blob: c627d9b336a34f81ca7e2ece690289eb91213b5a [file] [log] [blame]
reed@android.com8a1c16f2008-12-17 15:59:43 +00001/*
2 * Copyright (C) 2006-2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "SkMath.h"
18#include "SkCordic.h"
19#include "SkFloatBits.h"
20#include "SkFloatingPoint.h"
21#include "Sk64.h"
22#include "SkScalar.h"
23
24#ifdef SK_SCALAR_IS_FLOAT
25 const uint32_t gIEEENotANumber = 0x7FFFFFFF;
26 const uint32_t gIEEEInfinity = 0x7F800000;
27#endif
28
29#define sub_shift(zeros, x, n) \
30 zeros -= n; \
31 x >>= n
32
33int SkCLZ_portable(uint32_t x) {
34 if (x == 0) {
35 return 32;
36 }
37
38#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
39 int zeros = 31;
40 if (x & 0xFFFF0000) {
41 sub_shift(zeros, x, 16);
42 }
43 if (x & 0xFF00) {
44 sub_shift(zeros, x, 8);
45 }
46 if (x & 0xF0) {
47 sub_shift(zeros, x, 4);
48 }
49 if (x & 0xC) {
50 sub_shift(zeros, x, 2);
51 }
52 if (x & 0x2) {
53 sub_shift(zeros, x, 1);
54 }
55#else
56 int zeros = ((x >> 16) - 1) >> 31 << 4;
57 x <<= zeros;
58
59 int nonzero = ((x >> 24) - 1) >> 31 << 3;
60 zeros += nonzero;
61 x <<= nonzero;
62
63 nonzero = ((x >> 28) - 1) >> 31 << 2;
64 zeros += nonzero;
65 x <<= nonzero;
66
67 nonzero = ((x >> 30) - 1) >> 31 << 1;
68 zeros += nonzero;
69 x <<= nonzero;
70
71 zeros += (~x) >> 31;
72#endif
73
74 return zeros;
75}
76
77int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
78 SkASSERT(denom);
79
80 Sk64 tmp;
81 tmp.setMul(numer1, numer2);
82 tmp.div(denom, Sk64::kTrunc_DivOption);
83 return tmp.get32();
84}
85
86int32_t SkMulShift(int32_t a, int32_t b, unsigned shift) {
87 int sign = SkExtractSign(a ^ b);
88
89 if (shift > 63) {
90 return sign;
91 }
92
93 a = SkAbs32(a);
94 b = SkAbs32(b);
95
96 uint32_t ah = a >> 16;
97 uint32_t al = a & 0xFFFF;
98 uint32_t bh = b >> 16;
99 uint32_t bl = b & 0xFFFF;
100
101 uint32_t A = ah * bh;
102 uint32_t B = ah * bl + al * bh;
103 uint32_t C = al * bl;
104
105 /* [ A ]
106 [ B ]
107 [ C ]
108 */
109 uint32_t lo = C + (B << 16);
110 int32_t hi = A + (B >> 16) + (lo < C);
111
112 if (sign < 0) {
113 hi = -hi - Sk32ToBool(lo);
114 lo = 0 - lo;
115 }
116
117 if (shift == 0) {
118#ifdef SK_DEBUGx
119 SkASSERT(((int32_t)lo >> 31) == hi);
120#endif
121 return lo;
122 } else if (shift >= 32) {
123 return hi >> (shift - 32);
124 } else {
125#ifdef SK_DEBUGx
126 int32_t tmp = hi >> shift;
127 SkASSERT(tmp == 0 || tmp == -1);
128#endif
129 // we want (hi << (32 - shift)) | (lo >> shift) but rounded
130 int roundBit = (lo >> (shift - 1)) & 1;
131 return ((hi << (32 - shift)) | (lo >> shift)) + roundBit;
132 }
133}
134
135SkFixed SkFixedMul_portable(SkFixed a, SkFixed b) {
136#if 0
137 Sk64 tmp;
138
139 tmp.setMul(a, b);
140 tmp.shiftRight(16);
141 return tmp.fLo;
142#elif defined(SkLONGLONG)
143 return (SkLONGLONG)a * b >> 16;
144#else
145 int sa = SkExtractSign(a);
146 int sb = SkExtractSign(b);
147 // now make them positive
148 a = SkApplySign(a, sa);
149 b = SkApplySign(b, sb);
150
151 uint32_t ah = a >> 16;
152 uint32_t al = a & 0xFFFF;
153 uint32_t bh = b >> 16;
154 uint32_t bl = b & 0xFFFF;
155
156 uint32_t R = ah * b + al * bh + (al * bl >> 16);
157
158 return SkApplySign(R, sa ^ sb);
159#endif
160}
161
162SkFract SkFractMul_portable(SkFract a, SkFract b) {
163#if 0
164 Sk64 tmp;
165 tmp.setMul(a, b);
166 return tmp.getFract();
167#elif defined(SkLONGLONG)
168 return (SkLONGLONG)a * b >> 30;
169#else
170 int sa = SkExtractSign(a);
171 int sb = SkExtractSign(b);
172 // now make them positive
173 a = SkApplySign(a, sa);
174 b = SkApplySign(b, sb);
175
176 uint32_t ah = a >> 16;
177 uint32_t al = a & 0xFFFF;
178 uint32_t bh = b >> 16;
179 uint32_t bl = b & 0xFFFF;
180
181 uint32_t A = ah * bh;
182 uint32_t B = ah * bl + al * bh;
183 uint32_t C = al * bl;
184
185 /* [ A ]
186 [ B ]
187 [ C ]
188 */
189 uint32_t Lo = C + (B << 16);
190 uint32_t Hi = A + (B >>16) + (Lo < C);
191
192 SkASSERT((Hi >> 29) == 0); // else overflow
193
194 int32_t R = (Hi << 2) + (Lo >> 30);
195
196 return SkApplySign(R, sa ^ sb);
197#endif
198}
199
200int SkFixedMulCommon(SkFixed a, int b, int bias) {
201 // this function only works if b is 16bits
202 SkASSERT(b == (int16_t)b);
203 SkASSERT(b >= 0);
204
205 int sa = SkExtractSign(a);
206 a = SkApplySign(a, sa);
207 uint32_t ah = a >> 16;
208 uint32_t al = a & 0xFFFF;
209 uint32_t R = ah * b + ((al * b + bias) >> 16);
210 return SkApplySign(R, sa);
211}
212
213#ifdef SK_DEBUGx
214 #define TEST_FASTINVERT
215#endif
216
217SkFixed SkFixedFastInvert(SkFixed x) {
218/* Adapted (stolen) from gglRecip()
219*/
220
221 if (x == SK_Fixed1) {
222 return SK_Fixed1;
223 }
224
225 int sign = SkExtractSign(x);
226 uint32_t a = SkApplySign(x, sign);
227
228 if (a <= 2) {
229 return SkApplySign(SK_MaxS32, sign);
230 }
231
232#ifdef TEST_FASTINVERT
233 SkFixed orig = a;
234 uint32_t slow = SkFixedDiv(SK_Fixed1, a);
235#endif
236
237 // normalize a
238 int lz = SkCLZ(a);
239 a = a << lz >> 16;
240
241 // compute 1/a approximation (0.5 <= a < 1.0)
242 uint32_t r = 0x17400 - a; // (2.90625 (~2.914) - 2*a) >> 1
243
244 // Newton-Raphson iteration:
245 // x = r*(2 - a*r) = ((r/2)*(1 - a*r/2))*4
246 r = ( (0x10000 - ((a*r)>>16)) * r ) >> 15;
247 r = ( (0x10000 - ((a*r)>>16)) * r ) >> (30 - lz);
248
249#ifdef TEST_FASTINVERT
250 SkDebugf("SkFixedFastInvert(%x %g) = %x %g Slow[%x %g]\n",
251 orig, orig/65536.,
252 r, r/65536.,
253 slow, slow/65536.);
254#endif
255
256 return SkApplySign(r, sign);
257}
258
259///////////////////////////////////////////////////////////////////////////////
260
261#define DIVBITS_ITER(n) \
262 case n: \
263 if ((numer = (numer << 1) - denom) >= 0) \
264 result |= 1 << (n - 1); else numer += denom
265
266int32_t SkDivBits(int32_t numer, int32_t denom, int shift_bias) {
267 SkASSERT(denom != 0);
268 if (numer == 0) {
269 return 0;
270 }
271
272 // make numer and denom positive, and sign hold the resulting sign
273 int32_t sign = SkExtractSign(numer ^ denom);
274 numer = SkAbs32(numer);
275 denom = SkAbs32(denom);
276
277 int nbits = SkCLZ(numer) - 1;
278 int dbits = SkCLZ(denom) - 1;
279 int bits = shift_bias - nbits + dbits;
280
281 if (bits < 0) { // answer will underflow
282 return 0;
283 }
284 if (bits > 31) { // answer will overflow
285 return SkApplySign(SK_MaxS32, sign);
286 }
287
288 denom <<= dbits;
289 numer <<= nbits;
290
291 SkFixed result = 0;
292
293 // do the first one
294 if ((numer -= denom) >= 0) {
295 result = 1;
296 } else {
297 numer += denom;
298 }
299
300 // Now fall into our switch statement if there are more bits to compute
301 if (bits > 0) {
302 // make room for the rest of the answer bits
303 result <<= bits;
304 switch (bits) {
305 DIVBITS_ITER(31); DIVBITS_ITER(30); DIVBITS_ITER(29);
306 DIVBITS_ITER(28); DIVBITS_ITER(27); DIVBITS_ITER(26);
307 DIVBITS_ITER(25); DIVBITS_ITER(24); DIVBITS_ITER(23);
308 DIVBITS_ITER(22); DIVBITS_ITER(21); DIVBITS_ITER(20);
309 DIVBITS_ITER(19); DIVBITS_ITER(18); DIVBITS_ITER(17);
310 DIVBITS_ITER(16); DIVBITS_ITER(15); DIVBITS_ITER(14);
311 DIVBITS_ITER(13); DIVBITS_ITER(12); DIVBITS_ITER(11);
312 DIVBITS_ITER(10); DIVBITS_ITER( 9); DIVBITS_ITER( 8);
313 DIVBITS_ITER( 7); DIVBITS_ITER( 6); DIVBITS_ITER( 5);
314 DIVBITS_ITER( 4); DIVBITS_ITER( 3); DIVBITS_ITER( 2);
315 // we merge these last two together, makes GCC make better ARM
316 default:
317 DIVBITS_ITER( 1);
318 }
319 }
320
321 if (result < 0) {
322 result = SK_MaxS32;
323 }
324 return SkApplySign(result, sign);
325}
326
327/* mod(float numer, float denom) seems to always return the sign
328 of the numer, so that's what we do too
329*/
330SkFixed SkFixedMod(SkFixed numer, SkFixed denom) {
331 int sn = SkExtractSign(numer);
332 int sd = SkExtractSign(denom);
333
334 numer = SkApplySign(numer, sn);
335 denom = SkApplySign(denom, sd);
336
337 if (numer < denom) {
338 return SkApplySign(numer, sn);
339 } else if (numer == denom) {
340 return 0;
341 } else {
342 SkFixed div = SkFixedDiv(numer, denom);
343 return SkApplySign(SkFixedMul(denom, div & 0xFFFF), sn);
344 }
345}
346
347/* www.worldserver.com/turk/computergraphics/FixedSqrt.pdf
348*/
349int32_t SkSqrtBits(int32_t x, int count) {
350 SkASSERT(x >= 0 && count > 0 && (unsigned)count <= 30);
351
352 uint32_t root = 0;
353 uint32_t remHi = 0;
354 uint32_t remLo = x;
355
356 do {
357 root <<= 1;
358
359 remHi = (remHi<<2) | (remLo>>30);
360 remLo <<= 2;
361
362 uint32_t testDiv = (root << 1) + 1;
363 if (remHi >= testDiv) {
364 remHi -= testDiv;
365 root++;
366 }
367 } while (--count >= 0);
368
369 return root;
370}
371
372int32_t SkCubeRootBits(int32_t value, int bits) {
373 SkASSERT(bits > 0);
374
375 int sign = SkExtractSign(value);
376 value = SkApplySign(value, sign);
377
378 uint32_t root = 0;
379 uint32_t curr = (uint32_t)value >> 30;
380 value <<= 2;
381
382 do {
383 root <<= 1;
384 uint32_t guess = root * root + root;
385 guess = (guess << 1) + guess; // guess *= 3
386 if (guess < curr) {
387 curr -= guess + 1;
388 root |= 1;
389 }
390 curr = (curr << 3) | ((uint32_t)value >> 29);
391 value <<= 3;
392 } while (--bits);
393
394 return SkApplySign(root, sign);
395}
396
397SkFixed SkFixedMean(SkFixed a, SkFixed b) {
398 Sk64 tmp;
399
400 tmp.setMul(a, b);
401 return tmp.getSqrt();
402}
403
404///////////////////////////////////////////////////////////////////////////////
405
406#ifdef SK_SCALAR_IS_FLOAT
407float SkScalarSinCos(float radians, float* cosValue) {
408 float sinValue = sk_float_sin(radians);
409
410 if (cosValue) {
411 *cosValue = sk_float_cos(radians);
412 if (SkScalarNearlyZero(*cosValue)) {
413 *cosValue = 0;
414 }
415 }
416
417 if (SkScalarNearlyZero(sinValue)) {
418 sinValue = 0;
419 }
420 return sinValue;
421}
422#endif
423
424#define INTERP_SINTABLE
425#define BUILD_TABLE_AT_RUNTIMEx
426
427#define kTableSize 256
428
429#ifdef BUILD_TABLE_AT_RUNTIME
430 static uint16_t gSkSinTable[kTableSize];
431
432 static void build_sintable(uint16_t table[]) {
433 for (int i = 0; i < kTableSize; i++) {
434 double rad = i * 3.141592653589793 / (2*kTableSize);
435 double val = sin(rad);
436 int ival = (int)(val * SK_Fixed1);
437 table[i] = SkToU16(ival);
438 }
439 }
440#else
441 #include "SkSinTable.h"
442#endif
443
444#define SK_Fract1024SizeOver2PI 0x28BE60 /* floatToFract(1024 / 2PI) */
445
446#ifdef INTERP_SINTABLE
447static SkFixed interp_table(const uint16_t table[], int index, int partial255) {
448 SkASSERT((unsigned)index < kTableSize);
449 SkASSERT((unsigned)partial255 <= 255);
450
451 SkFixed lower = table[index];
452 SkFixed upper = (index == kTableSize - 1) ? SK_Fixed1 : table[index + 1];
453
454 SkASSERT(lower < upper);
455 SkASSERT(lower >= 0);
456 SkASSERT(upper <= SK_Fixed1);
457
458 partial255 += (partial255 >> 7);
459 return lower + ((upper - lower) * partial255 >> 8);
460}
461#endif
462
463SkFixed SkFixedSinCos(SkFixed radians, SkFixed* cosValuePtr) {
464 SkASSERT(SK_ARRAY_COUNT(gSkSinTable) == kTableSize);
465
466#ifdef BUILD_TABLE_AT_RUNTIME
467 static bool gFirstTime = true;
468 if (gFirstTime) {
469 build_sintable(gSinTable);
470 gFirstTime = false;
471 }
472#endif
473
474 // make radians positive
475 SkFixed sinValue, cosValue;
476 int32_t cosSign = 0;
477 int32_t sinSign = SkExtractSign(radians);
478 radians = SkApplySign(radians, sinSign);
479 // scale it to 0...1023 ...
480
481#ifdef INTERP_SINTABLE
482 radians = SkMulDiv(radians, 2 * kTableSize * 256, SK_FixedPI);
483 int findex = radians & (kTableSize * 256 - 1);
484 int index = findex >> 8;
485 int partial = findex & 255;
486 sinValue = interp_table(gSkSinTable, index, partial);
487
488 findex = kTableSize * 256 - findex - 1;
489 index = findex >> 8;
490 partial = findex & 255;
491 cosValue = interp_table(gSkSinTable, index, partial);
492
493 int quad = ((unsigned)radians / (kTableSize * 256)) & 3;
494#else
495 radians = SkMulDiv(radians, 2 * kTableSize, SK_FixedPI);
496 int index = radians & (kTableSize - 1);
497
498 if (index == 0) {
499 sinValue = 0;
500 cosValue = SK_Fixed1;
501 } else {
502 sinValue = gSkSinTable[index];
503 cosValue = gSkSinTable[kTableSize - index];
504 }
505 int quad = ((unsigned)radians / kTableSize) & 3;
506#endif
507
508 if (quad & 1) {
509 SkTSwap<SkFixed>(sinValue, cosValue);
510 }
511 if (quad & 2) {
512 sinSign = ~sinSign;
513 }
514 if (((quad - 1) & 2) == 0) {
515 cosSign = ~cosSign;
516 }
517
518 // restore the sign for negative angles
519 sinValue = SkApplySign(sinValue, sinSign);
520 cosValue = SkApplySign(cosValue, cosSign);
521
522#ifdef SK_DEBUG
523 if (1) {
524 SkFixed sin2 = SkFixedMul(sinValue, sinValue);
525 SkFixed cos2 = SkFixedMul(cosValue, cosValue);
526 int diff = cos2 + sin2 - SK_Fixed1;
527 SkASSERT(SkAbs32(diff) <= 7);
528 }
529#endif
530
531 if (cosValuePtr) {
532 *cosValuePtr = cosValue;
533 }
534 return sinValue;
535}
536
537///////////////////////////////////////////////////////////////////////////////
538
539SkFixed SkFixedTan(SkFixed radians) { return SkCordicTan(radians); }
540SkFixed SkFixedASin(SkFixed x) { return SkCordicASin(x); }
541SkFixed SkFixedACos(SkFixed x) { return SkCordicACos(x); }
542SkFixed SkFixedATan2(SkFixed y, SkFixed x) { return SkCordicATan2(y, x); }
543SkFixed SkFixedExp(SkFixed x) { return SkCordicExp(x); }
544SkFixed SkFixedLog(SkFixed x) { return SkCordicLog(x); }
545
546///////////////////////////////////////////////////////////////////////////////
547///////////////////////////////////////////////////////////////////////////////
548
549#ifdef SK_DEBUG
550
551#include "SkRandom.h"
552
553#ifdef SkLONGLONG
554static int symmetric_fixmul(int a, int b) {
555 int sa = SkExtractSign(a);
556 int sb = SkExtractSign(b);
557
558 a = SkApplySign(a, sa);
559 b = SkApplySign(b, sb);
560
561#if 1
562 int c = (int)(((SkLONGLONG)a * b) >> 16);
563
564 return SkApplySign(c, sa ^ sb);
565#else
566 SkLONGLONG ab = (SkLONGLONG)a * b;
567 if (sa ^ sb) {
568 ab = -ab;
569 }
570 return ab >> 16;
571#endif
572}
573#endif
574
575#include "SkPoint.h"
576
577#ifdef SK_SUPPORT_UNITTEST
578static void check_length(const SkPoint& p, SkScalar targetLen) {
579 float x = SkScalarToFloat(p.fX);
580 float y = SkScalarToFloat(p.fY);
581 float len = sk_float_sqrt(x*x + y*y);
582
583 len /= SkScalarToFloat(targetLen);
584
585 SkASSERT(len > 0.999f && len < 1.001f);
586}
587#endif
588
589#ifdef SK_CAN_USE_FLOAT
590
591static float nextFloat(SkRandom& rand) {
592 SkFloatIntUnion data;
593 data.fSignBitInt = rand.nextU();
594 return data.fFloat;
595}
596
597/* returns true if a == b as resulting from (int)x. Since it is undefined
598 what to do if the float exceeds 2^32-1, we check for that explicitly.
599*/
600static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
601 if (!(x == x)) { // NAN
602 return si == SK_MaxS32 || si == SK_MinS32;
603 }
604 // for out of range, C is undefined, but skia always should return NaN32
605 if (x > SK_MaxS32) {
606 return si == SK_MaxS32;
607 }
608 if (x < -SK_MaxS32) {
609 return si == SK_MinS32;
610 }
611 return si == ni;
612}
613
614static void assert_float_equal(const char op[], float x, uint32_t ni,
615 uint32_t si) {
616 if (!equal_float_native_skia(x, ni, si)) {
617 SkDebugf("-- %s float %g bits %x native %x skia %x\n", op, x, ni, si);
618 SkASSERT(!"oops");
619 }
620}
621
622static void test_float_cast(float x) {
623 int ix = (int)x;
624 int iix = SkFloatToIntCast(x);
625 assert_float_equal("cast", x, ix, iix);
626}
627
628static void test_float_floor(float x) {
629 int ix = (int)floor(x);
630 int iix = SkFloatToIntFloor(x);
631 assert_float_equal("floor", x, ix, iix);
632}
633
634static void test_float_round(float x) {
635 double xx = x + 0.5; // need intermediate double to avoid temp loss
636 int ix = (int)floor(xx);
637 int iix = SkFloatToIntRound(x);
638 assert_float_equal("round", x, ix, iix);
639}
640
641static void test_float_ceil(float x) {
642 int ix = (int)ceil(x);
643 int iix = SkFloatToIntCeil(x);
644 assert_float_equal("ceil", x, ix, iix);
645}
646
647static void test_float_conversions(float x) {
648 test_float_cast(x);
649 test_float_floor(x);
650 test_float_round(x);
651 test_float_ceil(x);
652}
653
654static void test_int2float(int ival) {
655 float x0 = (float)ival;
656 float x1 = SkIntToFloatCast(ival);
657 float x2 = SkIntToFloatCast_NoOverflowCheck(ival);
658 SkASSERT(x0 == x1);
659 SkASSERT(x0 == x2);
660}
661
662static void unittest_fastfloat() {
663 SkRandom rand;
664 size_t i;
665
666 static const float gFloats[] = {
667 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
668 0.000000001f, 1000000000.f, // doesn't overflow
669 0.0000000001f, 10000000000.f // does overflow
670 };
671 for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
672// SkDebugf("---- test floats %g %d\n", gFloats[i], (int)gFloats[i]);
673 test_float_conversions(gFloats[i]);
674 test_float_conversions(-gFloats[i]);
675 }
676
677 for (int outer = 0; outer < 100; outer++) {
678 rand.setSeed(outer);
679 for (i = 0; i < 100000; i++) {
680 float x = nextFloat(rand);
681 test_float_conversions(x);
682 }
683
684 test_int2float(0);
685 test_int2float(1);
686 test_int2float(-1);
687 for (i = 0; i < 100000; i++) {
688 // for now only test ints that are 24bits or less, since we don't
689 // round (down) large ints the same as IEEE...
690 int ival = rand.nextU() & 0xFFFFFF;
691 test_int2float(ival);
692 test_int2float(-ival);
693 }
694 }
695}
696
697#endif
698
699static void test_muldiv255() {
700 for (int a = 0; a <= 255; a++) {
701 for (int b = 0; b <= 255; b++) {
702 int ab = a * b;
703 float s = ab / 255.0f;
704 int round = (int)floorf(s + 0.5f);
705 int trunc = (int)floorf(s);
706
707 int iround = SkMulDiv255Round(a, b);
708 int itrunc = SkMulDiv255Trunc(a, b);
709
710 SkASSERT(iround == round);
711 SkASSERT(itrunc == trunc);
712
713 SkASSERT(itrunc <= iround);
714 SkASSERT(iround <= a);
715 SkASSERT(iround <= b);
716 }
717 }
718}
719
720void SkMath::UnitTest() {
721#ifdef SK_SUPPORT_UNITTEST
722 int i;
723 int32_t x;
724 SkRandom rand;
725
726 SkToS8(127); SkToS8(-128); SkToU8(255);
727 SkToS16(32767); SkToS16(-32768); SkToU16(65535);
728 SkToS32(2*1024*1024); SkToS32(-2*1024*1024); SkToU32(4*1024*1024);
729
730 SkCordic_UnitTest();
731
732 // these should assert
733#if 0
734 SkToS8(128);
735 SkToS8(-129);
736 SkToU8(256);
737 SkToU8(-5);
738
739 SkToS16(32768);
740 SkToS16(-32769);
741 SkToU16(65536);
742 SkToU16(-5);
743
744 if (sizeof(size_t) > 4) {
745 SkToS32(4*1024*1024);
746 SkToS32(-4*1024*1024);
747 SkToU32(5*1024*1024);
748 SkToU32(-5);
749 }
750#endif
751
752 test_muldiv255();
753
754#ifdef SK_DEBUG
755 {
756 SkScalar x = SK_ScalarNaN;
757 SkASSERT(SkScalarIsNaN(x));
758 }
759#endif
760
761 for (i = 1; i <= 10; i++) {
762 x = SkCubeRootBits(i*i*i, 11);
763 SkASSERT(x == i);
764 }
765
766 x = SkFixedSqrt(SK_Fixed1);
767 SkASSERT(x == SK_Fixed1);
768 x = SkFixedSqrt(SK_Fixed1/4);
769 SkASSERT(x == SK_Fixed1/2);
770 x = SkFixedSqrt(SK_Fixed1*4);
771 SkASSERT(x == SK_Fixed1*2);
772
773 x = SkFractSqrt(SK_Fract1);
774 SkASSERT(x == SK_Fract1);
775 x = SkFractSqrt(SK_Fract1/4);
776 SkASSERT(x == SK_Fract1/2);
777 x = SkFractSqrt(SK_Fract1/16);
778 SkASSERT(x == SK_Fract1/4);
779
780 for (i = 1; i < 100; i++) {
781 x = SkFixedSqrt(SK_Fixed1 * i * i);
782 SkASSERT(x == SK_Fixed1 * i);
783 }
784
785 for (i = 0; i < 1000; i++) {
786 int value = rand.nextS16();
787 int max = rand.nextU16();
788
789 int clamp = SkClampMax(value, max);
790 int clamp2 = value < 0 ? 0 : (value > max ? max : value);
791 SkASSERT(clamp == clamp2);
792 }
793
794 for (i = 0; i < 100000; i++) {
795 SkPoint p;
796
797 p.setLength(rand.nextS(), rand.nextS(), SK_Scalar1);
798 check_length(p, SK_Scalar1);
799 p.setLength(rand.nextS() >> 13, rand.nextS() >> 13, SK_Scalar1);
800 check_length(p, SK_Scalar1);
801 }
802
803 {
804 SkFixed result = SkFixedDiv(100, 100);
805 SkASSERT(result == SK_Fixed1);
806 result = SkFixedDiv(1, SK_Fixed1);
807 SkASSERT(result == 1);
808 }
809
810#ifdef SK_CAN_USE_FLOAT
811 unittest_fastfloat();
812#endif
813
814#ifdef SkLONGLONG
815 for (i = 0; i < 100000; i++) {
816 SkFixed numer = rand.nextS();
817 SkFixed denom = rand.nextS();
818 SkFixed result = SkFixedDiv(numer, denom);
819 SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom;
820
821 (void)SkCLZ(numer);
822 (void)SkCLZ(denom);
823
824 SkASSERT(result != (SkFixed)SK_NaN32);
825 if (check > SK_MaxS32) {
826 check = SK_MaxS32;
827 } else if (check < -SK_MaxS32) {
828 check = SK_MinS32;
829 }
830 SkASSERT(result == (int32_t)check);
831
832 result = SkFractDiv(numer, denom);
833 check = ((SkLONGLONG)numer << 30) / denom;
834
835 SkASSERT(result != (SkFixed)SK_NaN32);
836 if (check > SK_MaxS32) {
837 check = SK_MaxS32;
838 } else if (check < -SK_MaxS32) {
839 check = SK_MinS32;
840 }
841 SkASSERT(result == (int32_t)check);
842
843 // make them <= 2^24, so we don't overflow in fixmul
844 numer = numer << 8 >> 8;
845 denom = denom << 8 >> 8;
846
847 result = SkFixedMul(numer, denom);
848 SkFixed r2 = symmetric_fixmul(numer, denom);
849// SkASSERT(result == r2);
850
851 result = SkFixedMul(numer, numer);
852 r2 = SkFixedSquare(numer);
853 SkASSERT(result == r2);
854
855#ifdef SK_CAN_USE_FLOAT
856 if (numer >= 0 && denom >= 0) {
857 SkFixed mean = SkFixedMean(numer, denom);
858 float fm = sk_float_sqrt(sk_float_abs(SkFixedToFloat(numer) * SkFixedToFloat(denom)));
859 SkFixed mean2 = SkFloatToFixed(fm);
860 int diff = SkAbs32(mean - mean2);
861 SkASSERT(diff <= 1);
862 }
863
864 {
865 SkFixed mod = SkFixedMod(numer, denom);
866 float n = SkFixedToFloat(numer);
867 float d = SkFixedToFloat(denom);
868 float m = sk_float_mod(n, d);
869#if 0
870 SkDebugf("%g mod %g = %g [%g]\n",
871 SkFixedToFloat(numer), SkFixedToFloat(denom),
872 SkFixedToFloat(mod), m);
873#endif
874 SkASSERT(mod == 0 || (mod < 0) == (m < 0)); // ensure the same sign
875 int diff = SkAbs32(mod - SkFloatToFixed(m));
876 SkASSERT((diff >> 7) == 0);
877 }
878#endif
879 }
880#endif
881
882#ifdef SK_CAN_USE_FLOAT
883 for (i = 0; i < 100000; i++) {
884 SkFract x = rand.nextU() >> 1;
885 double xx = (double)x / SK_Fract1;
886 SkFract xr = SkFractSqrt(x);
887 SkFract check = SkFloatToFract(sqrt(xx));
888 SkASSERT(xr == check || xr == check-1 || xr == check+1);
889
890 xr = SkFixedSqrt(x);
891 xx = (double)x / SK_Fixed1;
892 check = SkFloatToFixed(sqrt(xx));
893 SkASSERT(xr == check || xr == check-1);
894
895 xr = SkSqrt32(x);
896 xx = (double)x;
897 check = (int32_t)sqrt(xx);
898 SkASSERT(xr == check || xr == check-1);
899 }
900#endif
901
902#if !defined(SK_SCALAR_IS_FLOAT) && defined(SK_CAN_USE_FLOAT)
903 {
904 SkFixed s, c;
905 s = SkFixedSinCos(0, &c);
906 SkASSERT(s == 0);
907 SkASSERT(c == SK_Fixed1);
908 }
909
910 int maxDiff = 0;
911 for (i = 0; i < 10000; i++) {
912 SkFixed rads = rand.nextS() >> 10;
913 double frads = SkFixedToFloat(rads);
914
915 SkFixed s, c;
916 s = SkScalarSinCos(rads, &c);
917
918 double fs = sin(frads);
919 double fc = cos(frads);
920
921 SkFixed is = SkFloatToFixed(fs);
922 SkFixed ic = SkFloatToFixed(fc);
923
924 maxDiff = SkMax32(maxDiff, SkAbs32(is - s));
925 maxDiff = SkMax32(maxDiff, SkAbs32(ic - c));
926 }
927 SkDebugf("SinCos: maximum error = %d\n", maxDiff);
928#endif
929#endif
930}
931
932#endif