blob: f5f3f5b6b9ef77e89fcf35b5a65a005d1a8de18a [file] [log] [blame]
rileya@google.com589708b2012-07-26 20:04:23 +00001
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9#include "SkGradientShaderPriv.h"
10#include "SkLinearGradient.h"
11#include "SkRadialGradient.h"
12#include "SkTwoPointRadialGradient.h"
13#include "SkTwoPointConicalGradient.h"
14#include "SkSweepGradient.h"
15
16SkGradientShaderBase::SkGradientShaderBase(const SkColor colors[], const SkScalar pos[],
17 int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper) {
18 SkASSERT(colorCount > 1);
19
20 fCacheAlpha = 256; // init to a value that paint.getAlpha() can't return
21
22 fMapper = mapper;
23 SkSafeRef(mapper);
24
25 SkASSERT((unsigned)mode < SkShader::kTileModeCount);
26 SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
27 fTileMode = mode;
28 fTileProc = gTileProcs[mode];
29
30 fCache16 = fCache16Storage = NULL;
31 fCache32 = NULL;
32 fCache32PixelRef = NULL;
33
34 /* Note: we let the caller skip the first and/or last position.
35 i.e. pos[0] = 0.3, pos[1] = 0.7
36 In these cases, we insert dummy entries to ensure that the final data
37 will be bracketed by [0, 1].
38 i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
39
40 Thus colorCount (the caller's value, and fColorCount (our value) may
41 differ by up to 2. In the above example:
42 colorCount = 2
43 fColorCount = 4
44 */
45 fColorCount = colorCount;
46 // check if we need to add in dummy start and/or end position/colors
47 bool dummyFirst = false;
48 bool dummyLast = false;
49 if (pos) {
50 dummyFirst = pos[0] != 0;
51 dummyLast = pos[colorCount - 1] != SK_Scalar1;
52 fColorCount += dummyFirst + dummyLast;
53 }
54
55 if (fColorCount > kColorStorageCount) {
56 size_t size = sizeof(SkColor) + sizeof(Rec);
57 fOrigColors = reinterpret_cast<SkColor*>(
58 sk_malloc_throw(size * fColorCount));
59 }
60 else {
61 fOrigColors = fStorage;
62 }
63
64 // Now copy over the colors, adding the dummies as needed
65 {
66 SkColor* origColors = fOrigColors;
67 if (dummyFirst) {
68 *origColors++ = colors[0];
69 }
70 memcpy(origColors, colors, colorCount * sizeof(SkColor));
71 if (dummyLast) {
72 origColors += colorCount;
73 *origColors = colors[colorCount - 1];
74 }
75 }
76
77 fRecs = (Rec*)(fOrigColors + fColorCount);
78 if (fColorCount > 2) {
79 Rec* recs = fRecs;
80 recs->fPos = 0;
81 // recs->fScale = 0; // unused;
82 recs += 1;
83 if (pos) {
84 /* We need to convert the user's array of relative positions into
85 fixed-point positions and scale factors. We need these results
86 to be strictly monotonic (no two values equal or out of order).
87 Hence this complex loop that just jams a zero for the scale
88 value if it sees a segment out of order, and it assures that
89 we start at 0 and end at 1.0
90 */
91 SkFixed prev = 0;
92 int startIndex = dummyFirst ? 0 : 1;
93 int count = colorCount + dummyLast;
94 for (int i = startIndex; i < count; i++) {
95 // force the last value to be 1.0
96 SkFixed curr;
97 if (i == colorCount) { // we're really at the dummyLast
98 curr = SK_Fixed1;
99 } else {
100 curr = SkScalarToFixed(pos[i]);
101 }
102 // pin curr withing range
103 if (curr < 0) {
104 curr = 0;
105 } else if (curr > SK_Fixed1) {
106 curr = SK_Fixed1;
107 }
108 recs->fPos = curr;
109 if (curr > prev) {
110 recs->fScale = (1 << 24) / (curr - prev);
111 } else {
112 recs->fScale = 0; // ignore this segment
113 }
114 // get ready for the next value
115 prev = curr;
116 recs += 1;
117 }
118 } else { // assume even distribution
119 SkFixed dp = SK_Fixed1 / (colorCount - 1);
120 SkFixed p = dp;
121 SkFixed scale = (colorCount - 1) << 8; // (1 << 24) / dp
122 for (int i = 1; i < colorCount; i++) {
123 recs->fPos = p;
124 recs->fScale = scale;
125 recs += 1;
126 p += dp;
127 }
128 }
129 }
130 this->initCommon();
131}
132
133SkGradientShaderBase::SkGradientShaderBase(SkFlattenableReadBuffer& buffer) :
134 INHERITED(buffer) {
135 fCacheAlpha = 256;
136
137 fMapper = static_cast<SkUnitMapper*>(buffer.readFlattenable());
138
139 fCache16 = fCache16Storage = NULL;
140 fCache32 = NULL;
141 fCache32PixelRef = NULL;
142
143 int colorCount = fColorCount = buffer.readU32();
144 if (colorCount > kColorStorageCount) {
145 size_t size = sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec);
146 fOrigColors = (SkColor*)sk_malloc_throw(size * colorCount);
147 } else {
148 fOrigColors = fStorage;
149 }
150 buffer.read(fOrigColors, colorCount * sizeof(SkColor));
151
152 fTileMode = (TileMode)buffer.readU8();
153 fTileProc = gTileProcs[fTileMode];
154 fRecs = (Rec*)(fOrigColors + colorCount);
155 if (colorCount > 2) {
156 Rec* recs = fRecs;
157 recs[0].fPos = 0;
158 for (int i = 1; i < colorCount; i++) {
159 recs[i].fPos = buffer.readS32();
160 recs[i].fScale = buffer.readU32();
161 }
162 }
163 buffer.readMatrix(&fPtsToUnit);
164 this->initCommon();
165}
166
167SkGradientShaderBase::~SkGradientShaderBase() {
168 if (fCache16Storage) {
169 sk_free(fCache16Storage);
170 }
171 SkSafeUnref(fCache32PixelRef);
172 if (fOrigColors != fStorage) {
173 sk_free(fOrigColors);
174 }
175 SkSafeUnref(fMapper);
176}
177
178void SkGradientShaderBase::initCommon() {
179 fFlags = 0;
180 unsigned colorAlpha = 0xFF;
181 for (int i = 0; i < fColorCount; i++) {
182 colorAlpha &= SkColorGetA(fOrigColors[i]);
183 }
184 fColorsAreOpaque = colorAlpha == 0xFF;
185}
186
187void SkGradientShaderBase::flatten(SkFlattenableWriteBuffer& buffer) const {
188 this->INHERITED::flatten(buffer);
189 buffer.writeFlattenable(fMapper);
190 buffer.write32(fColorCount);
191 buffer.writeMul4(fOrigColors, fColorCount * sizeof(SkColor));
192 buffer.write8(fTileMode);
193 if (fColorCount > 2) {
194 Rec* recs = fRecs;
195 for (int i = 1; i < fColorCount; i++) {
196 buffer.write32(recs[i].fPos);
197 buffer.write32(recs[i].fScale);
198 }
199 }
200 buffer.writeMatrix(fPtsToUnit);
201}
202
203bool SkGradientShaderBase::isOpaque() const {
204 return fColorsAreOpaque;
205}
206
207bool SkGradientShaderBase::setContext(const SkBitmap& device,
208 const SkPaint& paint,
209 const SkMatrix& matrix) {
210 if (!this->INHERITED::setContext(device, paint, matrix)) {
211 return false;
212 }
213
214 const SkMatrix& inverse = this->getTotalInverse();
215
216 if (!fDstToIndex.setConcat(fPtsToUnit, inverse)) {
217 return false;
218 }
219
220 fDstToIndexProc = fDstToIndex.getMapXYProc();
221 fDstToIndexClass = (uint8_t)SkShader::ComputeMatrixClass(fDstToIndex);
222
223 // now convert our colors in to PMColors
224 unsigned paintAlpha = this->getPaintAlpha();
225
226 fFlags = this->INHERITED::getFlags();
227 if (fColorsAreOpaque && paintAlpha == 0xFF) {
228 fFlags |= kOpaqueAlpha_Flag;
229 }
230 // we can do span16 as long as our individual colors are opaque,
231 // regardless of the paint's alpha
232 if (fColorsAreOpaque) {
233 fFlags |= kHasSpan16_Flag;
234 }
235
236 this->setCacheAlpha(paintAlpha);
237 return true;
238}
239
240void SkGradientShaderBase::setCacheAlpha(U8CPU alpha) const {
241 // if the new alpha differs from the previous time we were called, inval our cache
242 // this will trigger the cache to be rebuilt.
243 // we don't care about the first time, since the cache ptrs will already be NULL
244 if (fCacheAlpha != alpha) {
245 fCache16 = NULL; // inval the cache
246 fCache32 = NULL; // inval the cache
247 fCacheAlpha = alpha; // record the new alpha
248 // inform our subclasses
249 if (fCache32PixelRef) {
250 fCache32PixelRef->notifyPixelsChanged();
251 }
252 }
253}
254
255#define Fixed_To_Dot8(x) (((x) + 0x80) >> 8)
256
257/** We take the original colors, not our premultiplied PMColors, since we can
258 build a 16bit table as long as the original colors are opaque, even if the
259 paint specifies a non-opaque alpha.
260*/
261void SkGradientShaderBase::Build16bitCache(uint16_t cache[], SkColor c0, SkColor c1,
262 int count) {
263 SkASSERT(count > 1);
264 SkASSERT(SkColorGetA(c0) == 0xFF);
265 SkASSERT(SkColorGetA(c1) == 0xFF);
266
267 SkFixed r = SkColorGetR(c0);
268 SkFixed g = SkColorGetG(c0);
269 SkFixed b = SkColorGetB(c0);
270
271 SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
272 SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
273 SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
274
275 r = SkIntToFixed(r) + 0x8000;
276 g = SkIntToFixed(g) + 0x8000;
277 b = SkIntToFixed(b) + 0x8000;
278
279 do {
280 unsigned rr = r >> 16;
281 unsigned gg = g >> 16;
282 unsigned bb = b >> 16;
283 cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb));
284 cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb);
285 cache += 1;
286 r += dr;
287 g += dg;
288 b += db;
289 } while (--count != 0);
290}
291
292/*
293 * 2x2 dither a fixed-point color component (8.16) down to 8, matching the
294 * semantics of how we 2x2 dither 32->16
295 */
296static inline U8CPU dither_fixed_to_8(SkFixed n) {
297 n >>= 8;
298 return ((n << 1) - ((n >> 8 << 8) | (n >> 8))) >> 8;
299}
300
301/*
302 * For dithering with premultiply, we want to ceiling the alpha component,
303 * to ensure that it is always >= any color component.
304 */
305static inline U8CPU dither_ceil_fixed_to_8(SkFixed n) {
306 n >>= 8;
307 return ((n << 1) - (n | (n >> 8))) >> 8;
308}
309
310void SkGradientShaderBase::Build32bitCache(SkPMColor cache[], SkColor c0, SkColor c1,
311 int count, U8CPU paintAlpha) {
312 SkASSERT(count > 1);
313
314 // need to apply paintAlpha to our two endpoints
315 SkFixed a = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
316 SkFixed da;
317 {
318 int tmp = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
319 da = SkIntToFixed(tmp - a) / (count - 1);
320 }
321
322 SkFixed r = SkColorGetR(c0);
323 SkFixed g = SkColorGetG(c0);
324 SkFixed b = SkColorGetB(c0);
325 SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
326 SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
327 SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
328
329 a = SkIntToFixed(a) + 0x8000;
330 r = SkIntToFixed(r) + 0x8000;
331 g = SkIntToFixed(g) + 0x8000;
332 b = SkIntToFixed(b) + 0x8000;
333
334 do {
335 cache[0] = SkPremultiplyARGBInline(a >> 16, r >> 16, g >> 16, b >> 16);
336 cache[kCache32Count] =
337 SkPremultiplyARGBInline(dither_ceil_fixed_to_8(a),
338 dither_fixed_to_8(r),
339 dither_fixed_to_8(g),
340 dither_fixed_to_8(b));
341 cache += 1;
342 a += da;
343 r += dr;
344 g += dg;
345 b += db;
346 } while (--count != 0);
347}
348
349static inline int SkFixedToFFFF(SkFixed x) {
350 SkASSERT((unsigned)x <= SK_Fixed1);
351 return x - (x >> 16);
352}
353
354static inline U16CPU bitsTo16(unsigned x, const unsigned bits) {
355 SkASSERT(x < (1U << bits));
356 if (6 == bits) {
357 return (x << 10) | (x << 4) | (x >> 2);
358 }
359 if (8 == bits) {
360 return (x << 8) | x;
361 }
362 sk_throw();
363 return 0;
364}
365
366/** We duplicate the last value in each half of the cache so that
367 interpolation doesn't have to special-case being at the last point.
368*/
369static void complete_16bit_cache(uint16_t* cache, int stride) {
370 cache[stride - 1] = cache[stride - 2];
371 cache[2 * stride - 1] = cache[2 * stride - 2];
372}
373
374const uint16_t* SkGradientShaderBase::getCache16() const {
375 if (fCache16 == NULL) {
376 // double the count for dither entries
377 const int entryCount = kCache16Count * 2;
378 const size_t allocSize = sizeof(uint16_t) * entryCount;
379
380 if (fCache16Storage == NULL) { // set the storage and our working ptr
381 fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
382 }
383 fCache16 = fCache16Storage;
384 if (fColorCount == 2) {
385 Build16bitCache(fCache16, fOrigColors[0], fOrigColors[1],
386 kGradient16Length);
387 } else {
388 Rec* rec = fRecs;
389 int prevIndex = 0;
390 for (int i = 1; i < fColorCount; i++) {
391 int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift;
392 SkASSERT(nextIndex < kCache16Count);
393
394 if (nextIndex > prevIndex)
395 Build16bitCache(fCache16 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1);
396 prevIndex = nextIndex;
397 }
398 // one extra space left over at the end for complete_16bit_cache()
399 SkASSERT(prevIndex == kGradient16Length - 1);
400 }
401
402 if (fMapper) {
403 fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
404 uint16_t* linear = fCache16; // just computed linear data
405 uint16_t* mapped = fCache16Storage; // storage for mapped data
406 SkUnitMapper* map = fMapper;
407 for (int i = 0; i < kGradient16Length; i++) {
408 int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift;
409 mapped[i] = linear[index];
410 mapped[i + kCache16Count] = linear[index + kCache16Count];
411 }
412 sk_free(fCache16);
413 fCache16 = fCache16Storage;
414 }
415 complete_16bit_cache(fCache16, kCache16Count);
416 }
417 return fCache16;
418}
419
420/** We duplicate the last value in each half of the cache so that
421 interpolation doesn't have to special-case being at the last point.
422*/
423static void complete_32bit_cache(SkPMColor* cache, int stride) {
424 cache[stride - 1] = cache[stride - 2];
425 cache[2 * stride - 1] = cache[2 * stride - 2];
426}
427
428const SkPMColor* SkGradientShaderBase::getCache32() const {
429 if (fCache32 == NULL) {
430 // double the count for dither entries
431 const int entryCount = kCache32Count * 2;
432 const size_t allocSize = sizeof(SkPMColor) * entryCount;
433
434 if (NULL == fCache32PixelRef) {
435 fCache32PixelRef = SkNEW_ARGS(SkMallocPixelRef,
436 (NULL, allocSize, NULL));
437 }
438 fCache32 = (SkPMColor*)fCache32PixelRef->getAddr();
439 if (fColorCount == 2) {
440 Build32bitCache(fCache32, fOrigColors[0], fOrigColors[1],
441 kGradient32Length, fCacheAlpha);
442 } else {
443 Rec* rec = fRecs;
444 int prevIndex = 0;
445 for (int i = 1; i < fColorCount; i++) {
446 int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
447 SkASSERT(nextIndex < kGradient32Length);
448
449 if (nextIndex > prevIndex)
450 Build32bitCache(fCache32 + prevIndex, fOrigColors[i-1],
451 fOrigColors[i],
452 nextIndex - prevIndex + 1, fCacheAlpha);
453 prevIndex = nextIndex;
454 }
455 SkASSERT(prevIndex == kGradient32Length - 1);
456 }
457
458 if (fMapper) {
459 SkMallocPixelRef* newPR = SkNEW_ARGS(SkMallocPixelRef,
460 (NULL, allocSize, NULL));
461 SkPMColor* linear = fCache32; // just computed linear data
462 SkPMColor* mapped = (SkPMColor*)newPR->getAddr(); // storage for mapped data
463 SkUnitMapper* map = fMapper;
464 for (int i = 0; i < kGradient32Length; i++) {
465 int index = map->mapUnit16((i << 8) | i) >> 8;
466 mapped[i] = linear[index];
467 mapped[i + kCache32Count] = linear[index + kCache32Count];
468 }
469 fCache32PixelRef->unref();
470 fCache32PixelRef = newPR;
471 fCache32 = (SkPMColor*)newPR->getAddr();
472 }
473 complete_32bit_cache(fCache32, kCache32Count);
474 }
475 return fCache32;
476}
477
478/*
479 * Because our caller might rebuild the same (logically the same) gradient
480 * over and over, we'd like to return exactly the same "bitmap" if possible,
481 * allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
482 * To do that, we maintain a private cache of built-bitmaps, based on our
483 * colors and positions. Note: we don't try to flatten the fMapper, so if one
484 * is present, we skip the cache for now.
485 */
486void SkGradientShaderBase::commonAsABitmap(SkBitmap* bitmap) const {
487 // our caller assumes no external alpha, so we ensure that our cache is
488 // built with 0xFF
489 this->setCacheAlpha(0xFF);
490
491 // don't have a way to put the mapper into our cache-key yet
492 if (fMapper) {
493 // force our cahce32pixelref to be built
494 (void)this->getCache32();
495 bitmap->setConfig(SkBitmap::kARGB_8888_Config, kGradient32Length, 1);
496 bitmap->setPixelRef(fCache32PixelRef);
497 return;
498 }
499
500 // build our key: [numColors + colors[] + {positions[]} ]
501 int count = 1 + fColorCount;
502 if (fColorCount > 2) {
503 count += fColorCount - 1; // fRecs[].fPos
504 }
505
506 SkAutoSTMalloc<16, int32_t> storage(count);
507 int32_t* buffer = storage.get();
508
509 *buffer++ = fColorCount;
510 memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
511 buffer += fColorCount;
512 if (fColorCount > 2) {
513 for (int i = 1; i < fColorCount; i++) {
514 *buffer++ = fRecs[i].fPos;
515 }
516 }
517 SkASSERT(buffer - storage.get() == count);
518
519 ///////////////////////////////////
520
521 SK_DECLARE_STATIC_MUTEX(gMutex);
522 static SkBitmapCache* gCache;
523 // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp
524 static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
525 SkAutoMutexAcquire ama(gMutex);
526
527 if (NULL == gCache) {
528 gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS));
529 }
530 size_t size = count * sizeof(int32_t);
531
532 if (!gCache->find(storage.get(), size, bitmap)) {
533 // force our cahce32pixelref to be built
534 (void)this->getCache32();
535 // Only expose the linear section of the cache; don't let the caller
536 // know about the padding at the end to make interpolation faster.
537 bitmap->setConfig(SkBitmap::kARGB_8888_Config, kGradient32Length, 1);
538 bitmap->setPixelRef(fCache32PixelRef);
539
540 gCache->add(storage.get(), size, *bitmap);
541 }
542}
543
544void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const {
545 if (info) {
546 if (info->fColorCount >= fColorCount) {
547 if (info->fColors) {
548 memcpy(info->fColors, fOrigColors,
549 fColorCount * sizeof(SkColor));
550 }
551 if (info->fColorOffsets) {
552 if (fColorCount == 2) {
553 info->fColorOffsets[0] = 0;
554 info->fColorOffsets[1] = SK_Scalar1;
555 } else if (fColorCount > 2) {
556 for (int i = 0; i < fColorCount; i++)
557 info->fColorOffsets[i] = SkFixedToScalar(fRecs[i].fPos);
558 }
559 }
560 }
561 info->fColorCount = fColorCount;
562 info->fTileMode = fTileMode;
563 }
564}
565
566///////////////////////////////////////////////////////////////////////////////
567///////////////////////////////////////////////////////////////////////////////
568
569#include "SkEmptyShader.h"
570
571// assumes colors is SkColor* and pos is SkScalar*
572#define EXPAND_1_COLOR(count) \
573 SkColor tmp[2]; \
574 do { \
575 if (1 == count) { \
576 tmp[0] = tmp[1] = colors[0]; \
577 colors = tmp; \
578 pos = NULL; \
579 count = 2; \
580 } \
581 } while (0)
582
583SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2],
584 const SkColor colors[],
585 const SkScalar pos[], int colorCount,
586 SkShader::TileMode mode,
587 SkUnitMapper* mapper) {
588 if (NULL == pts || NULL == colors || colorCount < 1) {
589 return NULL;
590 }
591 EXPAND_1_COLOR(colorCount);
592
593 return SkNEW_ARGS(SkLinearGradient,
594 (pts, colors, pos, colorCount, mode, mapper));
595}
596
597SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius,
598 const SkColor colors[],
599 const SkScalar pos[], int colorCount,
600 SkShader::TileMode mode,
601 SkUnitMapper* mapper) {
602 if (radius <= 0 || NULL == colors || colorCount < 1) {
603 return NULL;
604 }
605 EXPAND_1_COLOR(colorCount);
606
607 return SkNEW_ARGS(SkRadialGradient,
608 (center, radius, colors, pos, colorCount, mode, mapper));
609}
610
611SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start,
612 SkScalar startRadius,
613 const SkPoint& end,
614 SkScalar endRadius,
615 const SkColor colors[],
616 const SkScalar pos[],
617 int colorCount,
618 SkShader::TileMode mode,
619 SkUnitMapper* mapper) {
620 if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
621 return NULL;
622 }
623 EXPAND_1_COLOR(colorCount);
624
625 return SkNEW_ARGS(SkTwoPointRadialGradient,
626 (start, startRadius, end, endRadius, colors, pos,
627 colorCount, mode, mapper));
628}
629
630SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start,
631 SkScalar startRadius,
632 const SkPoint& end,
633 SkScalar endRadius,
634 const SkColor colors[],
635 const SkScalar pos[],
636 int colorCount,
637 SkShader::TileMode mode,
638 SkUnitMapper* mapper) {
639 if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
640 return NULL;
641 }
642 if (start == end && startRadius == endRadius) {
643 return SkNEW(SkEmptyShader);
644 }
645
646 return SkNEW_ARGS(SkTwoPointConicalGradient,
647 (start, startRadius, end, endRadius, colors, pos,
648 colorCount, mode, mapper));
649}
650
651SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
652 const SkColor colors[],
653 const SkScalar pos[],
654 int count, SkUnitMapper* mapper) {
655 if (NULL == colors || count < 1) {
656 return NULL;
657 }
658 EXPAND_1_COLOR(count);
659
660 return SkNEW_ARGS(SkSweepGradient, (cx, cy, colors, pos, count, mapper));
661}
662
663SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
664 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
665 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
666 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
667 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient)
668 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
669SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
rileya@google.comd7cc6512012-07-27 14:00:39 +0000670
671///////////////////////////////////////////////////////////////////////////////
672
673GrGLGradientStage::GrGLGradientStage(const GrProgramStageFactory& factory)
674 : INHERITED(factory) { }
675
676GrGLGradientStage::~GrGLGradientStage() { }
677
678void GrGLGradientStage::emitColorLookup(GrGLShaderBuilder* builder,
679 const char* tName,
680 const char* outputColor,
681 const char* samplerName) {
682 // Texture is effectively 1D so the y coordinate is 0.5, if we pack multiple
683 // gradients into a texture, we could instead pick the appropriate row here
684 builder->fSampleCoords.printf("vec2(%s, 0.5)", tName);
685 builder->fComplexCoord = true;
686 builder->emitDefaultFetch(outputColor, samplerName);
687}
688
689/////////////////////////////////////////////////////////////////////
690
691GrGradientEffect::GrGradientEffect(GrTexture* texture)
692 : fTexture (texture)
693 , fUseTexture(true) {
694 SkSafeRef(fTexture);
695}
696
697GrGradientEffect::GrGradientEffect(GrContext* ctx,
698 const SkShader& shader,
699 GrSamplerState* sampler)
700 : fTexture (NULL)
701 , fUseTexture (false) {
702 // TODO: check for simple cases where we don't need a texture:
703 //GradientInfo info;
704 //shader.asAGradient(&info);
705 //if (info.fColorCount == 2) { ...
706
707 SkBitmap bitmap;
708 shader.asABitmap(&bitmap, NULL, NULL);
709
710 GrContext::TextureCacheEntry entry = GrLockCachedBitmapTexture(ctx, bitmap,
711 sampler->textureParams());
712 fTexture = entry.texture();
713 SkSafeRef(fTexture);
714 fUseTexture = true;
715
716 // Unlock immediately, this is not great, but we don't have a way of
717 // knowing when else to unlock it currently, so it may get purged from
718 // the cache, but it'll still be ref'd until it's no longer being used.
719 GrUnlockCachedBitmapTexture(ctx, entry);
720}
721
722GrGradientEffect::~GrGradientEffect() {
723 SkSafeUnref(fTexture);
724}
725
726unsigned int GrGradientEffect::numTextures() const {
727 return fUseTexture ? 1 : 0;
728}
729
730GrTexture* GrGradientEffect::texture(unsigned int index)
731 const {
732 GrAssert(fUseTexture && 0 == index);
733 return fTexture;
734}
735