blob: 047335d424fceb7a2dfe5a78fdba02d87576e825 [file] [log] [blame]
tanjent@gmail.comf3b78972012-03-01 03:38:55 +00001//
2// SpookyHash: a 128-bit noncryptographic hash function
3// By Bob Jenkins, public domain
4// Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
5// Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
6// Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
7// Feb 2 2012: production, same bits as beta
8// Feb 5 2012: adjusted definitions of uint* to be more portable
9//
10// Up to 4 bytes/cycle for long messages. Reasonably fast for short messages.
11// All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
12//
13// This was developed for and tested on 64-bit x86-compatible processors.
14// It assumes the processor is little-endian. There is a macro
15// controlling whether unaligned reads are allowed (by default they are).
16// This should be an equally good hash on big-endian machines, but it will
17// compute different results on them than on little-endian machines.
18//
19// Google's CityHash has similar specs to SpookyHash, and CityHash is faster
20// on some platforms. MD4 and MD5 also have similar specs, but they are orders
21// of magnitude slower. CRCs are two or more times slower, but unlike
22// SpookyHash, they have nice math for combining the CRCs of pieces to form
23// the CRCs of wholes. There are also cryptographic hashes, but those are even
24// slower than MD5.
25//
26
tanjent@gmail.comdd462f22012-03-01 06:06:01 +000027#include "Platform.h"
tanjent@gmail.comf3b78972012-03-01 03:38:55 +000028#include <stddef.h>
29
30#ifdef _MSC_VER
31# define INLINE __forceinline
32 typedef unsigned __int64 uint64;
33 typedef unsigned __int32 uint32;
34 typedef unsigned __int16 uint16;
35 typedef unsigned __int8 uint8;
36#else
37# include <stdint.h>
38# define INLINE inline
39 typedef uint64_t uint64;
40 typedef uint32_t uint32;
41 typedef uint16_t uint16;
42 typedef uint8_t uint8;
43#endif
44
45
46class SpookyHash
47{
48public:
49 //
50 // SpookyHash: hash a single message in one call, produce 128-bit output
51 //
52 static void Hash128(
53 const void *message, // message to hash
54 size_t length, // length of message in bytes
55 uint64 *hash1, // in/out: in seed 1, out hash value 1
56 uint64 *hash2); // in/out: in seed 2, out hash value 2
57
58 //
59 // Hash64: hash a single message in one call, return 64-bit output
60 //
61 static uint64 Hash64(
62 const void *message, // message to hash
63 size_t length, // length of message in bytes
64 uint64 seed) // seed
65 {
66 uint64 hash1 = seed;
67 Hash128(message, length, &hash1, &seed);
68 return hash1;
69 }
70
71 //
72 // Hash32: hash a single message in one call, produce 32-bit output
73 //
74 static uint32 Hash32(
75 const void *message, // message to hash
76 size_t length, // length of message in bytes
77 uint32 seed) // seed
78 {
79 uint64 hash1 = seed, hash2 = seed;
80 Hash128(message, length, &hash1, &hash2);
81 return (uint32)hash1;
82 }
83
84 //
85 // Init: initialize the context of a SpookyHash
86 //
87 void Init(
88 uint64 seed1, // any 64-bit value will do, including 0
89 uint64 seed2); // different seeds produce independent hashes
90
91 //
92 // Update: add a piece of a message to a SpookyHash state
93 //
94 void Update(
95 const void *message, // message fragment
96 size_t length); // length of message fragment in bytes
97
98
99 //
100 // Final: compute the hash for the current SpookyHash state
101 //
102 // This does not modify the state; you can keep updating it afterward
103 //
104 // The result is the same as if SpookyHash() had been called with
105 // all the pieces concatenated into one message.
106 //
107 void Final(
108 uint64 *hash1, // out only: first 64 bits of hash value.
109 uint64 *hash2); // out only: second 64 bits of hash value.
110
111 //
112 // left rotate a 64-bit value by k bytes
113 //
114 static INLINE uint64 Rot64(uint64 x, int k)
115 {
116 return (x << k) | (x >> (64 - k));
117 }
118
119 //
120 // This is used if the input is 96 bytes long or longer.
121 //
122 // The internal state is fully overwritten every 96 bytes.
123 // Every input bit appears to cause at least 128 bits of entropy
124 // before 96 other bytes are combined, when run forward or backward
125 // For every input bit,
126 // Two inputs differing in just that input bit
127 // Where "differ" means xor or subtraction
128 // And the base value is random
129 // When run forward or backwards one Mix
130 // I tried 3 pairs of each; they all differed by at least 212 bits.
131 //
132 static INLINE void Mix(
133 const uint64 *data,
134 uint64 &s0, uint64 &s1, uint64 &s2, uint64 &s3,
135 uint64 &s4, uint64 &s5, uint64 &s6, uint64 &s7,
136 uint64 &s8, uint64 &s9, uint64 &s10,uint64 &s11)
137 {
138 s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1;
139 s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2;
140 s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3;
141 s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4;
142 s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5;
143 s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6;
144 s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7;
145 s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8;
146 s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9;
147 s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10;
148 s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11;
149 s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0;
150 }
151
152 //
153 // Mix all 12 inputs together so that h0, h1 are a hash of them all.
154 //
155 // For two inputs differing in just the input bits
156 // Where "differ" means xor or subtraction
157 // And the base value is random, or a counting value starting at that bit
158 // The final result will have each bit of h0, h1 flip
159 // For every input bit,
160 // with probability 50 +- .3%
161 // For every pair of input bits,
162 // with probability 50 +- 3%
163 //
164 // This does not rely on the last Mix() call having already mixed some.
165 // Two iterations was almost good enough for a 64-bit result, but a
166 // 128-bit result is reported, so End() does three iterations.
167 //
168 static INLINE void EndPartial(
169 uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3,
170 uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7,
171 uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11)
172 {
173 h11+= h1; h2 ^= h11; h1 = Rot64(h1,44);
174 h0 += h2; h3 ^= h0; h2 = Rot64(h2,15);
175 h1 += h3; h4 ^= h1; h3 = Rot64(h3,34);
176 h2 += h4; h5 ^= h2; h4 = Rot64(h4,21);
177 h3 += h5; h6 ^= h3; h5 = Rot64(h5,38);
178 h4 += h6; h7 ^= h4; h6 = Rot64(h6,33);
179 h5 += h7; h8 ^= h5; h7 = Rot64(h7,10);
180 h6 += h8; h9 ^= h6; h8 = Rot64(h8,13);
181 h7 += h9; h10^= h7; h9 = Rot64(h9,38);
182 h8 += h10; h11^= h8; h10= Rot64(h10,53);
183 h9 += h11; h0 ^= h9; h11= Rot64(h11,42);
184 h10+= h0; h1 ^= h10; h0 = Rot64(h0,54);
185 }
186
187 static INLINE void End(
188 uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3,
189 uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7,
190 uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11)
191 {
192 EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
193 EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
194 EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
195 }
196
197 //
198 // The goal is for each bit of the input to expand into 128 bits of
199 // apparent entropy before it is fully overwritten.
200 // n trials both set and cleared at least m bits of h0 h1 h2 h3
201 // n: 2 m: 29
202 // n: 3 m: 46
203 // n: 4 m: 57
204 // n: 5 m: 107
205 // n: 6 m: 146
206 // n: 7 m: 152
207 // when run forwards or backwards
208 // for all 1-bit and 2-bit diffs
209 // with diffs defined by either xor or subtraction
210 // with a base of all zeros plus a counter, or plus another bit, or random
211 //
212 static INLINE void ShortMix(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3)
213 {
214 h2 = Rot64(h2,50); h2 += h3; h0 ^= h2;
215 h3 = Rot64(h3,52); h3 += h0; h1 ^= h3;
216 h0 = Rot64(h0,30); h0 += h1; h2 ^= h0;
217 h1 = Rot64(h1,41); h1 += h2; h3 ^= h1;
218 h2 = Rot64(h2,54); h2 += h3; h0 ^= h2;
219 h3 = Rot64(h3,48); h3 += h0; h1 ^= h3;
220 h0 = Rot64(h0,38); h0 += h1; h2 ^= h0;
221 h1 = Rot64(h1,37); h1 += h2; h3 ^= h1;
222 h2 = Rot64(h2,62); h2 += h3; h0 ^= h2;
223 h3 = Rot64(h3,34); h3 += h0; h1 ^= h3;
224 h0 = Rot64(h0,5); h0 += h1; h2 ^= h0;
225 h1 = Rot64(h1,36); h1 += h2; h3 ^= h1;
226 }
227
228 //
229 // Mix all 4 inputs together so that h0, h1 are a hash of them all.
230 //
231 // For two inputs differing in just the input bits
232 // Where "differ" means xor or subtraction
233 // And the base value is random, or a counting value starting at that bit
234 // The final result will have each bit of h0, h1 flip
235 // For every input bit,
236 // with probability 50 +- .3% (it is probably better than that)
237 // For every pair of input bits,
238 // with probability 50 +- .75% (the worst case is approximately that)
239 //
240 static INLINE void ShortEnd(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3)
241 {
242 h3 ^= h2; h2 = Rot64(h2,15); h3 += h2;
243 h0 ^= h3; h3 = Rot64(h3,52); h0 += h3;
244 h1 ^= h0; h0 = Rot64(h0,26); h1 += h0;
245 h2 ^= h1; h1 = Rot64(h1,51); h2 += h1;
246 h3 ^= h2; h2 = Rot64(h2,28); h3 += h2;
247 h0 ^= h3; h3 = Rot64(h3,9); h0 += h3;
248 h1 ^= h0; h0 = Rot64(h0,47); h1 += h0;
249 h2 ^= h1; h1 = Rot64(h1,54); h2 += h1;
250 h3 ^= h2; h2 = Rot64(h2,32); h3 += h2;
251 h0 ^= h3; h3 = Rot64(h3,25); h0 += h3;
252 h1 ^= h0; h0 = Rot64(h0,63); h1 += h0;
253 }
254
255private:
256
257 //
258 // Short is used for messages under 192 bytes in length
259 // Short has a low startup cost, the normal mode is good for long
260 // keys, the cost crossover is at about 192 bytes. The two modes were
261 // held to the same quality bar.
262 //
263 static void Short(
264 const void *message,
265 size_t length,
266 uint64 *hash1,
267 uint64 *hash2);
268
269 // number of uint64's in internal state
270 static const size_t sc_numVars = 12;
271
272 // size of the internal state
273 static const size_t sc_blockSize = sc_numVars*8;
274
275 // size of buffer of unhashed data, in bytes
276 static const size_t sc_bufSize = 2*sc_blockSize;
277
278 //
279 // sc_const: a constant which:
280 // * is not zero
281 // * is odd
282 // * is a not-very-regular mix of 1's and 0's
283 // * does not need any other special mathematical properties
284 //
tanjent@gmail.comdd462f22012-03-01 06:06:01 +0000285 static const uint64 sc_const = 0xdeadbeefdeadbeefULL;
tanjent@gmail.comf3b78972012-03-01 03:38:55 +0000286
287 uint64 m_data[2*sc_numVars]; // unhashed data, for partial messages
288 uint64 m_state[sc_numVars]; // internal state of the hash
289 size_t m_length; // total length of the input so far
290 uint8 m_remainder; // length of unhashed data stashed in m_data
291};
292
293
294