blob: f8342ecaad5551c0eef8fcca472d3e85bcda1d8d [file] [log] [blame]
tomhudson@google.com95ad1552012-02-14 18:28:54 +00001/*
2 * Copyright 2012 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include <tmmintrin.h> // SSSE3
9#include "SkBitmapProcState_opts_SSSE3.h"
reed@google.com9cfc83c2013-07-22 17:18:18 +000010#include "SkPaint.h"
tomhudson@google.com95ad1552012-02-14 18:28:54 +000011#include "SkUtils.h"
12
13// adding anonymous namespace seemed to force gcc to inline directly the
14// instantiation, instead of creating the functions
15// S32_generic_D32_filter_DX_SSSE3<true> and
16// S32_generic_D32_filter_DX_SSSE3<false> which were then called by the
17// external functions.
18namespace {
19// In this file, variations for alpha and non alpha versions are implemented
20// with a template, as it makes the code more compact and a bit easier to
21// maintain, while making the compiler generate the same exact code as with
22// two functions that only differ by a few lines.
23
24
25// Prepare all necessary constants for a round of processing for two pixel
26// pairs.
27// @param xy is the location where the xy parameters for four pixels should be
28// read from. It is identical in concept with argument two of
29// S32_{opaque}_D32_filter_DX methods.
30// @param mask_3FFF vector of 32 bit constants containing 3FFF,
31// suitable to mask the bottom 14 bits of a XY value.
32// @param mask_000F vector of 32 bit constants containing 000F,
33// suitable to mask the bottom 4 bits of a XY value.
34// @param sixteen_8bit vector of 8 bit components containing the value 16.
35// @param mask_dist_select vector of 8 bit components containing the shuffling
36// parameters to reorder x[0-3] parameters.
37// @param all_x_result vector of 8 bit components that will contain the
38// (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
39// @param sixteen_minus_x vector of 8 bit components, containing
40// (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
41inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
tomhudson@google.com4ef14f82012-02-14 19:42:39 +000042 const __m128i& mask_3FFF,
43 const __m128i& mask_000F,
44 const __m128i& sixteen_8bit,
45 const __m128i& mask_dist_select,
tomhudson@google.com95ad1552012-02-14 18:28:54 +000046 __m128i* all_x_result,
47 __m128i* sixteen_minus_x,
48 int* x0,
49 int* x1) {
50 const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
51
52 // 4 delta X
53 // (x03, x02, x01, x00)
54 const __m128i x0_wide = _mm_srli_epi32(xx, 18);
55 // (x13, x12, x11, x10)
56 const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
57
58 _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
59 _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
60
61 __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
62
63 // (4x(x3), 4x(x2), 4x(x1), 4x(x0))
64 all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
65
66 *all_x_result = all_x;
67 // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
68 *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
69}
70
tomhudson@google.comae29b882012-03-06 14:59:04 +000071// Prepare all necessary constants for a round of processing for two pixel
72// pairs.
73// @param xy is the location where the xy parameters for four pixels should be
74// read from. It is identical in concept with argument two of
75// S32_{opaque}_D32_filter_DXDY methods.
76// @param mask_3FFF vector of 32 bit constants containing 3FFF,
77// suitable to mask the bottom 14 bits of a XY value.
78// @param mask_000F vector of 32 bit constants containing 000F,
79// suitable to mask the bottom 4 bits of a XY value.
80// @param sixteen_8bit vector of 8 bit components containing the value 16.
81// @param mask_dist_select vector of 8 bit components containing the shuffling
82// parameters to reorder x[0-3] parameters.
83// @param all_xy_result vector of 8 bit components that will contain the
84// (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return.
85// @param sixteen_minus_x vector of 8 bit components, containing
86// (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)).
87inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy,
88 const __m128i& mask_3FFF,
89 const __m128i& mask_000F,
90 const __m128i& sixteen_8bit,
91 const __m128i& mask_dist_select,
92 __m128i* all_xy_result,
93 __m128i* sixteen_minus_xy,
94 int* xy0, int* xy1) {
rmistry@google.comfbfcd562012-08-23 18:09:54 +000095 const __m128i xy_wide =
tomhudson@google.comae29b882012-03-06 14:59:04 +000096 _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
97
98 // (x10, y10, x00, y00)
99 __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18);
100 // (y10, y00, x10, x00)
101 xy0_wide = _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1));
102 // (x11, y11, x01, y01)
103 __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF);
104 // (y11, y01, x11, x01)
105 xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1));
106
107 _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide);
108 _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide);
109
110 // (x1, y1, x0, y0)
111 __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F);
112 // (y1, y0, x1, x0)
113 all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1));
114 // (4x(y1), 4x(y0), 4x(x1), 4x(x0))
115 all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select);
116
117 *all_xy_result = all_xy;
118 // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0))
119 *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy);
120}
121
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000122// Helper function used when processing one pixel pair.
123// @param pixel0..3 are the four input pixels
124// @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This
125// will contain (4x(x1, 16-x1), 4x(x0, 16-x0))
126// or (4x(x3, 16-x3), 4x(x2, 16-x2))
127// @return a vector of 16 bit components containing:
128// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
129inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
130 uint32_t pixel1,
131 uint32_t pixel2,
132 uint32_t pixel3,
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000133 const __m128i& scale_x) {
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000134 __m128i a0, a1, a2, a3;
135 // Load 2 pairs of pixels
136 a0 = _mm_cvtsi32_si128(pixel0);
137 a1 = _mm_cvtsi32_si128(pixel1);
138
139 // Interleave pixels.
140 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
141 a0 = _mm_unpacklo_epi8(a0, a1);
142
143 a2 = _mm_cvtsi32_si128(pixel2);
144 a3 = _mm_cvtsi32_si128(pixel3);
145 // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
146 a2 = _mm_unpacklo_epi8(a2, a3);
147
148 // two pairs of pixel pairs, interleaved.
149 // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
150 // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
151 a0 = _mm_unpacklo_epi64(a0, a2);
152
153 // multiply and sum to 16 bit components.
154 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
155 // At that point, we use up a bit less than 12 bits for each 16 bit
156 // component:
157 // All components are less than 255. So,
158 // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
159 return _mm_maddubs_epi16(a0, scale_x);
160}
161
162// Scale back the results after multiplications to the [0:255] range, and scale
163// by alpha when has_alpha is true.
164// Depending on whether one set or two sets of multiplications had been applied,
165// the results have to be shifted by four places (dividing by 16), or shifted
166// by eight places (dividing by 256), since each multiplication is by a quantity
167// in the range [0:16].
168template<bool has_alpha, int scale>
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000169inline __m128i ScaleFourPixels(__m128i* pixels,
170 const __m128i& alpha) {
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000171 // Divide each 16 bit component by 16 (or 256 depending on scale).
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000172 *pixels = _mm_srli_epi16(*pixels, scale);
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000173
174 if (has_alpha) {
175 // Multiply by alpha.
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000176 *pixels = _mm_mullo_epi16(*pixels, alpha);
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000177
178 // Divide each 16 bit component by 256.
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000179 *pixels = _mm_srli_epi16(*pixels, 8);
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000180 }
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000181 return *pixels;
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000182}
183
184// Wrapper to calculate two output pixels from four input pixels. The
185// arguments are the same as ProcessPixelPairHelper. Technically, there are
186// eight input pixels, but since sub_y == 0, the factors applied to half of the
187// pixels is zero (sub_y), and are therefore omitted here to save on some
188// processing.
189// @param alpha when has_alpha is true, scale all resulting components by this
190// value.
191// @return a vector of 16 bit components containing:
192// ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ...,
193// (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true)
194// otherwise
195// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
196// In both cases, the results are renormalized (divided by 16) to match the
197// expected formats when storing back the results into memory.
198template<bool has_alpha>
199inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0,
200 uint32_t pixel1,
201 uint32_t pixel2,
202 uint32_t pixel3,
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000203 const __m128i& scale_x,
204 const __m128i& alpha) {
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000205 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
206 scale_x);
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000207 return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000208}
209
210// Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a
211// time instead of two. As in the above function, only two pixels are needed
212// to generate a single pixel since sub_y == 0.
213// @return same as ProcessPixelPairZeroSubY, except that only the bottom 4
214// 16 bit components are set.
215template<bool has_alpha>
216inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0,
217 uint32_t pixel1,
218 __m128i scale_x,
219 __m128i alpha) {
220 __m128i a0 = _mm_cvtsi32_si128(pixel0);
221 __m128i a1 = _mm_cvtsi32_si128(pixel1);
222
223 // Interleave
224 a0 = _mm_unpacklo_epi8(a0, a1);
225
226 // (a0 * (16-x) + a1 * x)
227 __m128i sum = _mm_maddubs_epi16(a0, scale_x);
228
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000229 return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000230}
231
232// Methods when sub_y != 0
233
234
235// Same as ProcessPixelPairHelper, except that the values are scaled by y.
236// @param y vector of 16 bit components containing 'y' values. There are two
237// cases in practice, where y will contain the sub_y constant, or will
238// contain the 16 - sub_y constant.
239// @return vector of 16 bit components containing:
240// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0))
241inline __m128i ProcessPixelPair(uint32_t pixel0,
242 uint32_t pixel1,
243 uint32_t pixel2,
244 uint32_t pixel3,
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000245 const __m128i& scale_x,
246 const __m128i& y) {
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000247 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
248 scale_x);
249
250 // first row times 16-y or y depending on whether 'y' represents one or
251 // the other.
252 // Values will be up to 255 * 16 * 16 = 65280.
253 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
254 // y * (Ra0 * (16 - x0) + Ra1 * x0))
255 sum = _mm_mullo_epi16(sum, y);
256
257 return sum;
258}
259
260// Process two pixel pairs out of eight input pixels.
261// In other methods, the distinct pixels are passed one by one, but in this
262// case, the rows, and index offsets to the pixels into the row are passed
263// to generate the 8 pixels.
264// @param row0..1 top and bottom row where to find input pixels.
265// @param x0..1 offsets into the row for all eight input pixels.
266// @param all_y vector of 16 bit components containing the constant sub_y
267// @param neg_y vector of 16 bit components containing the constant 16 - sub_y
268// @param alpha vector of 16 bit components containing the alpha value to scale
269// the results by, when has_alpha is true.
270// @return
271// (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
272// y * (Aa2' * (16-x1) + Aa3' * x1)),
273// ...
274// alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) +
275// y * (Ra0' * (16-x0) + Ra1' * x0))
276// With the factor alpha removed when has_alpha is false.
277// The values are scaled back to 16 bit components, but with only the bottom
278// 8 bits being set.
279template<bool has_alpha>
280inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
281 const uint32_t* row1,
282 const int* x0,
283 const int* x1,
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000284 const __m128i& scale_x,
285 const __m128i& all_y,
286 const __m128i& neg_y,
287 const __m128i& alpha) {
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000288 __m128i sum0 = ProcessPixelPair(
289 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
290 scale_x, neg_y);
291 __m128i sum1 = ProcessPixelPair(
292 row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
293 scale_x, all_y);
294
295 // 2 samples fully summed.
296 // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
297 // y * (Aa2' * (16-x1) + Aa3' * x1),
298 // ...
299 // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
300 // y * (Ra0' * (16-x0) + Ra1' * x0))
301 // Each component, again can be at most 256 * 255 = 65280, so no overflow.
302 sum0 = _mm_add_epi16(sum0, sum1);
303
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000304 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000305}
306
tomhudson@google.comae29b882012-03-06 14:59:04 +0000307// Similar to ProcessTwoPixelPairs except the pixel indexes.
308template<bool has_alpha>
309inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00,
310 const uint32_t* row01,
311 const uint32_t* row10,
312 const uint32_t* row11,
313 const int* xy0,
314 const int* xy1,
315 const __m128i& scale_x,
316 const __m128i& all_y,
317 const __m128i& neg_y,
318 const __m128i& alpha) {
319 // first row
320 __m128i sum0 = ProcessPixelPair(
321 row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]],
322 scale_x, neg_y);
323 // second row
324 __m128i sum1 = ProcessPixelPair(
325 row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]],
326 scale_x, all_y);
327
328 // 2 samples fully summed.
329 // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) +
330 // y0 * (Aa2' * (16-x1) + Aa3' * x1),
331 // ...
332 // (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) +
333 // y0 * (Ra0' * (16-x0) + Ra1' * x0))
334 // Each component, again can be at most 256 * 255 = 65280, so no overflow.
335 sum0 = _mm_add_epi16(sum0, sum1);
336
337 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
338}
339
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000340
341// Same as ProcessPixelPair, except that performing the math one output pixel
342// at a time. This means that only the bottom four 16 bit components are set.
343inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000344 const __m128i& scale_x, const __m128i& y) {
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000345 __m128i a0 = _mm_cvtsi32_si128(pixel0);
346 __m128i a1 = _mm_cvtsi32_si128(pixel1);
347
348 // Interleave
349 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
350 a0 = _mm_unpacklo_epi8(a0, a1);
351
352 // (a0 * (16-x) + a1 * x)
353 a0 = _mm_maddubs_epi16(a0, scale_x);
354
355 // scale row by y
356 return _mm_mullo_epi16(a0, y);
357}
358
359// Notes about the various tricks that are used in this implementation:
360// - specialization for sub_y == 0.
361// Statistically, 1/16th of the samples will have sub_y == 0. When this
362// happens, the math goes from:
363// (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11
364// to:
365// (16 - x)*a00 + 16*x*a01
366// much simpler. The simplification makes for an easy boost in performance.
367// - calculating 4 output pixels at a time.
368// This allows loading the coefficients x0 and x1 and shuffling them to the
369// optimum location only once per loop, instead of twice per loop.
370// This also allows us to store the four pixels with a single store.
371// - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
372// version):
373// _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
374// in 32 bit values to 8 bit values repeated four times.
375// _mm_maddubs_epi16 : this allows us to perform multiplications and additions
376// in one swoop of 8bit values storing the results in 16 bit values. This
377// instruction is actually crucial for the speed of the implementation since
378// as one can see in the SSE2 implementation, all inputs have to be used as
379// 16 bits because the results are 16 bits. This basically allows us to process
380// twice as many pixel components per iteration.
381//
382// As a result, this method behaves faster than the traditional SSE2. The actual
383// boost varies greatly on the underlying architecture.
384template<bool has_alpha>
385void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
386 const uint32_t* xy,
387 int count, uint32_t* colors) {
388 SkASSERT(count > 0 && colors != NULL);
reed@google.com9cfc83c2013-07-22 17:18:18 +0000389 SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel);
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000390 SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config);
391 if (has_alpha) {
392 SkASSERT(s.fAlphaScale < 256);
393 } else {
394 SkASSERT(s.fAlphaScale == 256);
395 }
396
397 const uint8_t* src_addr =
398 static_cast<const uint8_t*>(s.fBitmap->getPixels());
scroggo@google.come5f48242013-02-25 21:47:41 +0000399 const size_t rb = s.fBitmap->rowBytes();
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000400 const uint32_t XY = *xy++;
401 const unsigned y0 = XY >> 14;
402 const uint32_t* row0 =
403 reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
404 const uint32_t* row1 =
405 reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
406 const unsigned sub_y = y0 & 0xF;
407
408 // vector constants
409 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
410 8, 8, 8, 8,
411 4, 4, 4, 4,
412 0, 0, 0, 0);
413 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
414 const __m128i mask_000F = _mm_set1_epi32(0x000F);
415 const __m128i sixteen_8bit = _mm_set1_epi8(16);
416 // (0, 0, 0, 0, 0, 0, 0, 0)
417 const __m128i zero = _mm_setzero_si128();
418
tomhudson@google.com8afae612012-08-14 15:03:35 +0000419 __m128i alpha = _mm_setzero_si128();
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000420 if (has_alpha)
421 // 8x(alpha)
422 alpha = _mm_set1_epi16(s.fAlphaScale);
423
424 if (sub_y == 0) {
425 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
426 while (count > 3) {
427 count -= 4;
428
429 int x0[4];
430 int x1[4];
431 __m128i all_x, sixteen_minus_x;
432 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
433 sixteen_8bit, mask_dist_select,
434 &all_x, &sixteen_minus_x, x0, x1);
435 xy += 4;
436
437 // First pair of pixel pairs.
438 // (4x(x1, 16-x1), 4x(x0, 16-x0))
439 __m128i scale_x;
440 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
441
442 __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>(
443 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
444 scale_x, alpha);
445
446 // second pair of pixel pairs
447 // (4x (x3, 16-x3), 4x (16-x2, x2))
448 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
449
450 __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>(
451 row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]],
452 scale_x, alpha);
453
454 // Pack lower 4 16 bit values of sum into lower 4 bytes.
455 sum0 = _mm_packus_epi16(sum0, sum1);
456
457 // Extract low int and store.
458 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
459
460 colors += 4;
461 }
462
463 // handle remainder
464 while (count-- > 0) {
465 uint32_t xx = *xy++; // x0:14 | 4 | x1:14
466 unsigned x0 = xx >> 18;
467 unsigned x1 = xx & 0x3FFF;
468
469 // 16x(x)
470 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
471
472 // (16x(16-x))
473 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
474
475 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
476
477 __m128i sum = ProcessOnePixelZeroSubY<has_alpha>(
478 row0[x0], row0[x1],
479 scale_x, alpha);
480
481 // Pack lower 4 16 bit values of sum into lower 4 bytes.
482 sum = _mm_packus_epi16(sum, zero);
483
484 // Extract low int and store.
485 *colors++ = _mm_cvtsi128_si32(sum);
486 }
487 } else { // more general case, y != 0
488 // 8x(16)
489 const __m128i sixteen_16bit = _mm_set1_epi16(16);
490
491 // 8x (y)
492 const __m128i all_y = _mm_set1_epi16(sub_y);
493
494 // 8x (16-y)
495 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
496
497 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
498 while (count > 3) {
499 count -= 4;
500
501 int x0[4];
502 int x1[4];
503 __m128i all_x, sixteen_minus_x;
504 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
505 sixteen_8bit, mask_dist_select,
506 &all_x, &sixteen_minus_x, x0, x1);
507 xy += 4;
508
509 // First pair of pixel pairs
510 // (4x(x1, 16-x1), 4x(x0, 16-x0))
511 __m128i scale_x;
512 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
513
514 __m128i sum0 = ProcessTwoPixelPairs<has_alpha>(
515 row0, row1, x0, x1,
516 scale_x, all_y, neg_y, alpha);
517
518 // second pair of pixel pairs
519 // (4x (x3, 16-x3), 4x (16-x2, x2))
520 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
521
522 __m128i sum1 = ProcessTwoPixelPairs<has_alpha>(
523 row0, row1, x0 + 2, x1 + 2,
524 scale_x, all_y, neg_y, alpha);
525
526 // Do the final packing of the two results
527
528 // Pack lower 4 16 bit values of sum into lower 4 bytes.
529 sum0 = _mm_packus_epi16(sum0, sum1);
530
531 // Extract low int and store.
532 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
533
534 colors += 4;
535 }
536
537 // Left over.
538 while (count-- > 0) {
539 const uint32_t xx = *xy++; // x0:14 | 4 | x1:14
540 const unsigned x0 = xx >> 18;
541 const unsigned x1 = xx & 0x3FFF;
542
543 // 16x(x)
544 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
545
546 // 16x (16-x)
547 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
548
549 // (8x (x, 16-x))
550 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
551
552 // first row.
553 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
554 // second row.
555 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
556
557 // Add both rows for full sample
558 sum0 = _mm_add_epi16(sum0, sum1);
559
tomhudson@google.com4ef14f82012-02-14 19:42:39 +0000560 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000561
562 // Pack lower 4 16 bit values of sum into lower 4 bytes.
563 sum0 = _mm_packus_epi16(sum0, zero);
564
565 // Extract low int and store.
566 *colors++ = _mm_cvtsi128_si32(sum0);
567 }
568 }
569}
tomhudson@google.comae29b882012-03-06 14:59:04 +0000570
571/*
572 * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the
573 * special case suby == 0 as suby is changing in every loop.
574 */
575template<bool has_alpha>
576void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
577 const uint32_t* xy,
578 int count, uint32_t* colors) {
579 SkASSERT(count > 0 && colors != NULL);
reed@google.com9cfc83c2013-07-22 17:18:18 +0000580 SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel);
tomhudson@google.comae29b882012-03-06 14:59:04 +0000581 SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config);
582 if (has_alpha) {
583 SkASSERT(s.fAlphaScale < 256);
584 } else {
585 SkASSERT(s.fAlphaScale == 256);
586 }
587
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000588 const uint8_t* src_addr =
tomhudson@google.comae29b882012-03-06 14:59:04 +0000589 static_cast<const uint8_t*>(s.fBitmap->getPixels());
scroggo@google.come5f48242013-02-25 21:47:41 +0000590 const size_t rb = s.fBitmap->rowBytes();
tomhudson@google.comae29b882012-03-06 14:59:04 +0000591
592 // vector constants
593 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
594 8, 8, 8, 8,
595 4, 4, 4, 4,
596 0, 0, 0, 0);
597 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
598 const __m128i mask_000F = _mm_set1_epi32(0x000F);
599 const __m128i sixteen_8bit = _mm_set1_epi8(16);
600
601 __m128i alpha;
602 if (has_alpha) {
603 // 8x(alpha)
604 alpha = _mm_set1_epi16(s.fAlphaScale);
605 }
606
607 // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small)
608 while (count >= 2) {
609 int xy0[4];
610 int xy1[4];
611 __m128i all_xy, sixteen_minus_xy;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000612 PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F,
tomhudson@google.comae29b882012-03-06 14:59:04 +0000613 sixteen_8bit, mask_dist_select,
614 &all_xy, &sixteen_minus_xy, xy0, xy1);
615
616 // (4x(x1, 16-x1), 4x(x0, 16-x0))
617 __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy);
618 // (4x(0, y1), 4x(0, y0))
619 __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128());
620 __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y);
621
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000622 const uint32_t* row00 =
tomhudson@google.comae29b882012-03-06 14:59:04 +0000623 reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000624 const uint32_t* row01 =
625 reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb);
626 const uint32_t* row10 =
tomhudson@google.comae29b882012-03-06 14:59:04 +0000627 reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000628 const uint32_t* row11 =
tomhudson@google.comae29b882012-03-06 14:59:04 +0000629 reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb);
630
631 __m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>(
632 row00, row01, row10, row11, xy0, xy1,
633 scale_x, all_y, neg_y, alpha);
634
635 // Pack lower 4 16 bit values of sum into lower 4 bytes.
636 sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
637
638 // Extract low int and store.
639 _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0);
640
641 xy += 4;
642 colors += 2;
643 count -= 2;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000644 }
tomhudson@google.comae29b882012-03-06 14:59:04 +0000645
646 // Handle the remainder
647 while (count-- > 0) {
648 uint32_t data = *xy++;
649 unsigned y0 = data >> 14;
650 unsigned y1 = data & 0x3FFF;
651 unsigned subY = y0 & 0xF;
652 y0 >>= 4;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000653
tomhudson@google.comae29b882012-03-06 14:59:04 +0000654 data = *xy++;
655 unsigned x0 = data >> 14;
656 unsigned x1 = data & 0x3FFF;
657 unsigned subX = x0 & 0xF;
658 x0 >>= 4;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000659
660 const uint32_t* row0 =
tomhudson@google.comae29b882012-03-06 14:59:04 +0000661 reinterpret_cast<const uint32_t*>(src_addr + y0 * rb);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000662 const uint32_t* row1 =
663 reinterpret_cast<const uint32_t*>(src_addr + y1 * rb);
tomhudson@google.comae29b882012-03-06 14:59:04 +0000664
665 // 16x(x)
666 const __m128i all_x = _mm_set1_epi8(subX);
667
668 // 16x (16-x)
669 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
670
671 // (8x (x, 16-x))
672 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
673
674 // 8x(16)
675 const __m128i sixteen_16bit = _mm_set1_epi16(16);
676
677 // 8x (y)
678 const __m128i all_y = _mm_set1_epi16(subY);
679
680 // 8x (16-y)
681 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
682
683 // first row.
684 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
685 // second row.
686 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
687
688 // Add both rows for full sample
689 sum0 = _mm_add_epi16(sum0, sum1);
690
691 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
692
693 // Pack lower 4 16 bit values of sum into lower 4 bytes.
694 sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
695
696 // Extract low int and store.
697 *colors++ = _mm_cvtsi128_si32(sum0);
698 }
699}
tomhudson@google.com95ad1552012-02-14 18:28:54 +0000700} // namepace
701
702void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
703 const uint32_t* xy,
704 int count, uint32_t* colors) {
705 S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors);
706}
707
708void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
709 const uint32_t* xy,
710 int count, uint32_t* colors) {
711 S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors);
712}
tomhudson@google.comae29b882012-03-06 14:59:04 +0000713
714void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
715 const uint32_t* xy,
716 int count, uint32_t* colors) {
717 S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors);
718}
719
720void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
721 const uint32_t* xy,
722 int count, uint32_t* colors) {
723 S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors);
724}