SkXfermode::kISC_Coeff:
case SkXfermode::kSA_Coeff:
case SkXfermode::kISA_Coeff:
*needSrcValue = true;
break;
default:
*needSrcValue = false;
break;
}
} else {
*needSrcValue = true;
}
if (SkXfermode::kZero_Coeff == dstCoeff) {
switch (srcCoeff) {
// these all read the dst
case SkXfermode::kDC_Coeff:
case SkXfermode::kIDC_Coeff:
case SkXfermode::kDA_Coeff:
case SkXfermode::kIDA_Coeff:
*needDstValue = true;
break;
default:
*needDstValue = false;
break;
}
} else {
*needDstValue = true;
}
}
/**
* Create a blend_coeff * value string to be used in shader code. Sets empty
* string if result is trivially zero.
*/
inline void blend_term_string(SkString* str, SkXfermode::Coeff coeff,
const char* src, const char* dst,
const char* value) {
switch (coeff) {
case SkXfermode::kZero_Coeff: /** 0 */
*str = "";
break;
case SkXfermode::kOne_Coeff: /** 1 */
*str = value;
break;
case SkXfermode::kSC_Coeff:
str->printf("(%s * %s)", src, value);
break;
case SkXfermode::kISC_Coeff:
str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value);
break;
case SkXfermode::kDC_Coeff:
str->printf("(%s * %s)", dst, value);
break;
case SkXfermode::kIDC_Coeff:
str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value);
break;
case SkXfermode::kSA_Coeff: /** src alpha */
str->printf("(%s.a * %s)", src, value);
break;
case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */
str->printf("((1.0 - %s.a) * %s)", src, value);
break;
case SkXfermode::kDA_Coeff: /** dst alpha */
str->printf("(%s.a * %s)", dst, value);
break;
case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */
str->printf("((1.0 - %s.a) * %s)", dst, value);
break;
default:
GrCrash("Unexpected xfer coeff.");
break;
}
}
/**
* Adds a line to the fragment shader code which modifies the color by
* the specified color filter.
*/
void add_color_filter(GrGLShaderBuilder* builder,
const char * outputVar,
SkXfermode::Coeff uniformCoeff,
SkXfermode::Coeff colorCoeff,
const char* filterColor,
const char* inColor) {
SkString colorStr, constStr;
blend_term_string(&colorStr, colorCoeff, filterColor, inColor, inColor);
blend_term_string(&constStr, uniformCoeff, filterColor, inColor, filterColor);
SkString sum;
GrGLSLAdd4f(&sum, colorStr.c_str(), constStr.c_str());
builder->fsCodeAppendf("\t%s = %s;\n", outputVar, sum.c_str());
}
}
void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) {
switch (fDesc.fColorInput) {
case GrGLProgramDesc::kAttribute_ColorInput: {
builder->addAttribute(kVec4f_GrSLType, COL_ATTR_NAME);
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName);
builder->vsCodeAppendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
*inColor = fsName;
} break;
case GrGLProgramDesc::kUniform_ColorInput: {
const char* name;
fUniformHandles.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kVec4f_GrSLType, "Color", &name);
*inColor = name;
break;
}
case GrGLProgramDesc::kTransBlack_ColorInput:
GrAssert(!"needComputedColor should be false.");
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
break;
default:
GrCrash("Unknown color type.");
break;
}
}
void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) {
const char* covUniName;
fUniformHandles.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kVec4f_GrSLType, "Coverage", &covUniName);
if (inOutCoverage->size()) {
builder->fsCodeAppendf("\tvec4 uniCoverage = %s * %s;\n",
covUniName, inOutCoverage->c_str());
*inOutCoverage = "uniCoverage";
} else {
*inOutCoverage = covUniName;
}
}
namespace {
void gen_attribute_coverage(GrGLShaderBuilder* builder,
SkString* inOutCoverage) {
builder->addAttribute(kVec4f_GrSLType, COV_ATTR_NAME);
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName);
builder->vsCodeAppendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
if (inOutCoverage->size()) {
builder->fsCodeAppendf("\tvec4 attrCoverage = %s * %s;\n", fsName, inOutCoverage->c_str());
*inOutCoverage = "attrCoverage";
} else {
*inOutCoverage = fsName;
}
}
}
void GrGLProgram::genGeometryShader(GrGLShaderBuilder* builder) const {
#if GR_GL_EXPERIMENTAL_GS
// TODO: The builder should add all this glue code.
if (fDesc.fExperimentalGS) {
GrAssert(fContext.info().glslGeneration() >= k150_GrGLSLGeneration);
builder->fGSHeader.append("layout(triangles) in;\n"
"layout(triangle_strip, max_vertices = 6) out;\n");
builder->gsCodeAppend("\tfor (int i = 0; i < 3; ++i) {\n"
"\t\tgl_Position = gl_in[i].gl_Position;\n");
if (fDesc.fEmitsPointSize) {
builder->gsCodeAppend("\t\tgl_PointSize = 1.0;\n");
}
GrAssert(builder->fGSInputs.count() == builder->fGSOutputs.count());
int count = builder->fGSInputs.count();
for (int i = 0; i < count; ++i) {
builder->gsCodeAppendf("\t\t%s = %s[i];\n",
builder->fGSOutputs[i].getName().c_str(),
builder->fGSInputs[i].getName().c_str());
}
builder->gsCodeAppend("\t\tEmitVertex();\n"
"\t}\n"
"\tEndPrimitive();\n");
}
#endif
}
const char* GrGLProgram::adjustInColor(const SkString& inColor) const {
if (inColor.size()) {
return inColor.c_str();
} else {
if (GrGLProgramDesc::kSolidWhite_ColorInput == fDesc.fColorInput) {
return GrGLSLOnesVecf(4);
} else {
return GrGLSLZerosVecf(4);
}
}
}
namespace {
// prints a shader using params similar to glShaderSource
void print_shader(GrGLint stringCnt,
const GrGLchar** strings,
GrGLint* stringLengths) {
for (int i = 0; i < stringCnt; ++i) {
if (NULL == stringLengths || stringLengths[i] < 0) {
GrPrintf(strings[i]);
} else {
GrPrintf("%.*s", stringLengths[i], strings[i]);
}
}
}
// Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource
GrGLuint compile_shader(const GrGLContext& gl,
GrGLenum type,
int stringCnt,
const char** strings,
int* stringLengths) {
SK_TRACE_EVENT1("GrGLProgram::CompileShader",
"stringCount", SkStringPrintf("%i", stringCnt).c_str());
GrGLuint shader;
GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type));
if (0 == shader) {
return 0;
}
const GrGLInterface* gli = gl.interface();
GrGLint compiled = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths));
GR_GL_CALL(gli, CompileShader(shader));
GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
if (!compiled) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround bug in chrome cmd buffer
// param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1,
&length, (char*)log.get()));
print_shader(stringCnt, strings, stringLengths);
GrPrintf("\n%s", log.get());
}
GrAssert(!"Shader compilation failed!");
GR_GL_CALL(gli, DeleteShader(shader));
return 0;
}
return shader;
}
// helper version of above for when shader is already flattened into a single SkString
GrGLuint compile_shader(const GrGLContext& gl, GrGLenum type, const SkString& shader) {
const GrGLchar* str = shader.c_str();
int length = shader.size();
return compile_shader(gl, type, 1, &str, &length);
}
}
// compiles all the shaders from builder and stores the shader IDs
bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) {
SkString shader;
builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fVShaderID = compile_shader(fContext, GR_GL_VERTEX_SHADER, shader))) {
return false;
}
fGShaderID = 0;
#if GR_GL_EXPERIMENTAL_GS
if (fDesc.fExperimentalGS) {
builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fGShaderID = compile_shader(fContext, GR_GL_GEOMETRY_SHADER, shader))) {
return false;
}
}
#endif
builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fFShaderID = compile_shader(fContext, GR_GL_FRAGMENT_SHADER, shader))) {
return false;
}
return true;
}
bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
GrAssert(0 == fProgramID);
GrGLShaderBuilder builder(fContext.info(), fUniformManager, fDesc);
SkXfermode::Coeff colorCoeff, uniformCoeff;
// The rest of transfer mode color filters have not been implemented
if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
GR_DEBUGCODE(bool success =)
SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
(fDesc.fColorFilterXfermode),
&uniformCoeff, &colorCoeff);
GR_DEBUGASSERT(success);
} else {
colorCoeff = SkXfermode::kOne_Coeff;
uniformCoeff = SkXfermode::kZero_Coeff;
}
// no need to do the color filter if coverage is 0. The output color is scaled by the coverage.
// All the dual source outputs are scaled by the coverage as well.
if (GrGLProgramDesc::kTransBlack_ColorInput == fDesc.fCoverageInput) {
colorCoeff = SkXfermode::kZero_Coeff;
uniformCoeff = SkXfermode::kZero_Coeff;
}
// If we know the final color is going to be all zeros then we can
// simplify the color filter coefficients. needComputedColor will then
// come out false below.
if (GrGLProgramDesc::kTransBlack_ColorInput == fDesc.fColorInput) {
colorCoeff = SkXfermode::kZero_Coeff;
if (SkXfermode::kDC_Coeff == uniformCoeff ||
SkXfermode::kDA_Coeff == uniformCoeff) {
uniformCoeff = SkXfermode::kZero_Coeff;
} else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
SkXfermode::kIDA_Coeff == uniformCoeff) {
uniformCoeff = SkXfermode::kOne_Coeff;
}
}
bool needColorFilterUniform;
bool needComputedColor;
need_blend_inputs(uniformCoeff, colorCoeff,
&needColorFilterUniform, &needComputedColor);
// the dual source output has no canonical var name, have to
// declare an output, which is incompatible with gl_FragColor/gl_FragData.
bool dualSourceOutputWritten = false;
GrGLShaderVar colorOutput;
bool isColorDeclared = GrGLSLSetupFSColorOuput(fContext.info().glslGeneration(),
declared_color_output_name(),
&colorOutput);
if (isColorDeclared) {
builder.fFSOutputs.push_back(colorOutput);
}
const char* viewMName;
fUniformHandles.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType,
kMat33f_GrSLType, "ViewM", &viewMName);
builder.vsCodeAppendf("\tvec3 pos3 = %s * vec3(%s, 1);\n"
"\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n",
viewMName, builder.positionAttribute().getName().c_str());
// incoming color to current stage being processed.
SkString inColor;
if (needComputedColor) {
this->genInputColor(&builder, &inColor);
}
// we output point size in the GS if present
if (fDesc.fEmitsPointSize
#if GR_GL_EXPERIMENTAL_GS
&& !fDesc.fExperimentalGS
#endif
) {
builder.vsCodeAppend("\tgl_PointSize = 1.0;\n");
}
///////////////////////////////////////////////////////////////////////////
// compute the final color
// if we have color stages string them together, feeding the output color
// of each to the next and generating code for each stage.
if (needComputedColor) {
SkString outColor;
for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) {
if (GrGLEffect::kNoEffectKey != fDesc.fEffectKeys[s]) {
// create var to hold stage result
outColor = "color";
outColor.appendS32(s);
builder.fsCodeAppendf("\tvec4 %s;\n", outColor.c_str());
builder.setCurrentStage(s);
fEffects[s] = builder.createAndEmitGLEffect(*stages[s],
fDesc.fEffectKeys[s],
inColor.size() ? inColor.c_str() : NULL,
outColor.c_str(),
&fUniformHandles.fEffectSamplerUnis[s]);
builder.setNonStage();
inColor = outColor;
}
}
}
// if have all ones or zeros for the "dst" input to the color filter then we
// may be able to make additional optimizations.
if (needColorFilterUniform && needComputedColor && !inColor.size()) {
GrAssert(GrGLProgramDesc::kSolidWhite_ColorInput == fDesc.fColorInput);
bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
SkXfermode::kIDA_Coeff == uniformCoeff;
if (uniformCoeffIsZero) {
uniformCoeff = SkXfermode::kZero_Coeff;
bool bogus;
need_blend_inputs(SkXfermode::kZero_Coeff, colorCoeff,
&needColorFilterUniform, &bogus);
}
}
const char* colorFilterColorUniName = NULL;
if (needColorFilterUniform) {
fUniformHandles.fColorFilterUni = builder.addUniform(
GrGLShaderBuilder::kFragment_ShaderType,
kVec4f_GrSLType, "FilterColor",
&colorFilterColorUniName);
}
bool wroteFragColorZero = false;
if (SkXfermode::kZero_Coeff == uniformCoeff &&
SkXfermode::kZero_Coeff == colorCoeff) {
builder.fsCodeAppendf("\t%s = %s;\n", colorOutput.getName().c_str(), GrGLSLZerosVecf(4));
wroteFragColorZero = true;
} else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) {
builder.fsCodeAppend("\tvec4 filteredColor;\n");
const char* color = adjustInColor(inColor);
add_color_filter(&builder, "filteredColor", uniformCoeff,
colorCoeff, colorFilterColorUniName, color);
inColor = "filteredColor";
}
///////////////////////////////////////////////////////////////////////////
// compute the partial coverage (coverage stages and edge aa)
SkString inCoverage;
bool coverageIsZero = GrGLProgramDesc::kTransBlack_ColorInput == fDesc.fCoverageInput;
// we don't need to compute coverage at all if we know the final shader
// output will be zero and we don't have a dual src blend output.
if (!wroteFragColorZero || GrGLProgramDesc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
if (!coverageIsZero) {
switch (fDesc.fCoverageInput) {
case GrGLProgramDesc::kSolidWhite_ColorInput:
// empty string implies solid white
break;
case GrGLProgramDesc::kAttribute_ColorInput:
gen_attribute_coverage(&builder, &inCoverage);
break;
case GrGLProgramDesc::kUniform_ColorInput:
this->genUniformCoverage(&builder, &inCoverage);
break;
default:
GrCrash("Unexpected input coverage.");
}
SkString outCoverage;
const int& startStage = fDesc.fFirstCoverageStage;
for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
if (fDesc.fEffectKeys[s]) {
// create var to hold stage output
outCoverage = "coverage";
outCoverage.appendS32(s);
builder.fsCodeAppendf("\tvec4 %s;\n", outCoverage.c_str());
builder.setCurrentStage(s);
fEffects[s] = builder.createAndEmitGLEffect(
*stages[s],
fDesc.fEffectKeys[s],
inCoverage.size() ? inCoverage.c_str() : NULL,
outCoverage.c_str(),
&fUniformHandles.fEffectSamplerUnis[s]);
builder.setNonStage();
inCoverage = outCoverage;
}
}
// discard if coverage is zero
if (fDesc.fDiscardIfZeroCoverage && !outCoverage.isEmpty()) {
builder.fsCodeAppendf(
"\tif (all(lessThanEqual(%s, vec4(0.0)))) {\n\t\tdiscard;\n\t}\n",
outCoverage.c_str());
}
}
if (GrGLProgramDesc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
builder.fFSOutputs.push_back().set(kVec4f_GrSLType,
GrGLShaderVar::kOut_TypeModifier,
dual_source_output_name());
bool outputIsZero = coverageIsZero;
SkString coeff;
if (!outputIsZero &&
GrGLProgramDesc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) {
if (!inColor.size()) {
outputIsZero = true;
} else {
if (GrGLProgramDesc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) {
coeff.printf("(1 - %s.a)", inColor.c_str());
} else {
coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
}
}
}
if (outputIsZero) {
builder.fsCodeAppendf("\t%s = %s;\n", dual_source_output_name(), GrGLSLZerosVecf(4));
} else {
SkString modulate;
GrGLSLModulate4f(&modulate, coeff.c_str(), inCoverage.c_str());
builder.fsCodeAppendf("\t%s = %s;\n", dual_source_output_name(), modulate.c_str());
}
dualSourceOutputWritten = true;
}
}
///////////////////////////////////////////////////////////////////////////
// combine color and coverage as frag color
if (!wroteFragColorZero) {
if (coverageIsZero) {
builder.fsCodeAppendf("\t%s = %s;\n", colorOutput.getName().c_str(), GrGLSLZerosVecf(4));
} else {
SkString modulate;
GrGLSLModulate4f(&modulate, inColor.c_str(), inCoverage.c_str());
builder.fsCodeAppendf("\t%s = %s;\n", colorOutput.getName().c_str(), modulate.c_str());
}
}
///////////////////////////////////////////////////////////////////////////
// insert GS
#if GR_DEBUG
this->genGeometryShader(&builder);
#endif
///////////////////////////////////////////////////////////////////////////
// compile and setup attribs and unis
if (!this->compileShaders(builder)) {
return false;
}
if (!this->bindOutputsAttribsAndLinkProgram(builder,
isColorDeclared,
dualSourceOutputWritten)) {
return false;
}
builder.finished(fProgramID);
fUniformHandles.fRTHeightUni = builder.getRTHeightUniform();
fUniformHandles.fDstCopyTopLeftUni = builder.getDstCopyTopLeftUniform();
fUniformHandles.fDstCopyScaleUni = builder.getDstCopyScaleUniform();
fUniformHandles.fDstCopySamplerUni = builder.getDstCopySamplerUniform();
// This must be called after we set fDstCopySamplerUni above.
this->initSamplerUniforms();
return true;
}
bool GrGLProgram::bindOutputsAttribsAndLinkProgram(const GrGLShaderBuilder& builder,
bool bindColorOut,
bool bindDualSrcOut) {
GL_CALL_RET(fProgramID, CreateProgram());
if (!fProgramID) {
return false;
}
GL_CALL(AttachShader(fProgramID, fVShaderID));
if (fGShaderID) {
GL_CALL(AttachShader(fProgramID, fGShaderID));
}
GL_CALL(AttachShader(fProgramID, fFShaderID));
if (bindColorOut) {
GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name()));
}
if (bindDualSrcOut) {
GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name()));
}
// Bind the attrib locations to same values for all shaders
GL_CALL(BindAttribLocation(fProgramID,
fDesc.fPositionAttributeIndex,
builder.positionAttribute().c_str()));
GL_CALL(BindAttribLocation(fProgramID, fDesc.fColorAttributeIndex, COL_ATTR_NAME));
GL_CALL(BindAttribLocation(fProgramID, fDesc.fCoverageAttributeIndex, COV_ATTR_NAME));
if (fDesc.fAttribBindings & GrDrawState::kLocalCoords_AttribBindingsBit) {
GL_CALL(BindAttribLocation(fProgramID,
fDesc.fLocalCoordsAttributeIndex,
builder.localCoordsAttribute().c_str()));
}
const GrGLShaderBuilder::AttributePair* attribEnd = builder.getEffectAttributes().end();
for (const GrGLShaderBuilder::AttributePair* attrib = builder.getEffectAttributes().begin();
attrib != attribEnd;
++attrib) {
GL_CALL(BindAttribLocation(fProgramID, attrib->fIndex, attrib->fName.c_str()));
}
GL_CALL(LinkProgram(fProgramID));
GrGLint linked = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked));
if (!linked) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround
// bug in chrome cmd buffer param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GL_CALL(GetProgramInfoLog(fProgramID,
infoLen+1,
&length,
(char*)log.get()));
GrPrintf((char*)log.get());
}
GrAssert(!"Error linking program");
GL_CALL(DeleteProgram(fProgramID));
fProgramID = 0;
return false;
}
return true;
}
void GrGLProgram::initSamplerUniforms() {
GL_CALL(UseProgram(fProgramID));
// We simply bind the uniforms to successive texture units beginning at 0. setData() assumes
// this behavior.
GrGLint texUnitIdx = 0;
if (GrGLUniformManager::kInvalidUniformHandle != fUniformHandles.fDstCopySamplerUni) {
fUniformManager.setSampler(fUniformHandles.fDstCopySamplerUni, texUnitIdx);
++texUnitIdx;
}
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
int numSamplers = fUniformHandles.fEffectSamplerUnis[s].count();
for (int u = 0; u < numSamplers; ++u) {
UniformHandle handle = fUniformHandles.fEffectSamplerUnis[s][u];
if (GrGLUniformManager::kInvalidUniformHandle != handle) {
fUniformManager.setSampler(handle, texUnitIdx);
++texUnitIdx;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
void GrGLProgram::setData(GrGpuGL* gpu,
GrColor color,
GrColor coverage,
const GrDeviceCoordTexture* dstCopy,
SharedGLState* sharedState) {
const GrDrawState& drawState = gpu->getDrawState();
this->setColor(drawState, color, sharedState);
this->setCoverage(drawState, coverage, sharedState);
this->setMatrixAndRenderTargetHeight(drawState);
// Setup the SkXfermode::Mode-based colorfilter uniform if necessary
if (GrGLUniformManager::kInvalidUniformHandle != fUniformHandles.fColorFilterUni &&
fColorFilterColor != drawState.getColorFilterColor()) {
GrGLfloat c[4];
GrColorToRGBAFloat(drawState.getColorFilterColor(), c);
fUniformManager.set4fv(fUniformHandles.fColorFilterUni, 0, 1, c);
fColorFilterColor = drawState.getColorFilterColor();
}
GrGLint texUnitIdx = 0;
if (NULL != dstCopy) {
if (GrGLUniformManager::kInvalidUniformHandle != fUniformHandles.fDstCopyTopLeftUni) {
GrAssert(GrGLUniformManager::kInvalidUniformHandle != fUniformHandles.fDstCopyScaleUni);
GrAssert(GrGLUniformManager::kInvalidUniformHandle !=
fUniformHandles.fDstCopySamplerUni);
fUniformManager.set2f(fUniformHandles.fDstCopyTopLeftUni,
static_cast<GrGLfloat>(dstCopy->offset().fX),
static_cast<GrGLfloat>(dstCopy->offset().fY));
fUniformManager.set2f(fUniformHandles.fDstCopyScaleUni,
1.f / dstCopy->texture()->width(),
1.f / dstCopy->texture()->height());
GrGLTexture* texture = static_cast<GrGLTexture*>(dstCopy->texture());
static GrTextureParams kParams; // the default is clamp, nearest filtering.
gpu->bindTexture(texUnitIdx, kParams, texture);
++texUnitIdx;
} else {
GrAssert(GrGLUniformManager::kInvalidUniformHandle ==
fUniformHandles.fDstCopyScaleUni);
GrAssert(GrGLUniformManager::kInvalidUniformHandle ==
fUniformHandles.fDstCopySamplerUni);
}
} else {
GrAssert(GrGLUniformManager::kInvalidUniformHandle ==
fUniformHandles.fDstCopyTopLeftUni);
GrAssert(GrGLUniformManager::kInvalidUniformHandle ==
fUniformHandles.fDstCopyScaleUni);
GrAssert(GrGLUniformManager::kInvalidUniformHandle ==
fUniformHandles.fDstCopySamplerUni);
}
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (NULL != fEffects[s]) {
const GrEffectStage& stage = drawState.getStage(s);
GrAssert(NULL != stage.getEffect());
bool explicitLocalCoords =
(fDesc.fAttribBindings & GrDrawState::kLocalCoords_AttribBindingsBit);
GrDrawEffect drawEffect(stage, explicitLocalCoords);
fEffects[s]->setData(fUniformManager, drawEffect);
int numSamplers = fUniformHandles.fEffectSamplerUnis[s].count();
for (int u = 0; u < numSamplers; ++u) {
UniformHandle handle = fUniformHandles.fEffectSamplerUnis[s][u];
if (GrGLUniformManager::kInvalidUniformHandle != handle) {
const GrTextureAccess& access = (*stage.getEffect())->textureAccess(u);
GrGLTexture* texture = static_cast<GrGLTexture*>(access.getTexture());
gpu->bindTexture(texUnitIdx, access.getParams(), texture);
++texUnitIdx;
}
}
}
}
}
void GrGLProgram::setColor(const GrDrawState& drawState,
GrColor color,
SharedGLState* sharedState) {
if (!(drawState.getAttribBindings() & GrDrawState::kColor_AttribBindingsBit)) {
switch (fDesc.fColorInput) {
case GrGLProgramDesc::kAttribute_ColorInput:
if (sharedState->fConstAttribColor != color) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GL_CALL(VertexAttrib4fv(fDesc.fColorAttributeIndex, c));
sharedState->fConstAttribColor = color;
}
break;
case GrGLProgramDesc::kUniform_ColorInput:
if (fColor != color) {
// OpenGL ES doesn't support unsigned byte varieties of glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GrAssert(GrGLUniformManager::kInvalidUniformHandle !=
fUniformHandles.fColorUni);
fUniformManager.set4fv(fUniformHandles.fColorUni, 0, 1, c);
fColor = color;
}
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
break;
default:
GrCrash("Unknown color type.");
}
}
}
void GrGLProgram::setCoverage(const GrDrawState& drawState,
GrColor coverage,
SharedGLState* sharedState) {
if (!(drawState.getAttribBindings() & GrDrawState::kCoverage_AttribBindingsBit)) {
switch (fDesc.fCoverageInput) {
case GrGLProgramDesc::kAttribute_ColorInput:
if (sharedState->fConstAttribCoverage != coverage) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GL_CALL(VertexAttrib4fv(fDesc.fCoverageAttributeIndex, c));
sharedState->fConstAttribCoverage = coverage;
}
break;
case GrGLProgramDesc::kUniform_ColorInput:
if (fCoverage != coverage) {
// OpenGL ES doesn't support unsigned byte varieties of glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GrAssert(GrGLUniformManager::kInvalidUniformHandle !=
fUniformHandles.fCoverageUni);
fUniformManager.set4fv(fUniformHandles.fCoverageUni, 0, 1, c);
fCoverage = coverage;
}
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
break;
default:
GrCrash("Unknown coverage type.");
}
}
}
void GrGLProgram::setMatrixAndRenderTargetHeight(const GrDrawState& drawState) {
const GrRenderTarget* rt = drawState.getRenderTarget();
SkISize size;
size.set(rt->width(), rt->height());
// Load the RT height uniform if it is needed to y-flip gl_FragCoord.
if (GrGLUniformManager::kInvalidUniformHandle != fUniformHandles.fRTHeightUni &&
fMatrixState.fRenderTargetSize.fHeight != size.fHeight) {
fUniformManager.set1f(fUniformHandles.fRTHeightUni, SkIntToScalar(size.fHeight));
}
if (fMatrixState.fRenderTargetOrigin != rt->origin() ||
!fMatrixState.fViewMatrix.cheapEqualTo(drawState.getViewMatrix()) ||
fMatrixState.fRenderTargetSize != size) {
SkMatrix m;
if (kBottomLeft_GrSurfaceOrigin == rt->origin()) {
m.setAll(
SkIntToScalar(2) / size.fWidth, 0, -SK_Scalar1,
0,-SkIntToScalar(2) / size.fHeight, SK_Scalar1,
0, 0, SkMatrix::I()[8]);
} else {
m.setAll(
SkIntToScalar(2) / size.fWidth, 0, -SK_Scalar1,
0, SkIntToScalar(2) / size.fHeight,-SK_Scalar1,
0, 0, SkMatrix::I()[8]);
}
m.setConcat(m, drawState.getViewMatrix());
// ES doesn't allow you to pass true to the transpose param so we do our own transpose.
GrGLfloat mt[] = {
SkScalarToFloat(m[SkMatrix::kMScaleX]),
SkScalarToFloat(m[SkMatrix::kMSkewY]),
SkScalarToFloat(m[SkMatrix::kMPersp0]),
SkScalarToFloat(m[SkMatrix::kMSkewX]),
SkScalarToFloat(m[SkMatrix::kMScaleY]),
SkScalarToFloat(m[SkMatrix::kMPersp1]),
SkScalarToFloat(m[SkMatrix::kMTransX]),
SkScalarToFloat(m[SkMatrix::kMTransY]),
SkScalarToFloat(m[SkMatrix::kMPersp2])
};
fUniformManager.setMatrix3f(fUniformHandles.fViewMatrixUni, mt);
fMatrixState.fViewMatrix = drawState.getViewMatrix();
fMatrixState.fRenderTargetSize = size;
fMatrixState.fRenderTargetOrigin = rt->origin();
}
}