blob: f1bc5ecae7f2deaeb8659ebfd5b9ec31f69e1604 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrBinHashKey.h"
#include "GrGLProgram.h"
#include "GrGpuGLShaders.h"
#include "GrGpuVertex.h"
#include "GrNoncopyable.h"
#include "GrStringBuilder.h"
#include "GrRandom.h"
#define SKIP_CACHE_CHECK true
#define GR_UINT32_MAX static_cast<uint32_t>(-1)
#include "GrTHashCache.h"
class GrGpuGLShaders::ProgramCache : public ::GrNoncopyable {
private:
class Entry;
typedef GrBinHashKey<Entry, GrGLProgram::kProgramKeySize> ProgramHashKey;
class Entry : public ::GrNoncopyable {
public:
Entry() {}
void copyAndTakeOwnership(Entry& entry) {
fProgramData.copyAndTakeOwnership(entry.fProgramData);
fKey = entry.fKey; // ownership transfer
fLRUStamp = entry.fLRUStamp;
}
public:
int compare(const ProgramHashKey& key) const { return fKey.compare(key); }
public:
GrGLProgram::CachedData fProgramData;
ProgramHashKey fKey;
unsigned int fLRUStamp;
};
GrTHashTable<Entry, ProgramHashKey, 8> fHashCache;
// We may have kMaxEntries+1 shaders in the GL context because
// we create a new shader before evicting from the cache.
enum {
kMaxEntries = 32
};
Entry fEntries[kMaxEntries];
int fCount;
unsigned int fCurrLRUStamp;
const GrGLInterface* fGL;
GrGLProgram::GLSLVersion fGLSLVersion;
public:
ProgramCache(const GrGLInterface* gl,
GrGLProgram::GLSLVersion glslVersion)
: fCount(0)
, fCurrLRUStamp(0)
, fGL(gl)
, fGLSLVersion(glslVersion) {
}
~ProgramCache() {
for (int i = 0; i < fCount; ++i) {
GrGpuGLShaders::DeleteProgram(fGL, &fEntries[i].fProgramData);
}
}
void abandon() {
fCount = 0;
}
void invalidateViewMatrices() {
for (int i = 0; i < fCount; ++i) {
// set to illegal matrix
fEntries[i].fProgramData.fViewMatrix = GrMatrix::InvalidMatrix();
}
}
GrGLProgram::CachedData* getProgramData(const GrGLProgram& desc) {
Entry newEntry;
newEntry.fKey.setKeyData(desc.keyData());
Entry* entry = fHashCache.find(newEntry.fKey);
if (NULL == entry) {
if (!desc.genProgram(fGL, fGLSLVersion, &newEntry.fProgramData)) {
return NULL;
}
if (fCount < kMaxEntries) {
entry = fEntries + fCount;
++fCount;
} else {
GrAssert(kMaxEntries == fCount);
entry = fEntries;
for (int i = 1; i < kMaxEntries; ++i) {
if (fEntries[i].fLRUStamp < entry->fLRUStamp) {
entry = fEntries + i;
}
}
fHashCache.remove(entry->fKey, entry);
GrGpuGLShaders::DeleteProgram(fGL, &entry->fProgramData);
}
entry->copyAndTakeOwnership(newEntry);
fHashCache.insert(entry->fKey, entry);
}
entry->fLRUStamp = fCurrLRUStamp;
if (GR_UINT32_MAX == fCurrLRUStamp) {
// wrap around! just trash our LRU, one time hit.
for (int i = 0; i < fCount; ++i) {
fEntries[i].fLRUStamp = 0;
}
}
++fCurrLRUStamp;
return &entry->fProgramData;
}
};
void GrGpuGLShaders::abandonResources(){
INHERITED::abandonResources();
fProgramCache->abandon();
}
void GrGpuGLShaders::DeleteProgram(const GrGLInterface* gl,
CachedData* programData) {
GR_GL_CALL(gl, DeleteShader(programData->fVShaderID));
if (programData->fGShaderID) {
GR_GL_CALL(gl, DeleteShader(programData->fGShaderID));
}
GR_GL_CALL(gl, DeleteShader(programData->fFShaderID));
GR_GL_CALL(gl, DeleteProgram(programData->fProgramID));
GR_DEBUGCODE(memset(programData, 0, sizeof(*programData));)
}
////////////////////////////////////////////////////////////////////////////////
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
namespace {
GrGLProgram::GLSLVersion get_glsl_version(GrGLBinding binding,
const GrGLInterface* gl) {
GrGLSLVersion ver = GrGLGetGLSLVersion(gl);
switch (binding) {
case kDesktop_GrGLBinding:
GrAssert(ver >= GR_GLSL_VER(1,20));
if (ver >= GR_GLSL_VER(1,50)) {
return GrGLProgram::k150_GLSLVersion;
} else if (ver >= GR_GLSL_VER(1,30)) {
return GrGLProgram::k130_GLSLVersion;
} else {
return GrGLProgram::k120_GLSLVersion;
}
case kES2_GrGLBinding:
// version 1.00 of ES GLSL based on ver 1.20 of desktop GLSL
GrAssert(ver >= GR_GL_VER(1,00));
return GrGLProgram::k120_GLSLVersion;
default:
GrCrash("Attempting to get GLSL version in unknown or fixed-"
"function GL binding.");
return GrGLProgram::k120_GLSLVersion; // suppress warning
}
}
template <typename T>
T random_val(GrRandom* r, T count) {
return (T)(int)(r->nextF() * count);
}
}
bool GrGpuGLShaders::programUnitTest() {
GrGLProgram::GLSLVersion glslVersion =
get_glsl_version(this->glBinding(), this->glInterface());
static const int STAGE_OPTS[] = {
0,
StageDesc::kNoPerspective_OptFlagBit,
StageDesc::kIdentity_CoordMapping
};
GrGLProgram program;
ProgramDesc& pdesc = program.fProgramDesc;
static const int NUM_TESTS = 512;
// GrRandoms nextU() values have patterns in the low bits
// So using nextU() % array_count might never take some values.
GrRandom random;
for (int t = 0; t < NUM_TESTS; ++t) {
#if 0
GrPrintf("\nTest Program %d\n-------------\n", t);
static const int stop = -1;
if (t == stop) {
int breakpointhere = 9;
}
#endif
pdesc.fVertexLayout = 0;
pdesc.fEmitsPointSize = random.nextF() > .5f;
pdesc.fColorType = static_cast<int>(random.nextF() *
ProgramDesc::kColorTypeCnt);
int idx = (int)(random.nextF() * (SkXfermode::kCoeffModesCnt));
pdesc.fColorFilterXfermode = (SkXfermode::Mode)idx;
idx = (int)(random.nextF() * (kNumStages+1));
pdesc.fFirstCoverageStage = idx;
pdesc.fVertexLayout |= (random.nextF() > .5f) ?
GrDrawTarget::kCoverage_VertexLayoutBit :
0;
#if GR_GL_EXPERIMENTAL_GS
pdesc.fExperimentalGS = this->getCaps().fGeometryShaderSupport &&
random.nextF() > .5f;
#endif
bool edgeAA = random.nextF() > .5f;
if (edgeAA) {
bool vertexEdgeAA = random.nextF() > .5f;
if (vertexEdgeAA) {
pdesc.fVertexLayout |= GrDrawTarget::kEdge_VertexLayoutBit;
if (this->getCaps().fShaderDerivativeSupport) {
pdesc.fVertexEdgeType = random.nextF() > 0.5f ?
kHairQuad_EdgeType :
kHairLine_EdgeType;
} else {
pdesc.fVertexEdgeType = kHairLine_EdgeType;
}
pdesc.fEdgeAANumEdges = 0;
} else {
pdesc.fEdgeAANumEdges = static_cast<int>(1 + random.nextF() *
this->getMaxEdges());
pdesc.fEdgeAAConcave = random.nextF() > .5f;
}
} else {
pdesc.fEdgeAANumEdges = 0;
}
if (this->getCaps().fDualSourceBlendingSupport) {
pdesc.fDualSrcOutput =
(ProgramDesc::DualSrcOutput)
(int)(random.nextF() * ProgramDesc::kDualSrcOutputCnt);
} else {
pdesc.fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput;
}
for (int s = 0; s < kNumStages; ++s) {
// enable the stage?
if (random.nextF() > .5f) {
// use separate tex coords?
if (random.nextF() > .5f) {
int t = (int)(random.nextF() * kMaxTexCoords);
pdesc.fVertexLayout |= StageTexCoordVertexLayoutBit(s, t);
} else {
pdesc.fVertexLayout |= StagePosAsTexCoordVertexLayoutBit(s);
}
}
// use text-formatted verts?
if (random.nextF() > .5f) {
pdesc.fVertexLayout |= kTextFormat_VertexLayoutBit;
}
idx = (int)(random.nextF() * GR_ARRAY_COUNT(STAGE_OPTS));
StageDesc& stage = pdesc.fStages[s];
stage.fOptFlags = STAGE_OPTS[idx];
stage.fModulation = random_val(&random, StageDesc::kModulationCnt);
stage.fCoordMapping = random_val(&random, StageDesc::kCoordMappingCnt);
stage.fFetchMode = random_val(&random, StageDesc::kFetchModeCnt);
// convolution shaders don't work with persp tex matrix
if (stage.fFetchMode == StageDesc::kConvolution_FetchMode) {
stage.fOptFlags |= StageDesc::kNoPerspective_OptFlagBit;
}
stage.setEnabled(VertexUsesStage(s, pdesc.fVertexLayout));
stage.fKernelWidth = static_cast<int8_t>(4 * random.nextF() + 2);
}
CachedData cachedData;
if (!program.genProgram(this->glInterface(),
glslVersion,
&cachedData)) {
return false;
}
DeleteProgram(this->glInterface(), &cachedData);
}
return true;
}
namespace {
GrGLBinding get_binding_in_use(const GrGLInterface* gl) {
if (gl->supportsDesktop()) {
return kDesktop_GrGLBinding;
} else {
GrAssert(gl->supportsES2());
return kES2_GrGLBinding;
}
}
}
GrGpuGLShaders::GrGpuGLShaders(const GrGLInterface* gl)
: GrGpuGL(gl, get_binding_in_use(gl)) {
GrGLProgram::GLSLVersion glslVersion =
get_glsl_version(this->glBinding(), gl);
// Enable supported shader-releated caps
fCaps.fShaderSupport = true;
fCaps.fSupportPerVertexCoverage = true;
if (kDesktop_GrGLBinding == this->glBinding()) {
fCaps.fDualSourceBlendingSupport =
this->glVersion() >= GR_GL_VER(3,3) ||
this->hasExtension("GL_ARB_blend_func_extended");
fCaps.fShaderDerivativeSupport = true;
// we don't support GL_ARB_geometry_shader4, just GL 3.2+ GS
fCaps.fGeometryShaderSupport =
this->glVersion() >= GR_GL_VER(3,2) &&
glslVersion >= GrGLProgram::k150_GLSLVersion;
} else {
fCaps.fShaderDerivativeSupport =
this->hasExtension("GL_OES_standard_derivatives");
}
fProgramData = NULL;
fProgramCache = new ProgramCache(gl, glslVersion);
#if 0
this->programUnitTest();
#endif
}
GrGpuGLShaders::~GrGpuGLShaders() {
delete fProgramCache;
}
const GrMatrix& GrGpuGLShaders::getHWSamplerMatrix(int stage) {
GrAssert(fProgramData);
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fStages[stage].fTextureMatrixUni) {
return fHWDrawState.fSamplerStates[stage].getMatrix();
} else {
return fProgramData->fTextureMatrices[stage];
}
}
void GrGpuGLShaders::recordHWSamplerMatrix(int stage, const GrMatrix& matrix) {
GrAssert(fProgramData);
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fStages[stage].fTextureMatrixUni) {
fHWDrawState.fSamplerStates[stage].setMatrix(matrix);
} else {
fProgramData->fTextureMatrices[stage] = matrix;
}
}
void GrGpuGLShaders::resetContext() {
INHERITED::resetContext();
fHWGeometryState.fVertexLayout = 0;
fHWGeometryState.fVertexOffset = ~0;
GL_CALL(DisableVertexAttribArray(GrGLProgram::ColorAttributeIdx()));
GL_CALL(DisableVertexAttribArray(GrGLProgram::EdgeAttributeIdx()));
for (int t = 0; t < kMaxTexCoords; ++t) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::TexCoordAttributeIdx(t)));
}
GL_CALL(EnableVertexAttribArray(GrGLProgram::PositionAttributeIdx()));
fHWProgramID = 0;
}
void GrGpuGLShaders::flushViewMatrix() {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrMatrix m;
m.setAll(
GrIntToScalar(2) / fCurrDrawState.fRenderTarget->width(), 0, -GR_Scalar1,
0,-GrIntToScalar(2) / fCurrDrawState.fRenderTarget->height(), GR_Scalar1,
0, 0, GrMatrix::I()[8]);
m.setConcat(m, fCurrDrawState.fViewMatrix);
// ES doesn't allow you to pass true to the transpose param,
// so do our own transpose
GrGLfloat mt[] = {
GrScalarToFloat(m[GrMatrix::kMScaleX]),
GrScalarToFloat(m[GrMatrix::kMSkewY]),
GrScalarToFloat(m[GrMatrix::kMPersp0]),
GrScalarToFloat(m[GrMatrix::kMSkewX]),
GrScalarToFloat(m[GrMatrix::kMScaleY]),
GrScalarToFloat(m[GrMatrix::kMPersp1]),
GrScalarToFloat(m[GrMatrix::kMTransX]),
GrScalarToFloat(m[GrMatrix::kMTransY]),
GrScalarToFloat(m[GrMatrix::kMPersp2])
};
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fViewMatrixUni) {
int baseIdx = GrGLProgram::ViewMatrixAttributeIdx();
GL_CALL(VertexAttrib4fv(baseIdx + 0, mt+0));
GL_CALL(VertexAttrib4fv(baseIdx + 1, mt+3));
GL_CALL(VertexAttrib4fv(baseIdx + 2, mt+6));
} else {
GrAssert(GrGLProgram::kUnusedUniform !=
fProgramData->fUniLocations.fViewMatrixUni);
GL_CALL(UniformMatrix3fv(fProgramData->fUniLocations.fViewMatrixUni,
1, false, mt));
}
}
void GrGpuGLShaders::flushTextureDomain(int s) {
const GrGLint& uni = fProgramData->fUniLocations.fStages[s].fTexDomUni;
if (GrGLProgram::kUnusedUniform != uni) {
const GrRect &texDom =
fCurrDrawState.fSamplerStates[s].getTextureDomain();
if (((1 << s) & fDirtyFlags.fTextureChangedMask) ||
fProgramData->fTextureDomain[s] != texDom) {
fProgramData->fTextureDomain[s] = texDom;
float values[4] = {
GrScalarToFloat(texDom.left()),
GrScalarToFloat(texDom.top()),
GrScalarToFloat(texDom.right()),
GrScalarToFloat(texDom.bottom())
};
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
GrGLTexture::Orientation orientation = texture->orientation();
// vertical flip if necessary
if (GrGLTexture::kBottomUp_Orientation == orientation) {
values[1] = 1.0f - values[1];
values[3] = 1.0f - values[3];
// The top and bottom were just flipped, so correct the ordering
// of elements so that values = (l, t, r, b).
SkTSwap(values[1], values[3]);
}
values[0] *= SkScalarToFloat(texture->contentScaleX());
values[2] *= SkScalarToFloat(texture->contentScaleX());
values[1] *= SkScalarToFloat(texture->contentScaleY());
values[3] *= SkScalarToFloat(texture->contentScaleY());
GL_CALL(Uniform4fv(uni, 1, values));
}
}
}
void GrGpuGLShaders::flushTextureMatrix(int s) {
const GrGLint& uni = fProgramData->fUniLocations.fStages[s].fTextureMatrixUni;
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
if (NULL != texture) {
if (GrGLProgram::kUnusedUniform != uni &&
(((1 << s) & fDirtyFlags.fTextureChangedMask) ||
getHWSamplerMatrix(s) != getSamplerMatrix(s))) {
GrAssert(NULL != fCurrDrawState.fTextures[s]);
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
GrMatrix m = getSamplerMatrix(s);
GrSamplerState::SampleMode mode =
fCurrDrawState.fSamplerStates[s].getSampleMode();
AdjustTextureMatrix(texture, mode, &m);
// ES doesn't allow you to pass true to the transpose param,
// so do our own transpose
GrGLfloat mt[] = {
GrScalarToFloat(m[GrMatrix::kMScaleX]),
GrScalarToFloat(m[GrMatrix::kMSkewY]),
GrScalarToFloat(m[GrMatrix::kMPersp0]),
GrScalarToFloat(m[GrMatrix::kMSkewX]),
GrScalarToFloat(m[GrMatrix::kMScaleY]),
GrScalarToFloat(m[GrMatrix::kMPersp1]),
GrScalarToFloat(m[GrMatrix::kMTransX]),
GrScalarToFloat(m[GrMatrix::kMTransY]),
GrScalarToFloat(m[GrMatrix::kMPersp2])
};
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fStages[s].fTextureMatrixUni) {
int baseIdx = GrGLProgram::TextureMatrixAttributeIdx(s);
GL_CALL(VertexAttrib4fv(baseIdx + 0, mt+0));
GL_CALL(VertexAttrib4fv(baseIdx + 1, mt+3));
GL_CALL(VertexAttrib4fv(baseIdx + 2, mt+6));
} else {
GL_CALL(UniformMatrix3fv(uni, 1, false, mt));
}
recordHWSamplerMatrix(s, getSamplerMatrix(s));
}
}
}
void GrGpuGLShaders::flushRadial2(int s) {
const int &uni = fProgramData->fUniLocations.fStages[s].fRadial2Uni;
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
if (GrGLProgram::kUnusedUniform != uni &&
(fProgramData->fRadial2CenterX1[s] != sampler.getRadial2CenterX1() ||
fProgramData->fRadial2Radius0[s] != sampler.getRadial2Radius0() ||
fProgramData->fRadial2PosRoot[s] != sampler.isRadial2PosRoot())) {
GrScalar centerX1 = sampler.getRadial2CenterX1();
GrScalar radius0 = sampler.getRadial2Radius0();
GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1;
// when were in the degenerate (linear) case the second
// value will be INF but the program doesn't read it. (We
// use the same 6 uniforms even though we don't need them
// all in the linear case just to keep the code complexity
// down).
float values[6] = {
GrScalarToFloat(a),
1 / (2.f * values[0]),
GrScalarToFloat(centerX1),
GrScalarToFloat(radius0),
GrScalarToFloat(GrMul(radius0, radius0)),
sampler.isRadial2PosRoot() ? 1.f : -1.f
};
GL_CALL(Uniform1fv(uni, 6, values));
fProgramData->fRadial2CenterX1[s] = sampler.getRadial2CenterX1();
fProgramData->fRadial2Radius0[s] = sampler.getRadial2Radius0();
fProgramData->fRadial2PosRoot[s] = sampler.isRadial2PosRoot();
}
}
void GrGpuGLShaders::flushConvolution(int s) {
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
int kernelUni = fProgramData->fUniLocations.fStages[s].fKernelUni;
if (GrGLProgram::kUnusedUniform != kernelUni) {
GL_CALL(Uniform1fv(kernelUni, sampler.getKernelWidth(),
sampler.getKernel()));
}
int imageIncrementUni = fProgramData->fUniLocations.fStages[s].fImageIncrementUni;
if (GrGLProgram::kUnusedUniform != imageIncrementUni) {
GL_CALL(Uniform2fv(imageIncrementUni, 1, sampler.getImageIncrement()));
}
}
void GrGpuGLShaders::flushTexelSize(int s) {
const int& uni = fProgramData->fUniLocations.fStages[s].fNormalizedTexelSizeUni;
if (GrGLProgram::kUnusedUniform != uni) {
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
if (texture->allocatedWidth() != fProgramData->fTextureWidth[s] ||
texture->allocatedHeight() != fProgramData->fTextureWidth[s]) {
float texelSize[] = {1.f / texture->allocatedWidth(),
1.f / texture->allocatedHeight()};
GL_CALL(Uniform2fv(uni, 1, texelSize));
}
}
}
void GrGpuGLShaders::flushEdgeAAData() {
const int& uni = fProgramData->fUniLocations.fEdgesUni;
if (GrGLProgram::kUnusedUniform != uni) {
int count = fCurrDrawState.fEdgeAANumEdges;
Edge edges[kMaxEdges];
// Flip the edges in Y
float height =
static_cast<float>(fCurrDrawState.fRenderTarget->height());
for (int i = 0; i < count; ++i) {
edges[i] = fCurrDrawState.fEdgeAAEdges[i];
float b = edges[i].fY;
edges[i].fY = -b;
edges[i].fZ += b * height;
}
GL_CALL(Uniform3fv(uni, count, &edges[0].fX));
}
}
static const float ONE_OVER_255 = 1.f / 255.f;
#define GR_COLOR_TO_VEC4(color) {\
GrColorUnpackR(color) * ONE_OVER_255,\
GrColorUnpackG(color) * ONE_OVER_255,\
GrColorUnpackB(color) * ONE_OVER_255,\
GrColorUnpackA(color) * ONE_OVER_255 \
}
void GrGpuGLShaders::flushColor(GrColor color) {
const ProgramDesc& desc = fCurrentProgram.getDesc();
if (this->getGeomSrc().fVertexLayout & kColor_VertexLayoutBit) {
// color will be specified per-vertex as an attribute
// invalidate the const vertex attrib color
fHWDrawState.fColor = GrColor_ILLEGAL;
} else {
switch (desc.fColorType) {
case ProgramDesc::kAttribute_ColorType:
if (fHWDrawState.fColor != color) {
// OpenGL ES only supports the float varities of glVertexAttrib
float c[] = GR_COLOR_TO_VEC4(color);
GL_CALL(VertexAttrib4fv(GrGLProgram::ColorAttributeIdx(),
c));
fHWDrawState.fColor = color;
}
break;
case ProgramDesc::kUniform_ColorType:
if (fProgramData->fColor != color) {
// OpenGL ES only supports the float varities of glVertexAttrib
float c[] = GR_COLOR_TO_VEC4(color);
GrAssert(GrGLProgram::kUnusedUniform !=
fProgramData->fUniLocations.fColorUni);
GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorUni,
1, c));
fProgramData->fColor = color;
}
break;
case ProgramDesc::kSolidWhite_ColorType:
case ProgramDesc::kTransBlack_ColorType:
break;
default:
GrCrash("Unknown color type.");
}
}
if (fProgramData->fUniLocations.fColorFilterUni
!= GrGLProgram::kUnusedUniform
&& fProgramData->fColorFilterColor
!= fCurrDrawState.fColorFilterColor) {
float c[] = GR_COLOR_TO_VEC4(fCurrDrawState.fColorFilterColor);
GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorFilterUni, 1, c));
fProgramData->fColorFilterColor = fCurrDrawState.fColorFilterColor;
}
}
bool GrGpuGLShaders::flushGraphicsState(GrPrimitiveType type) {
if (!flushGLStateCommon(type)) {
return false;
}
if (fDirtyFlags.fRenderTargetChanged) {
// our coords are in pixel space and the GL matrices map to NDC
// so if the viewport changed, our matrix is now wrong.
fHWDrawState.fViewMatrix = GrMatrix::InvalidMatrix();
// we assume all shader matrices may be wrong after viewport changes
fProgramCache->invalidateViewMatrices();
}
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
BlendOptFlags blendOpts = this->getBlendOpts(false, &srcCoeff, &dstCoeff);
if (kSkipDraw_BlendOptFlag & blendOpts) {
return false;
}
this->buildProgram(type, blendOpts, dstCoeff);
fProgramData = fProgramCache->getProgramData(fCurrentProgram);
if (NULL == fProgramData) {
GrAssert(!"Failed to create program!");
return false;
}
if (fHWProgramID != fProgramData->fProgramID) {
GL_CALL(UseProgram(fProgramData->fProgramID));
fHWProgramID = fProgramData->fProgramID;
}
fCurrentProgram.overrideBlend(&srcCoeff, &dstCoeff);
this->flushBlend(type, srcCoeff, dstCoeff);
GrColor color;
if (blendOpts & kEmitTransBlack_BlendOptFlag) {
color = 0;
} else if (blendOpts & kEmitCoverage_BlendOptFlag) {
color = 0xffffffff;
} else {
color = fCurrDrawState.fColor;
}
this->flushColor(color);
GrMatrix* currViewMatrix;
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fViewMatrixUni) {
currViewMatrix = &fHWDrawState.fViewMatrix;
} else {
currViewMatrix = &fProgramData->fViewMatrix;
}
if (*currViewMatrix != fCurrDrawState.fViewMatrix) {
flushViewMatrix();
*currViewMatrix = fCurrDrawState.fViewMatrix;
}
for (int s = 0; s < kNumStages; ++s) {
this->flushTextureMatrix(s);
this->flushRadial2(s);
this->flushConvolution(s);
this->flushTexelSize(s);
this->flushTextureDomain(s);
}
this->flushEdgeAAData();
resetDirtyFlags();
return true;
}
void GrGpuGLShaders::postDraw() {
}
void GrGpuGLShaders::setupGeometry(int* startVertex,
int* startIndex,
int vertexCount,
int indexCount) {
int newColorOffset;
int newCoverageOffset;
int newTexCoordOffsets[kMaxTexCoords];
int newEdgeOffset;
GrGLsizei newStride = VertexSizeAndOffsetsByIdx(
this->getGeomSrc().fVertexLayout,
newTexCoordOffsets,
&newColorOffset,
&newCoverageOffset,
&newEdgeOffset);
int oldColorOffset;
int oldCoverageOffset;
int oldTexCoordOffsets[kMaxTexCoords];
int oldEdgeOffset;
GrGLsizei oldStride = VertexSizeAndOffsetsByIdx(
fHWGeometryState.fVertexLayout,
oldTexCoordOffsets,
&oldColorOffset,
&oldCoverageOffset,
&oldEdgeOffset);
bool indexed = NULL != startIndex;
int extraVertexOffset;
int extraIndexOffset;
this->setBuffers(indexed, &extraVertexOffset, &extraIndexOffset);
GrGLenum scalarType;
bool texCoordNorm;
if (this->getGeomSrc().fVertexLayout & kTextFormat_VertexLayoutBit) {
scalarType = GrGLTextType;
texCoordNorm = GR_GL_TEXT_TEXTURE_NORMALIZED;
} else {
scalarType = GrGLType;
texCoordNorm = false;
}
size_t vertexOffset = (*startVertex + extraVertexOffset) * newStride;
*startVertex = 0;
if (indexed) {
*startIndex += extraIndexOffset;
}
// all the Pointers must be set if any of these are true
bool allOffsetsChange = fHWGeometryState.fArrayPtrsDirty ||
vertexOffset != fHWGeometryState.fVertexOffset ||
newStride != oldStride;
// position and tex coord offsets change if above conditions are true
// or the type/normalization changed based on text vs nontext type coords.
bool posAndTexChange = allOffsetsChange ||
(((GrGLTextType != GrGLType) || GR_GL_TEXT_TEXTURE_NORMALIZED) &&
(kTextFormat_VertexLayoutBit &
(fHWGeometryState.fVertexLayout ^
this->getGeomSrc().fVertexLayout)));
if (posAndTexChange) {
int idx = GrGLProgram::PositionAttributeIdx();
GL_CALL(VertexAttribPointer(idx, 2, scalarType, false, newStride,
(GrGLvoid*)vertexOffset));
fHWGeometryState.fVertexOffset = vertexOffset;
}
for (int t = 0; t < kMaxTexCoords; ++t) {
if (newTexCoordOffsets[t] > 0) {
GrGLvoid* texCoordOffset = (GrGLvoid*)(vertexOffset + newTexCoordOffsets[t]);
int idx = GrGLProgram::TexCoordAttributeIdx(t);
if (oldTexCoordOffsets[t] <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm,
newStride, texCoordOffset));
} else if (posAndTexChange ||
newTexCoordOffsets[t] != oldTexCoordOffsets[t]) {
GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm,
newStride, texCoordOffset));
}
} else if (oldTexCoordOffsets[t] > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::TexCoordAttributeIdx(t)));
}
}
if (newColorOffset > 0) {
GrGLvoid* colorOffset = (int8_t*)(vertexOffset + newColorOffset);
int idx = GrGLProgram::ColorAttributeIdx();
if (oldColorOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, colorOffset));
} else if (allOffsetsChange || newColorOffset != oldColorOffset) {
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, colorOffset));
}
} else if (oldColorOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::ColorAttributeIdx()));
}
if (newCoverageOffset > 0) {
// bind a single channel, they should all have the same value.
GrGLvoid* coverageOffset = (int8_t*)(vertexOffset + newCoverageOffset);
int idx = GrGLProgram::CoverageAttributeIdx();
if (oldCoverageOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 1, GR_GL_UNSIGNED_BYTE,
true, newStride, coverageOffset));
} else if (allOffsetsChange || newCoverageOffset != oldCoverageOffset) {
GL_CALL(VertexAttribPointer(idx, 1, GR_GL_UNSIGNED_BYTE,
true, newStride, coverageOffset));
}
} else if (oldCoverageOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::CoverageAttributeIdx()));
}
if (newEdgeOffset > 0) {
GrGLvoid* edgeOffset = (int8_t*)(vertexOffset + newEdgeOffset);
int idx = GrGLProgram::EdgeAttributeIdx();
if (oldEdgeOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 4, scalarType,
false, newStride, edgeOffset));
} else if (allOffsetsChange || newEdgeOffset != oldEdgeOffset) {
GL_CALL(VertexAttribPointer(idx, 4, scalarType,
false, newStride, edgeOffset));
}
} else if (oldEdgeOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::EdgeAttributeIdx()));
}
fHWGeometryState.fVertexLayout = this->getGeomSrc().fVertexLayout;
fHWGeometryState.fArrayPtrsDirty = false;
}
void GrGpuGLShaders::buildProgram(GrPrimitiveType type,
BlendOptFlags blendOpts,
GrBlendCoeff dstCoeff) {
ProgramDesc& desc = fCurrentProgram.fProgramDesc;
// This should already have been caught
GrAssert(!(kSkipDraw_BlendOptFlag & blendOpts));
bool skipCoverage = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag);
bool skipColor = SkToBool(blendOpts & (kEmitTransBlack_BlendOptFlag |
kEmitCoverage_BlendOptFlag));
// The descriptor is used as a cache key. Thus when a field of the
// descriptor will not affect program generation (because of the vertex
// layout in use or other descriptor field settings) it should be set
// to a canonical value to avoid duplicate programs with different keys.
// Must initialize all fields or cache will have false negatives!
desc.fVertexLayout = this->getGeomSrc().fVertexLayout;
desc.fEmitsPointSize = kPoints_PrimitiveType == type;
bool requiresAttributeColors =
!skipColor && SkToBool(desc.fVertexLayout & kColor_VertexLayoutBit);
// fColorType records how colors are specified for the program. Strip
// the bit from the layout to avoid false negatives when searching for an
// existing program in the cache.
desc.fVertexLayout &= ~(kColor_VertexLayoutBit);
desc.fColorFilterXfermode = skipColor ?
SkXfermode::kDst_Mode :
fCurrDrawState.fColorFilterXfermode;
// no reason to do edge aa or look at per-vertex coverage if coverage is
// ignored
if (skipCoverage) {
desc.fVertexLayout &= ~(kEdge_VertexLayoutBit |
kCoverage_VertexLayoutBit);
}
bool colorIsTransBlack = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag);
bool colorIsSolidWhite = (blendOpts & kEmitCoverage_BlendOptFlag) ||
(!requiresAttributeColors &&
0xffffffff == fCurrDrawState.fColor);
if (GR_AGGRESSIVE_SHADER_OPTS && colorIsTransBlack) {
desc.fColorType = ProgramDesc::kTransBlack_ColorType;
} else if (GR_AGGRESSIVE_SHADER_OPTS && colorIsSolidWhite) {
desc.fColorType = ProgramDesc::kSolidWhite_ColorType;
} else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeColors) {
desc.fColorType = ProgramDesc::kUniform_ColorType;
} else {
desc.fColorType = ProgramDesc::kAttribute_ColorType;
}
desc.fEdgeAANumEdges = skipCoverage ? 0 : fCurrDrawState.fEdgeAANumEdges;
desc.fEdgeAAConcave = desc.fEdgeAANumEdges > 0 &&
SkToBool(fCurrDrawState.fFlagBits &
kEdgeAAConcave_StateBit);
int lastEnabledStage = -1;
if (!skipCoverage && (desc.fVertexLayout &
GrDrawTarget::kEdge_VertexLayoutBit)) {
desc.fVertexEdgeType = fCurrDrawState.fVertexEdgeType;
} else {
// use canonical value when not set to avoid cache misses
desc.fVertexEdgeType = GrDrawTarget::kHairLine_EdgeType;
}
for (int s = 0; s < kNumStages; ++s) {
StageDesc& stage = desc.fStages[s];
stage.fOptFlags = 0;
stage.setEnabled(this->isStageEnabled(s));
bool skip = s < fCurrDrawState.fFirstCoverageStage ? skipColor :
skipCoverage;
if (!skip && stage.isEnabled()) {
lastEnabledStage = s;
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
GrAssert(NULL != texture);
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
// we matrix to invert when orientation is TopDown, so make sure
// we aren't in that case before flagging as identity.
if (TextureMatrixIsIdentity(texture, sampler)) {
stage.fOptFlags |= StageDesc::kIdentityMatrix_OptFlagBit;
} else if (!getSamplerMatrix(s).hasPerspective()) {
stage.fOptFlags |= StageDesc::kNoPerspective_OptFlagBit;
}
switch (sampler.getSampleMode()) {
case GrSamplerState::kNormal_SampleMode:
stage.fCoordMapping = StageDesc::kIdentity_CoordMapping;
break;
case GrSamplerState::kRadial_SampleMode:
stage.fCoordMapping = StageDesc::kRadialGradient_CoordMapping;
break;
case GrSamplerState::kRadial2_SampleMode:
if (sampler.radial2IsDegenerate()) {
stage.fCoordMapping =
StageDesc::kRadial2GradientDegenerate_CoordMapping;
} else {
stage.fCoordMapping =
StageDesc::kRadial2Gradient_CoordMapping;
}
break;
case GrSamplerState::kSweep_SampleMode:
stage.fCoordMapping = StageDesc::kSweepGradient_CoordMapping;
break;
default:
GrCrash("Unexpected sample mode!");
break;
}
switch (sampler.getFilter()) {
// these both can use a regular texture2D()
case GrSamplerState::kNearest_Filter:
case GrSamplerState::kBilinear_Filter:
stage.fFetchMode = StageDesc::kSingle_FetchMode;
break;
// performs 4 texture2D()s
case GrSamplerState::k4x4Downsample_Filter:
stage.fFetchMode = StageDesc::k2x2_FetchMode;
break;
// performs fKernelWidth texture2D()s
case GrSamplerState::kConvolution_Filter:
stage.fFetchMode = StageDesc::kConvolution_FetchMode;
break;
default:
GrCrash("Unexpected filter!");
break;
}
if (sampler.hasTextureDomain()) {
GrAssert(GrSamplerState::kClamp_WrapMode ==
sampler.getWrapX() &&
GrSamplerState::kClamp_WrapMode ==
sampler.getWrapY());
stage.fOptFlags |= StageDesc::kCustomTextureDomain_OptFlagBit;
}
if (GrPixelConfigIsAlphaOnly(texture->config())) {
stage.fModulation = StageDesc::kAlpha_Modulation;
} else {
stage.fModulation = StageDesc::kColor_Modulation;
}
if (sampler.getFilter() == GrSamplerState::kConvolution_Filter) {
stage.fKernelWidth = sampler.getKernelWidth();
} else {
stage.fKernelWidth = 0;
}
} else {
stage.fOptFlags = 0;
stage.fCoordMapping = (StageDesc::CoordMapping)0;
stage.fModulation = (StageDesc::Modulation)0;
}
}
desc.fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput;
// currently the experimental GS will only work with triangle prims
// (and it doesn't do anything other than pass through values from
// the VS to the FS anyway).
#if 0 && GR_GL_EXPERIMENTAL_GS
desc.fExperimentalGS = this->getCaps().fGeometryShaderSupport;
#endif
// we want to avoid generating programs with different "first cov stage"
// values when they would compute the same result.
// We set field in the desc to kNumStages when either there are no
// coverage stages or the distinction between coverage and color is
// immaterial.
int firstCoverageStage = kNumStages;
desc.fFirstCoverageStage = kNumStages;
bool hasCoverage = fCurrDrawState.fFirstCoverageStage <= lastEnabledStage;
if (hasCoverage) {
firstCoverageStage = fCurrDrawState.fFirstCoverageStage;
}
// other coverage inputs
if (!hasCoverage) {
hasCoverage =
desc.fEdgeAANumEdges ||
(desc.fVertexLayout & GrDrawTarget::kCoverage_VertexLayoutBit) ||
(desc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit);
}
if (hasCoverage) {
// color filter is applied between color/coverage computation
if (SkXfermode::kDst_Mode != desc.fColorFilterXfermode) {
desc.fFirstCoverageStage = firstCoverageStage;
}
if (this->getCaps().fDualSourceBlendingSupport &&
!(blendOpts & (kEmitCoverage_BlendOptFlag |
kCoverageAsAlpha_BlendOptFlag))) {
if (kZero_BlendCoeff == dstCoeff) {
// write the coverage value to second color
desc.fDualSrcOutput = ProgramDesc::kCoverage_DualSrcOutput;
desc.fFirstCoverageStage = firstCoverageStage;
} else if (kSA_BlendCoeff == dstCoeff) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially
// cover
desc.fDualSrcOutput = ProgramDesc::kCoverageISA_DualSrcOutput;
desc.fFirstCoverageStage = firstCoverageStage;
} else if (kSC_BlendCoeff == dstCoeff) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially
// cover
desc.fDualSrcOutput = ProgramDesc::kCoverageISC_DualSrcOutput;
desc.fFirstCoverageStage = firstCoverageStage;
}
}
}
}