blob: 9d9290d5582854e060847784b22ae400d8cf4839 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDither.h"
#include "SkPerlinNoiseShader.h"
#include "SkFlattenableBuffers.h"
#include "SkShader.h"
#include "SkUnPreMultiply.h"
#include "SkString.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "gl/GrGLEffect.h"
#include "gl/GrGLEffectMatrix.h"
#include "GrTBackendEffectFactory.h"
#include "SkGr.h"
#endif
static const int kBlockSize = 256;
static const int kBlockMask = kBlockSize - 1;
static const int kPerlinNoise = 4096;
static const int kRandMaximum = SK_MaxS32; // 2**31 - 1
namespace {
// noiseValue is the color component's value (or color)
// limitValue is the maximum perlin noise array index value allowed
// newValue is the current noise dimension (either width or height)
inline int checkNoise(int noiseValue, int limitValue, int newValue) {
// If the noise value would bring us out of bounds of the current noise array while we are
// stiching noise tiles together, wrap the noise around the current dimension of the noise to
// stay within the array bounds in a continuous fashion (so that tiling lines are not visible)
if (noiseValue >= limitValue) {
noiseValue -= newValue;
}
if (noiseValue >= limitValue - 1) {
noiseValue -= newValue - 1;
}
return noiseValue;
}
inline SkScalar smoothCurve(SkScalar t) {
static const SkScalar SK_Scalar3 = SkFloatToScalar(3.0f);
// returns t * t * (3 - 2 * t)
return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t);
}
} // end namespace
struct SkPerlinNoiseShader::StitchData {
StitchData()
: fWidth(0)
, fWrapX(0)
, fHeight(0)
, fWrapY(0)
{}
bool operator==(const StitchData& other) const {
return fWidth == other.fWidth &&
fWrapX == other.fWrapX &&
fHeight == other.fHeight &&
fWrapY == other.fWrapY;
}
int fWidth; // How much to subtract to wrap for stitching.
int fWrapX; // Minimum value to wrap.
int fHeight;
int fWrapY;
};
struct SkPerlinNoiseShader::PaintingData {
PaintingData(const SkISize& tileSize)
: fSeed(0)
, fTileSize(tileSize)
, fPermutationsBitmap(NULL)
, fNoiseBitmap(NULL)
{}
~PaintingData()
{
SkDELETE(fPermutationsBitmap);
SkDELETE(fNoiseBitmap);
}
int fSeed;
uint8_t fLatticeSelector[kBlockSize];
uint16_t fNoise[4][kBlockSize][2];
SkPoint fGradient[4][kBlockSize];
SkISize fTileSize;
SkVector fBaseFrequency;
StitchData fStitchDataInit;
private:
SkBitmap* fPermutationsBitmap;
SkBitmap* fNoiseBitmap;
public:
inline int random() {
static const int gRandAmplitude = 16807; // 7**5; primitive root of m
static const int gRandQ = 127773; // m / a
static const int gRandR = 2836; // m % a
int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ);
if (result <= 0)
result += kRandMaximum;
fSeed = result;
return result;
}
void init(SkScalar seed)
{
static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize));
// The seed value clamp to the range [1, kRandMaximum - 1].
fSeed = SkScalarRoundToInt(seed);
if (fSeed <= 0) {
fSeed = -(fSeed % (kRandMaximum - 1)) + 1;
}
if (fSeed > kRandMaximum - 1) {
fSeed = kRandMaximum - 1;
}
for (int channel = 0; channel < 4; ++channel) {
for (int i = 0; i < kBlockSize; ++i) {
fLatticeSelector[i] = i;
fNoise[channel][i][0] = (random() % (2 * kBlockSize));
fNoise[channel][i][1] = (random() % (2 * kBlockSize));
}
}
for (int i = kBlockSize - 1; i > 0; --i) {
int k = fLatticeSelector[i];
int j = random() % kBlockSize;
SkASSERT(j >= 0);
SkASSERT(j < kBlockSize);
fLatticeSelector[i] = fLatticeSelector[j];
fLatticeSelector[j] = k;
}
// Perform the permutations now
{
// Copy noise data
uint16_t noise[4][kBlockSize][2];
for (int i = 0; i < kBlockSize; ++i) {
for (int channel = 0; channel < 4; ++channel) {
for (int j = 0; j < 2; ++j) {
noise[channel][i][j] = fNoise[channel][i][j];
}
}
}
// Do permutations on noise data
for (int i = 0; i < kBlockSize; ++i) {
for (int channel = 0; channel < 4; ++channel) {
for (int j = 0; j < 2; ++j) {
fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j];
}
}
}
}
// Half of the largest possible value for 16 bit unsigned int
static const SkScalar halfMax16bits = SkFloatToScalar(32767.5f);
// Compute gradients from permutated noise data
for (int channel = 0; channel < 4; ++channel) {
for (int i = 0; i < kBlockSize; ++i) {
fGradient[channel][i] = SkPoint::Make(
SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize),
gInvBlockSizef),
SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize),
gInvBlockSizef));
fGradient[channel][i].normalize();
// Put the normalized gradient back into the noise data
fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul(
fGradient[channel][i].fX + SK_Scalar1, halfMax16bits));
fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul(
fGradient[channel][i].fY + SK_Scalar1, halfMax16bits));
}
}
// Invalidate bitmaps
SkDELETE(fPermutationsBitmap);
fPermutationsBitmap = NULL;
SkDELETE(fNoiseBitmap);
fNoiseBitmap = NULL;
}
void stitch() {
SkScalar tileWidth = SkIntToScalar(fTileSize.width());
SkScalar tileHeight = SkIntToScalar(fTileSize.height());
SkASSERT(tileWidth > 0 && tileHeight > 0);
// When stitching tiled turbulence, the frequencies must be adjusted
// so that the tile borders will be continuous.
if (fBaseFrequency.fX) {
SkScalar lowFrequencx = SkScalarDiv(
SkScalarMulFloor(tileWidth, fBaseFrequency.fX), tileWidth);
SkScalar highFrequencx = SkScalarDiv(
SkScalarMulCeil(tileWidth, fBaseFrequency.fX), tileWidth);
// BaseFrequency should be non-negative according to the standard.
if (SkScalarDiv(fBaseFrequency.fX, lowFrequencx) <
SkScalarDiv(highFrequencx, fBaseFrequency.fX)) {
fBaseFrequency.fX = lowFrequencx;
} else {
fBaseFrequency.fX = highFrequencx;
}
}
if (fBaseFrequency.fY) {
SkScalar lowFrequency = SkScalarDiv(
SkScalarMulFloor(tileHeight, fBaseFrequency.fY), tileHeight);
SkScalar highFrequency = SkScalarDiv(
SkScalarMulCeil(tileHeight, fBaseFrequency.fY), tileHeight);
if (SkScalarDiv(fBaseFrequency.fY, lowFrequency) <
SkScalarDiv(highFrequency, fBaseFrequency.fY)) {
fBaseFrequency.fY = lowFrequency;
} else {
fBaseFrequency.fY = highFrequency;
}
}
// Set up TurbulenceInitial stitch values.
fStitchDataInit.fWidth =
SkScalarMulRound(tileWidth, fBaseFrequency.fX);
fStitchDataInit.fWrapX = kPerlinNoise + fStitchDataInit.fWidth;
fStitchDataInit.fHeight =
SkScalarMulRound(tileHeight, fBaseFrequency.fY);
fStitchDataInit.fWrapY = kPerlinNoise + fStitchDataInit.fHeight;
}
SkBitmap* getPermutationsBitmap()
{
if (!fPermutationsBitmap) {
fPermutationsBitmap = SkNEW(SkBitmap);
fPermutationsBitmap->setConfig(SkBitmap::kA8_Config, kBlockSize, 1);
fPermutationsBitmap->allocPixels();
uint8_t* bitmapPixels = fPermutationsBitmap->getAddr8(0, 0);
memcpy(bitmapPixels, fLatticeSelector, sizeof(uint8_t) * kBlockSize);
}
return fPermutationsBitmap;
}
SkBitmap* getNoiseBitmap()
{
if (!fNoiseBitmap) {
fNoiseBitmap = SkNEW(SkBitmap);
fNoiseBitmap->setConfig(SkBitmap::kARGB_8888_Config, kBlockSize, 4);
fNoiseBitmap->allocPixels();
uint32_t* bitmapPixels = fNoiseBitmap->getAddr32(0, 0);
memcpy(bitmapPixels, fNoise[0][0], sizeof(uint16_t) * kBlockSize * 4 * 2);
}
return fNoiseBitmap;
}
};
SkShader* SkPerlinNoiseShader::CreateFractalNoise(SkScalar baseFrequencyX, SkScalar baseFrequencyY,
int numOctaves, SkScalar seed,
const SkISize* tileSize) {
return SkNEW_ARGS(SkPerlinNoiseShader, (kFractalNoise_Type, baseFrequencyX, baseFrequencyY,
numOctaves, seed, tileSize));
}
SkShader* SkPerlinNoiseShader::CreateTubulence(SkScalar baseFrequencyX, SkScalar baseFrequencyY,
int numOctaves, SkScalar seed,
const SkISize* tileSize) {
return SkNEW_ARGS(SkPerlinNoiseShader, (kTurbulence_Type, baseFrequencyX, baseFrequencyY,
numOctaves, seed, tileSize));
}
SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type,
SkScalar baseFrequencyX,
SkScalar baseFrequencyY,
int numOctaves,
SkScalar seed,
const SkISize* tileSize)
: fType(type)
, fBaseFrequencyX(baseFrequencyX)
, fBaseFrequencyY(baseFrequencyY)
, fNumOctaves(numOctaves & 0xFF /*[0,255] octaves allowed*/)
, fSeed(seed)
, fStitchTiles((tileSize != NULL) && !tileSize->isEmpty())
, fPaintingData(NULL)
{
SkASSERT(numOctaves >= 0 && numOctaves < 256);
setTileSize(fStitchTiles ? *tileSize : SkISize::Make(0,0));
fMatrix.reset();
}
SkPerlinNoiseShader::SkPerlinNoiseShader(SkFlattenableReadBuffer& buffer) :
INHERITED(buffer), fPaintingData(NULL) {
fType = (SkPerlinNoiseShader::Type) buffer.readInt();
fBaseFrequencyX = buffer.readScalar();
fBaseFrequencyY = buffer.readScalar();
fNumOctaves = buffer.readInt();
fSeed = buffer.readScalar();
fStitchTiles = buffer.readBool();
fTileSize.fWidth = buffer.readInt();
fTileSize.fHeight = buffer.readInt();
setTileSize(fTileSize);
fMatrix.reset();
}
SkPerlinNoiseShader::~SkPerlinNoiseShader() {
// Safety, should have been done in endContext()
SkDELETE(fPaintingData);
}
void SkPerlinNoiseShader::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt((int) fType);
buffer.writeScalar(fBaseFrequencyX);
buffer.writeScalar(fBaseFrequencyY);
buffer.writeInt(fNumOctaves);
buffer.writeScalar(fSeed);
buffer.writeBool(fStitchTiles);
buffer.writeInt(fTileSize.fWidth);
buffer.writeInt(fTileSize.fHeight);
}
void SkPerlinNoiseShader::initPaint(PaintingData& paintingData)
{
paintingData.init(fSeed);
// Set frequencies to original values
paintingData.fBaseFrequency.set(fBaseFrequencyX, fBaseFrequencyY);
// Adjust frequecies based on size if stitching is enabled
if (fStitchTiles) {
paintingData.stitch();
}
}
void SkPerlinNoiseShader::setTileSize(const SkISize& tileSize) {
fTileSize = tileSize;
if (NULL == fPaintingData) {
fPaintingData = SkNEW_ARGS(PaintingData, (fTileSize));
initPaint(*fPaintingData);
} else {
// Set Size
fPaintingData->fTileSize = fTileSize;
// Set frequencies to original values
fPaintingData->fBaseFrequency.set(fBaseFrequencyX, fBaseFrequencyY);
// Adjust frequecies based on size if stitching is enabled
if (fStitchTiles) {
fPaintingData->stitch();
}
}
}
SkScalar SkPerlinNoiseShader::noise2D(int channel, const PaintingData& paintingData,
const StitchData& stitchData, const SkPoint& noiseVector)
{
struct Noise {
int noisePositionIntegerValue;
SkScalar noisePositionFractionValue;
Noise(SkScalar component)
{
SkScalar position = component + kPerlinNoise;
noisePositionIntegerValue = SkScalarFloorToInt(position);
noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue);
}
};
Noise noiseX(noiseVector.x());
Noise noiseY(noiseVector.y());
SkScalar u, v;
// If stitching, adjust lattice points accordingly.
if (fStitchTiles) {
noiseX.noisePositionIntegerValue =
checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
noiseY.noisePositionIntegerValue =
checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
}
noiseX.noisePositionIntegerValue &= kBlockMask;
noiseY.noisePositionIntegerValue &= kBlockMask;
int latticeIndex =
paintingData.fLatticeSelector[noiseX.noisePositionIntegerValue] +
noiseY.noisePositionIntegerValue;
int nextLatticeIndex =
paintingData.fLatticeSelector[(noiseX.noisePositionIntegerValue + 1) & kBlockMask] +
noiseY.noisePositionIntegerValue;
SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue);
SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue);
// This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement
SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue,
noiseY.noisePositionFractionValue); // Offset (0,0)
u = paintingData.fGradient[channel][latticeIndex & kBlockMask].dot(fractionValue);
fractionValue.fX -= SK_Scalar1; // Offset (-1,0)
v = paintingData.fGradient[channel][nextLatticeIndex & kBlockMask].dot(fractionValue);
SkScalar a = SkScalarInterp(u, v, sx);
fractionValue.fY -= SK_Scalar1; // Offset (-1,-1)
v = paintingData.fGradient[channel][(nextLatticeIndex + 1) & kBlockMask].dot(fractionValue);
fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1)
u = paintingData.fGradient[channel][(latticeIndex + 1) & kBlockMask].dot(fractionValue);
SkScalar b = SkScalarInterp(u, v, sx);
return SkScalarInterp(a, b, sy);
}
SkScalar SkPerlinNoiseShader::calculateTurbulenceValueForPoint(
int channel, const PaintingData& paintingData, StitchData& stitchData, const SkPoint& point)
{
if (fStitchTiles) {
// Set up TurbulenceInitial stitch values.
stitchData = paintingData.fStitchDataInit;
}
SkScalar turbulenceFunctionResult = 0;
SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), paintingData.fBaseFrequency.fX),
SkScalarMul(point.y(), paintingData.fBaseFrequency.fY)));
SkScalar ratio = SK_Scalar1;
for (int octave = 0; octave < fNumOctaves; ++octave) {
SkScalar noise = noise2D(channel, paintingData, stitchData, noiseVector);
turbulenceFunctionResult += SkScalarDiv(
(fType == kFractalNoise_Type) ? noise : SkScalarAbs(noise), ratio);
noiseVector.fX *= 2;
noiseVector.fY *= 2;
ratio *= 2;
if (fStitchTiles) {
// Update stitch values
stitchData.fWidth *= 2;
stitchData.fWrapX = stitchData.fWidth + kPerlinNoise;
stitchData.fHeight *= 2;
stitchData.fWrapY = stitchData.fHeight + kPerlinNoise;
}
}
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
if (fType == kFractalNoise_Type) {
turbulenceFunctionResult =
SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf;
}
if (channel == 3) { // Scale alpha by paint value
turbulenceFunctionResult = SkScalarMul(turbulenceFunctionResult,
SkScalarDiv(SkIntToScalar(getPaintAlpha()), SkIntToScalar(255)));
}
// Clamp result
return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1);
}
SkPMColor SkPerlinNoiseShader::shade(const SkPoint& point, StitchData& stitchData) {
SkMatrix matrix = fMatrix;
SkMatrix invMatrix;
if (!matrix.invert(&invMatrix)) {
invMatrix.reset();
} else {
invMatrix.postConcat(invMatrix); // Square the matrix
}
// This (1,1) translation is due to WebKit's 1 based coordinates for the noise
// (as opposed to 0 based, usually). The same adjustment is in the setData() function.
matrix.postTranslate(SK_Scalar1, SK_Scalar1);
SkPoint newPoint;
matrix.mapPoints(&newPoint, &point, 1);
invMatrix.mapPoints(&newPoint, &newPoint, 1);
newPoint.fX = SkScalarRoundToScalar(newPoint.fX);
newPoint.fY = SkScalarRoundToScalar(newPoint.fY);
U8CPU rgba[4];
for (int channel = 3; channel >= 0; --channel) {
rgba[channel] = SkScalarFloorToInt(255 *
calculateTurbulenceValueForPoint(channel, *fPaintingData, stitchData, newPoint));
}
return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]);
}
bool SkPerlinNoiseShader::setContext(const SkBitmap& device, const SkPaint& paint,
const SkMatrix& matrix) {
fMatrix = matrix;
return INHERITED::setContext(device, paint, matrix);
}
void SkPerlinNoiseShader::shadeSpan(int x, int y, SkPMColor result[], int count) {
SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
StitchData stitchData;
for (int i = 0; i < count; ++i) {
result[i] = shade(point, stitchData);
point.fX += SK_Scalar1;
}
}
void SkPerlinNoiseShader::shadeSpan16(int x, int y, uint16_t result[], int count) {
SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
StitchData stitchData;
DITHER_565_SCAN(y);
for (int i = 0; i < count; ++i) {
unsigned dither = DITHER_VALUE(x);
result[i] = SkDitherRGB32To565(shade(point, stitchData), dither);
DITHER_INC_X(x);
point.fX += SK_Scalar1;
}
}
/////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "GrTBackendEffectFactory.h"
class GrGLPerlinNoise : public GrGLEffect {
public:
GrGLPerlinNoise(const GrBackendEffectFactory& factory,
const GrDrawEffect& drawEffect);
virtual ~GrGLPerlinNoise() { }
virtual void emitCode(GrGLShaderBuilder*,
const GrDrawEffect&,
EffectKey,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray&) SK_OVERRIDE;
static inline EffectKey GenKey(const GrDrawEffect&, const GrGLCaps&);
virtual void setData(const GrGLUniformManager&, const GrDrawEffect&);
private:
SkPerlinNoiseShader::Type fType;
bool fStitchTiles;
int fNumOctaves;
GrGLUniformManager::UniformHandle fBaseFrequencyUni;
GrGLUniformManager::UniformHandle fStitchDataUni;
GrGLUniformManager::UniformHandle fAlphaUni;
GrGLUniformManager::UniformHandle fInvMatrixUni;
GrGLEffectMatrix fEffectMatrix;
typedef GrGLEffect INHERITED;
};
/////////////////////////////////////////////////////////////////////
class GrPerlinNoiseEffect : public GrEffect {
public:
static GrEffectRef* Create(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency,
int numOctaves, bool stitchTiles,
const SkPerlinNoiseShader::StitchData& stitchData,
GrTexture* permutationsTexture, GrTexture* noiseTexture,
const SkMatrix& matrix, uint8_t alpha) {
AutoEffectUnref effect(SkNEW_ARGS(GrPerlinNoiseEffect, (type, baseFrequency, numOctaves,
stitchTiles, stitchData, permutationsTexture, noiseTexture, matrix, alpha)));
return CreateEffectRef(effect);
}
virtual ~GrPerlinNoiseEffect() { }
static const char* Name() { return "PerlinNoise"; }
virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
return GrTBackendEffectFactory<GrPerlinNoiseEffect>::getInstance();
}
SkPerlinNoiseShader::Type type() const { return fType; }
bool stitchTiles() const { return fStitchTiles; }
const SkVector& baseFrequency() const { return fBaseFrequency; }
int numOctaves() const { return fNumOctaves & 0xFF; /*[0,255] octaves allowed*/ }
const SkPerlinNoiseShader::StitchData& stitchData() const { return fStitchData; }
const SkMatrix& matrix() const { return fMatrix; }
uint8_t alpha() const { return fAlpha; }
GrGLEffectMatrix::CoordsType coordsType() const { return GrEffect::kLocal_CoordsType; }
typedef GrGLPerlinNoise GLEffect;
void getConstantColorComponents(GrColor*, uint32_t* validFlags) const SK_OVERRIDE {
*validFlags = 0; // This is noise. Nothing is constant.
}
private:
virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
const GrPerlinNoiseEffect& s = CastEffect<GrPerlinNoiseEffect>(sBase);
return fPermutationsAccess.getTexture() == s.fPermutationsAccess.getTexture() &&
fNoiseAccess.getTexture() == s.fNoiseAccess.getTexture() &&
fType == s.fType &&
fBaseFrequency == s.fBaseFrequency &&
fStitchTiles == s.fStitchTiles &&
fStitchData == s.fStitchData &&
fMatrix == s.fMatrix &&
fAlpha == s.fAlpha;
}
GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency,
int numOctaves, bool stitchTiles,
const SkPerlinNoiseShader::StitchData& stitchData,
GrTexture* permutationsTexture, GrTexture* noiseTexture,
const SkMatrix& matrix, uint8_t alpha)
: fPermutationsAccess(permutationsTexture)
, fNoiseAccess(noiseTexture)
, fType(type)
, fBaseFrequency(baseFrequency)
, fNumOctaves(numOctaves)
, fStitchTiles(stitchTiles)
, fStitchData(stitchData)
, fMatrix(matrix)
, fAlpha(alpha)
{
this->addTextureAccess(&fPermutationsAccess);
this->addTextureAccess(&fNoiseAccess);
}
// GR_DECLARE_EFFECT_TEST;
GrTextureAccess fPermutationsAccess;
GrTextureAccess fNoiseAccess;
SkPerlinNoiseShader::Type fType;
SkVector fBaseFrequency;
int fNumOctaves;
bool fStitchTiles;
SkPerlinNoiseShader::StitchData fStitchData;
SkMatrix fMatrix;
uint8_t fAlpha;
typedef GrEffect INHERITED;
};
/////////////////////////////////////////////////////////////////////
#if 0
GR_DEFINE_EFFECT_TEST(GrPerlinNoiseEffect);
GrEffectRef* GrPerlinNoiseEffect::TestCreate(SkMWCRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture**) {
int numOctaves = random->nextRangeU(2, 10);
bool stitchTiles = random->nextBool();
SkScalar seed = SkIntToScalar(random->nextU());
SkISize tileSize = SkISize::Make(random->nextRangeU(4, 4096), random->nextRangeU(4, 4096));
SkScalar baseFrequencyX = random->nextRangeScalar(SkFloatToScalar(0.01f),
SkFloatToScalar(0.99f));
SkScalar baseFrequencyY = random->nextRangeScalar(SkFloatToScalar(0.01f),
SkFloatToScalar(0.99f));
SkShader* shader = random->nextBool() ?
SkPerlinNoiseShader::CreateFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed,
stitchTiles ? &tileSize : NULL) :
SkPerlinNoiseShader::CreateTubulence(baseFrequencyX, baseFrequencyY, numOctaves, seed,
stitchTiles ? &tileSize : NULL);
SkPaint paint;
GrEffectRef* effect = shader->asNewEffect(context, paint);
SkDELETE(shader);
return effect;
}
#endif
/////////////////////////////////////////////////////////////////////
void GrGLPerlinNoise::emitCode(GrGLShaderBuilder* builder,
const GrDrawEffect&,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray& samplers) {
sk_ignore_unused_variable(inputColor);
const char* vCoords;
fEffectMatrix.emitCodeMakeFSCoords2D(builder, key, &vCoords);
fInvMatrixUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kMat33f_GrSLType, "invMatrix");
const char* invMatrixUni = builder->getUniformCStr(fInvMatrixUni);
fBaseFrequencyUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kVec2f_GrSLType, "baseFrequency");
const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni);
fAlphaUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "alpha");
const char* alphaUni = builder->getUniformCStr(fAlphaUni);
const char* stitchDataUni = NULL;
if (fStitchTiles) {
fStitchDataUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kVec4f_GrSLType, "stitchData");
stitchDataUni = builder->getUniformCStr(fStitchDataUni);
}
const char* chanCoords = "chanCoords";
const char* stitchData = "stitchData";
const char* ratio = "ratio";
const char* noise = "noise";
const char* noiseXY = "noiseXY";
const char* noiseVec = "noiseVec";
const char* noiseVecIni = "noiseVecIni";
const char* noiseSmooth = "noiseSmooth";
const char* fractVal = "fractVal";
const char* uv = "uv";
const char* ab = "ab";
const char* latticeIdx = "latticeIdx";
const char* lattice = "lattice";
const char* perlinNoise = "4096.0";
const char* inc8bit = "0.00390625"; // 1.0 / 256.0
// This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
// [-1,1] vector and perform a dot product between that vector and the provided vector.
const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);";
// There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
builder->fsCodeAppendf("\t\tconst vec4 %s = vec4(0.125, 0.375, 0.625, 0.875);", chanCoords);
// There are rounding errors if the floor operation is not performed here
builder->fsCodeAppendf("\t\tvec2 %s = floor((%s*vec3(%s, 1.0)).xy) * %s;",
noiseVecIni, invMatrixUni, vCoords, baseFrequencyUni);
// Loop over the 4 channels
builder->fsCodeAppend("\t\tfor (int channel = 3; channel >= 0; --channel) {");
if (fStitchTiles) {
// Set up TurbulenceInitial stitch values.
builder->fsCodeAppendf("\t\tvec4 %s = %s;", stitchData, stitchDataUni);
}
builder->fsCodeAppendf("\t\t%s[channel] = 0.0;", outputColor);
builder->fsCodeAppendf("\t\tfloat %s = 1.0;", ratio);
builder->fsCodeAppendf("\t\tvec2 %s = %s;", noiseVec, noiseVecIni);
// Loop over all octaves
builder->fsCodeAppendf("\t\tfor (int octave = 0; octave < %d; ++octave) {", fNumOctaves);
builder->fsCodeAppendf("\t\tvec4 %s = vec4(floor(%s) + vec2(%s), fract(%s));",
noiseXY, noiseVec, perlinNoise, noiseVec);
// smooth curve : t * t * (3 - 2 * t)
builder->fsCodeAppendf("\t\tvec2 %s = %s.zw * %s.zw * (vec2(3.0) - vec2(2.0) * %s.zw);",
noiseSmooth, noiseXY, noiseXY, noiseXY);
// Adjust frequencies if we're stitching tiles
if (fStitchTiles) {
builder->fsCodeAppendf("\t\tif(%s.x >= %s.y) { %s.x -= %s.x; }",
noiseXY, stitchData, noiseXY, stitchData);
builder->fsCodeAppendf("\t\tif(%s.x >= (%s.y - 1.0)) { %s.x -= (%s.x - 1.0); }",
noiseXY, stitchData, noiseXY, stitchData);
builder->fsCodeAppendf("\t\tif(%s.y >= %s.w) { %s.y -= %s.z; }",
noiseXY, stitchData, noiseXY, stitchData);
builder->fsCodeAppendf("\t\tif(%s.y >= (%s.w - 1.0)) { %s.y -= (%s.z - 1.0); }",
noiseXY, stitchData, noiseXY, stitchData);
}
// Get texture coordinates and normalize
builder->fsCodeAppendf("\t\t%s.xy = fract(floor(mod(%s.xy, 256.0)) / vec2(256.0));",
noiseXY, noiseXY);
// Get permutation for x
{
SkString xCoords("");
xCoords.appendf("vec2(%s.x, 0.5)", noiseXY);
builder->fsCodeAppendf("\t\tvec2 %s;\t\t%s.x = ", latticeIdx, latticeIdx);
builder->appendTextureLookup(GrGLShaderBuilder::kFragment_ShaderType,
samplers[0], xCoords.c_str(), kVec2f_GrSLType);
builder->fsCodeAppend(".r;\n");
}
// Get permutation for x + 1
{
SkString xCoords("");
xCoords.appendf("vec2(fract(%s.x + %s), 0.5)", noiseXY, inc8bit);
builder->fsCodeAppendf("\t\t%s.y = ", latticeIdx);
builder->appendTextureLookup(GrGLShaderBuilder::kFragment_ShaderType,
samplers[0], xCoords.c_str(), kVec2f_GrSLType);
builder->fsCodeAppend(".r;\n");
}
// Get (x,y) coordinates with the permutated x
builder->fsCodeAppendf("\t\t%s = fract(%s + %s.yy);", latticeIdx, latticeIdx, noiseXY);
builder->fsCodeAppendf("\t\tvec2 %s = %s.zw;", fractVal, noiseXY);
builder->fsCodeAppendf("\t\tvec2 %s;", uv);
// Compute u, at offset (0,0)
{
SkString latticeCoords("");
latticeCoords.appendf("vec2(%s.x, %s[channel])", latticeIdx, chanCoords);
builder->fsCodeAppendf("vec4 %s = ", lattice);
builder->appendTextureLookup(GrGLShaderBuilder::kFragment_ShaderType,
samplers[1], latticeCoords.c_str(), kVec2f_GrSLType);
builder->fsCodeAppendf(".bgra;\n\t\t%s.x = ", uv);
builder->fsCodeAppendf(dotLattice, lattice, lattice, inc8bit, fractVal);
}
builder->fsCodeAppendf("\t\t%s.x -= 1.0;", fractVal);
// Compute v, at offset (-1,0)
{
SkString latticeCoords("");
latticeCoords.appendf("vec2(%s.y, %s[channel])", latticeIdx, chanCoords);
builder->fsCodeAppend("lattice = ");
builder->appendTextureLookup(GrGLShaderBuilder::kFragment_ShaderType,
samplers[1], latticeCoords.c_str(), kVec2f_GrSLType);
builder->fsCodeAppendf(".bgra;\n\t\t%s.y = ", uv);
builder->fsCodeAppendf(dotLattice, lattice, lattice, inc8bit, fractVal);
}
// Compute 'a' as a linear interpolation of 'u' and 'v'
builder->fsCodeAppendf("\t\tvec2 %s;", ab);
builder->fsCodeAppendf("\t\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
builder->fsCodeAppendf("\t\t%s.y -= 1.0;", fractVal);
// Compute v, at offset (-1,-1)
{
SkString latticeCoords("");
latticeCoords.appendf("vec2(fract(%s.y + %s), %s[channel])",
latticeIdx, inc8bit, chanCoords);
builder->fsCodeAppend("lattice = ");
builder->appendTextureLookup(GrGLShaderBuilder::kFragment_ShaderType,
samplers[1], latticeCoords.c_str(), kVec2f_GrSLType);
builder->fsCodeAppendf(".bgra;\n\t\t%s.y = ", uv);
builder->fsCodeAppendf(dotLattice, lattice, lattice, inc8bit, fractVal);
}
builder->fsCodeAppendf("\t\t%s.x += 1.0;", fractVal);
// Compute u, at offset (0,-1)
{
SkString latticeCoords("");
latticeCoords.appendf("vec2(fract(%s.x + %s), %s[channel])",
latticeIdx, inc8bit, chanCoords);
builder->fsCodeAppend("lattice = ");
builder->appendTextureLookup(GrGLShaderBuilder::kFragment_ShaderType,
samplers[1], latticeCoords.c_str(), kVec2f_GrSLType);
builder->fsCodeAppendf(".bgra;\n\t\t%s.x = ", uv);
builder->fsCodeAppendf(dotLattice, lattice, lattice, inc8bit, fractVal);
}
// Compute 'b' as a linear interpolation of 'u' and 'v'
builder->fsCodeAppendf("\t\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
// Compute the noise as a linear interpolation of 'a' and 'b'
builder->fsCodeAppendf("\t\tfloat %s = mix(%s.x, %s.y, %s.y);", noise, ab, ab, noiseSmooth);
builder->fsCodeAppendf("\t\t%s[channel] += ", outputColor);
builder->fsCodeAppendf((fType == SkPerlinNoiseShader::kFractalNoise_Type) ?
"%s / %s;" : "abs(%s) / %s;", noise, ratio);
builder->fsCodeAppendf("\t\t%s *= vec2(2.0);", noiseVec);
builder->fsCodeAppendf("\t\t%s *= 2.0;", ratio);
if (fStitchTiles) {
builder->fsCodeAppendf("\t\t%s.xz *= vec2(2.0);", stitchData);
builder->fsCodeAppendf("\t\t%s.yw = %s.xz + vec2(%s);", stitchData, stitchData, perlinNoise);
}
builder->fsCodeAppend("\t\t}"); // end of the for loop on octaves
builder->fsCodeAppend("\t\t}"); // end of the for loop on channels
if (fType == SkPerlinNoiseShader::kFractalNoise_Type) {
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
builder->fsCodeAppendf("\t\t%s = %s * vec4(0.5) + vec4(0.5);", outputColor, outputColor);
}
builder->fsCodeAppendf("\t\t%s.a *= %s;", outputColor, alphaUni);
// Clamp values
builder->fsCodeAppendf("\t\t%s = clamp(%s, 0.0, 1.0);", outputColor, outputColor);
// Pre-multiply the result
builder->fsCodeAppendf("\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
outputColor, outputColor, outputColor, outputColor);
}
GrGLPerlinNoise::GrGLPerlinNoise(const GrBackendEffectFactory& factory,
const GrDrawEffect& drawEffect)
: INHERITED (factory)
, fType(drawEffect.castEffect<GrPerlinNoiseEffect>().type())
, fStitchTiles(drawEffect.castEffect<GrPerlinNoiseEffect>().stitchTiles())
, fNumOctaves(drawEffect.castEffect<GrPerlinNoiseEffect>().numOctaves())
, fEffectMatrix(drawEffect.castEffect<GrPerlinNoiseEffect>().coordsType()) {
}
GrGLEffect::EffectKey GrGLPerlinNoise::GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>();
EffectKey key = turbulence.numOctaves();
key = key << 3; // Make room for next 3 bits
switch (turbulence.type()) {
case SkPerlinNoiseShader::kFractalNoise_Type:
key |= 0x1;
break;
case SkPerlinNoiseShader::kTurbulence_Type:
key |= 0x2;
break;
default:
// leave key at 0
break;
}
if (turbulence.stitchTiles()) {
key |= 0x4; // Flip the 3rd bit if tile stitching is on
}
key = key << GrGLEffectMatrix::kKeyBits;
SkMatrix m = turbulence.matrix();
m.postTranslate(SK_Scalar1, SK_Scalar1);
return key | GrGLEffectMatrix::GenKey(m, drawEffect,
drawEffect.castEffect<GrPerlinNoiseEffect>().coordsType(), NULL);
}
void GrGLPerlinNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) {
const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>();
const SkVector& baseFrequency = turbulence.baseFrequency();
uman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY);
if (turbulence.stitchTiles()) {
const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData();
uman.set4f(fStitchDataUni, SkIntToScalar(stitchData.fWidth),
SkIntToScalar(stitchData.fWrapX),
SkIntToScalar(stitchData.fHeight),
SkIntToScalar(stitchData.fWrapY));
}
uman.set1f(fAlphaUni, SkScalarDiv(SkIntToScalar(turbulence.alpha()), SkIntToScalar(255)));
SkMatrix m = turbulence.matrix();
SkMatrix invM;
if (!m.invert(&invM)) {
invM.reset();
} else {
invM.postConcat(invM); // Square the matrix
}
uman.setSkMatrix(fInvMatrixUni, invM);
// This (1,1) translation is due to WebKit's 1 based coordinates for the noise
// (as opposed to 0 based, usually). The same adjustment is in the shadeSpan() functions.
m.postTranslate(SK_Scalar1, SK_Scalar1);
fEffectMatrix.setData(uman, m, drawEffect, NULL);
}
/////////////////////////////////////////////////////////////////////
GrEffectRef* SkPerlinNoiseShader::asNewEffect(GrContext* context, const SkPaint& paint) const {
#if 0
SkASSERT(NULL != context);
// Either we don't stitch tiles, either we have a valid tile size
SkASSERT(!fStitchTiles || !fTileSize.isEmpty());
GrTexture* permutationsTexture = GrLockAndRefCachedBitmapTexture(
context, *fPaintingData->getPermutationsBitmap(), NULL);
GrTexture* noiseTexture = GrLockAndRefCachedBitmapTexture(
context, *fPaintingData->getNoiseBitmap(), NULL);
GrEffectRef* effect = (NULL != permutationsTexture) && (NULL != noiseTexture) ?
GrPerlinNoiseEffect::Create(fType, fPaintingData->fBaseFrequency,
fNumOctaves, fStitchTiles,
fPaintingData->fStitchDataInit,
permutationsTexture, noiseTexture,
this->getLocalMatrix(), paint.getAlpha()) :
NULL;
// Unlock immediately, this is not great, but we don't have a way of
// knowing when else to unlock it currently. TODO: Remove this when
// unref becomes the unlock replacement for all types of textures.
if (NULL != permutationsTexture) {
GrUnlockAndUnrefCachedBitmapTexture(permutationsTexture);
}
if (NULL != noiseTexture) {
GrUnlockAndUnrefCachedBitmapTexture(noiseTexture);
}
return effect;
#else
sk_ignore_unused_variable(context);
sk_ignore_unused_variable(paint);
return NULL;
#endif
}
#else
GrEffectRef* SkPerlinNoiseShader::asNewEffect(GrContext*, const SkPaint&) const {
SkDEBUGFAIL("Should not call in GPU-less build");
return NULL;
}
#endif
#ifdef SK_DEVELOPER
void SkPerlinNoiseShader::toString(SkString* str) const {
str->append("SkPerlinNoiseShader: (");
str->append("type: ");
switch (fType) {
case kFractalNoise_Type:
str->append("\"fractal noise\"");
break;
case kTurbulence_Type:
str->append("\"turbulence\"");
break;
default:
str->append("\"unknown\"");
break;
}
str->append(" base frequency: (");
str->appendScalar(fBaseFrequencyX);
str->append(", ");
str->appendScalar(fBaseFrequencyY);
str->append(") number of octaves: ");
str->appendS32(fNumOctaves);
str->append(" seed: ");
str->appendScalar(fSeed);
str->append(" stitch tiles: ");
str->append(fStitchTiles ? "true " : "false ");
this->INHERITED::toString(str);
str->append(")");
}
#endif