blob: c996b85f6a782a483d9ca2859aa14603efe98d06 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video_coding_impl.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "common_types.h"
#include "encoded_frame.h"
#include "jitter_buffer.h"
#include "packet.h"
#include "trace.h"
#include "video_codec_interface.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/trace_event.h"
namespace webrtc
{
//#define DEBUG_DECODER_BIT_STREAM
uint32_t
VCMProcessTimer::Period() const
{
return _periodMs;
}
uint32_t
VCMProcessTimer::TimeUntilProcess() const
{
const int64_t time_since_process = _clock->TimeInMilliseconds() -
static_cast<int64_t>(_latestMs);
const int64_t time_until_process = static_cast<int64_t>(_periodMs) -
time_since_process;
if (time_until_process < 0)
return 0;
return time_until_process;
}
void
VCMProcessTimer::Processed()
{
_latestMs = _clock->TimeInMilliseconds();
}
VideoCodingModuleImpl::VideoCodingModuleImpl(const int32_t id,
Clock* clock,
EventFactory* event_factory,
bool owns_event_factory)
: _id(id),
clock_(clock),
_receiveCritSect(CriticalSectionWrapper::CreateCriticalSection()),
_receiverInited(false),
_timing(clock_, id, 1),
_dualTiming(clock_, id, 2, &_timing),
_receiver(&_timing, clock_, event_factory, id, 1, true),
_dualReceiver(&_dualTiming, clock_, event_factory, id, 2, false),
_decodedFrameCallback(_timing, clock_),
_dualDecodedFrameCallback(_dualTiming, clock_),
_frameTypeCallback(NULL),
_frameStorageCallback(NULL),
_receiveStatsCallback(NULL),
_packetRequestCallback(NULL),
render_buffer_callback_(NULL),
_decoder(NULL),
_dualDecoder(NULL),
#ifdef DEBUG_DECODER_BIT_STREAM
_bitStreamBeforeDecoder(NULL),
#endif
_frameFromFile(),
_keyRequestMode(kKeyOnError),
_scheduleKeyRequest(false),
max_nack_list_size_(0),
_sendCritSect(CriticalSectionWrapper::CreateCriticalSection()),
_encoder(),
_encodedFrameCallback(),
_nextFrameTypes(1, kVideoFrameDelta),
_mediaOpt(id, clock_),
_sendCodecType(kVideoCodecUnknown),
_sendStatsCallback(NULL),
_encoderInputFile(NULL),
_codecDataBase(id),
_receiveStatsTimer(1000, clock_),
_sendStatsTimer(1000, clock_),
_retransmissionTimer(10, clock_),
_keyRequestTimer(500, clock_),
event_factory_(event_factory),
owns_event_factory_(owns_event_factory),
frame_dropper_enabled_(true) {
assert(clock_);
#ifdef DEBUG_DECODER_BIT_STREAM
_bitStreamBeforeDecoder = fopen("decoderBitStream.bit", "wb");
#endif
}
VideoCodingModuleImpl::~VideoCodingModuleImpl()
{
if (_dualDecoder != NULL)
{
_codecDataBase.ReleaseDecoder(_dualDecoder);
}
delete _receiveCritSect;
delete _sendCritSect;
if (owns_event_factory_) {
delete event_factory_;
}
#ifdef DEBUG_DECODER_BIT_STREAM
fclose(_bitStreamBeforeDecoder);
#endif
if (_encoderInputFile != NULL)
{
fclose(_encoderInputFile);
}
}
VideoCodingModule*
VideoCodingModule::Create(const int32_t id)
{
return new VideoCodingModuleImpl(id, Clock::GetRealTimeClock(),
new EventFactoryImpl, true);
}
VideoCodingModule*
VideoCodingModule::Create(const int32_t id, Clock* clock,
EventFactory* event_factory)
{
assert(clock);
assert(event_factory);
return new VideoCodingModuleImpl(id, clock, event_factory, false);
}
void
VideoCodingModule::Destroy(VideoCodingModule* module)
{
if (module != NULL)
{
delete static_cast<VideoCodingModuleImpl*>(module);
}
}
int32_t
VideoCodingModuleImpl::Process()
{
int32_t returnValue = VCM_OK;
// Receive-side statistics
if (_receiveStatsTimer.TimeUntilProcess() == 0)
{
_receiveStatsTimer.Processed();
if (_receiveStatsCallback != NULL)
{
uint32_t bitRate;
uint32_t frameRate;
_receiver.ReceiveStatistics(&bitRate, &frameRate);
_receiveStatsCallback->ReceiveStatistics(bitRate, frameRate);
}
// Size of render buffer.
if (render_buffer_callback_) {
int buffer_size_ms = _receiver.RenderBufferSizeMs();
render_buffer_callback_->RenderBufferSizeMs(buffer_size_ms);
}
}
// Send-side statistics
if (_sendStatsTimer.TimeUntilProcess() == 0)
{
_sendStatsTimer.Processed();
if (_sendStatsCallback != NULL)
{
uint32_t bitRate;
uint32_t frameRate;
{
CriticalSectionScoped cs(_sendCritSect);
bitRate = _mediaOpt.SentBitRate();
frameRate = _mediaOpt.SentFrameRate();
}
_sendStatsCallback->SendStatistics(bitRate, frameRate);
}
}
// Packet retransmission requests
// TODO(holmer): Add API for changing Process interval and make sure it's
// disabled when NACK is off.
if (_retransmissionTimer.TimeUntilProcess() == 0)
{
_retransmissionTimer.Processed();
if (_packetRequestCallback != NULL)
{
uint16_t length;
{
CriticalSectionScoped cs(_receiveCritSect);
length = max_nack_list_size_;
}
std::vector<uint16_t> nackList(length);
const int32_t ret = NackList(&nackList[0], length);
if (ret != VCM_OK && returnValue == VCM_OK)
{
returnValue = ret;
}
if (length > 0)
{
_packetRequestCallback->ResendPackets(&nackList[0], length);
}
}
}
// Key frame requests
if (_keyRequestTimer.TimeUntilProcess() == 0)
{
_keyRequestTimer.Processed();
if (_scheduleKeyRequest && _frameTypeCallback != NULL)
{
const int32_t ret = RequestKeyFrame();
if (ret != VCM_OK && returnValue == VCM_OK)
{
returnValue = ret;
}
}
}
return returnValue;
}
int32_t
VideoCodingModuleImpl::Id() const
{
CriticalSectionScoped receiveCs(_receiveCritSect);
{
CriticalSectionScoped sendCs(_sendCritSect);
return _id;
}
}
// Change the unique identifier of this object
int32_t
VideoCodingModuleImpl::ChangeUniqueId(const int32_t id)
{
CriticalSectionScoped receiveCs(_receiveCritSect);
{
CriticalSectionScoped sendCs(_sendCritSect);
_id = id;
return VCM_OK;
}
}
// Returns the number of milliseconds until the module wants a worker thread to
// call Process
int32_t
VideoCodingModuleImpl::TimeUntilNextProcess()
{
uint32_t timeUntilNextProcess = VCM_MIN(
_receiveStatsTimer.TimeUntilProcess(),
_sendStatsTimer.TimeUntilProcess());
if ((_receiver.NackMode() != kNoNack) ||
(_dualReceiver.State() != kPassive))
{
// We need a Process call more often if we are relying on
// retransmissions
timeUntilNextProcess = VCM_MIN(timeUntilNextProcess,
_retransmissionTimer.TimeUntilProcess());
}
timeUntilNextProcess = VCM_MIN(timeUntilNextProcess,
_keyRequestTimer.TimeUntilProcess());
return timeUntilNextProcess;
}
// Get number of supported codecs
uint8_t
VideoCodingModule::NumberOfCodecs()
{
return VCMCodecDataBase::NumberOfCodecs();
}
// Get supported codec with id
int32_t
VideoCodingModule::Codec(uint8_t listId, VideoCodec* codec)
{
if (codec == NULL)
{
return VCM_PARAMETER_ERROR;
}
return VCMCodecDataBase::Codec(listId, codec) ? 0 : -1;
}
// Get supported codec with type
int32_t
VideoCodingModule::Codec(VideoCodecType codecType, VideoCodec* codec)
{
if (codec == NULL)
{
return VCM_PARAMETER_ERROR;
}
return VCMCodecDataBase::Codec(codecType, codec) ? 0 : -1;
}
/*
* Sender
*/
// Reset send side to initial state - all components
int32_t
VideoCodingModuleImpl::InitializeSender()
{
CriticalSectionScoped cs(_sendCritSect);
_codecDataBase.ResetSender();
_encoder = NULL;
_encodedFrameCallback.SetTransportCallback(NULL);
// setting default bitRate and frameRate to 0
_mediaOpt.SetEncodingData(kVideoCodecUnknown, 0, 0, 0, 0, 0, 0);
_mediaOpt.Reset(); // Resetting frame dropper
return VCM_OK;
}
// Register the send codec to be used.
int32_t
VideoCodingModuleImpl::RegisterSendCodec(const VideoCodec* sendCodec,
uint32_t numberOfCores,
uint32_t maxPayloadSize)
{
CriticalSectionScoped cs(_sendCritSect);
if (sendCodec == NULL) {
return VCM_PARAMETER_ERROR;
}
bool ret = _codecDataBase.SetSendCodec(sendCodec, numberOfCores,
maxPayloadSize,
&_encodedFrameCallback);
if (!ret) {
WEBRTC_TRACE(webrtc::kTraceError,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Failed to initialize encoder");
return VCM_CODEC_ERROR;
}
_encoder = _codecDataBase.GetEncoder();
_sendCodecType = sendCodec->codecType;
int numLayers = (_sendCodecType != kVideoCodecVP8) ? 1 :
sendCodec->codecSpecific.VP8.numberOfTemporalLayers;
// If we have screensharing and we have layers, we disable frame dropper.
bool disable_frame_dropper =
numLayers > 1 && sendCodec->mode == kScreensharing;
if (disable_frame_dropper) {
_mediaOpt.EnableFrameDropper(false);
} else if (frame_dropper_enabled_) {
_mediaOpt.EnableFrameDropper(true);
}
_nextFrameTypes.clear();
_nextFrameTypes.resize(VCM_MAX(sendCodec->numberOfSimulcastStreams, 1),
kVideoFrameDelta);
_mediaOpt.SetEncodingData(_sendCodecType,
sendCodec->maxBitrate * 1000,
sendCodec->maxFramerate * 1000,
sendCodec->startBitrate * 1000,
sendCodec->width,
sendCodec->height,
numLayers);
_mediaOpt.SetMtu(maxPayloadSize);
return VCM_OK;
}
// Get current send codec
int32_t
VideoCodingModuleImpl::SendCodec(VideoCodec* currentSendCodec) const
{
CriticalSectionScoped cs(_sendCritSect);
if (currentSendCodec == NULL)
{
return VCM_PARAMETER_ERROR;
}
return _codecDataBase.SendCodec(currentSendCodec) ? 0 : -1;
}
// Get the current send codec type
VideoCodecType
VideoCodingModuleImpl::SendCodec() const
{
CriticalSectionScoped cs(_sendCritSect);
return _codecDataBase.SendCodec();
}
// Register an external decoder object.
// This can not be used together with external decoder callbacks.
int32_t
VideoCodingModuleImpl::RegisterExternalEncoder(VideoEncoder* externalEncoder,
uint8_t payloadType,
bool internalSource /*= false*/)
{
CriticalSectionScoped cs(_sendCritSect);
if (externalEncoder == NULL)
{
bool wasSendCodec = false;
const bool ret = _codecDataBase.DeregisterExternalEncoder(
payloadType, &wasSendCodec);
if (wasSendCodec)
{
// Make sure the VCM doesn't use the de-registered codec
_encoder = NULL;
}
return ret ? 0 : -1;
}
_codecDataBase.RegisterExternalEncoder(externalEncoder, payloadType,
internalSource);
return 0;
}
// Get codec config parameters
int32_t
VideoCodingModuleImpl::CodecConfigParameters(uint8_t* buffer,
int32_t size)
{
CriticalSectionScoped cs(_sendCritSect);
if (_encoder != NULL)
{
return _encoder->CodecConfigParameters(buffer, size);
}
return VCM_UNINITIALIZED;
}
// Get encode bitrate
int VideoCodingModuleImpl::Bitrate(unsigned int* bitrate) const
{
CriticalSectionScoped cs(_sendCritSect);
// return the bit rate which the encoder is set to
if (!_encoder) {
return VCM_UNINITIALIZED;
}
*bitrate = _encoder->BitRate();
return 0;
}
// Get encode frame rate
int VideoCodingModuleImpl::FrameRate(unsigned int* framerate) const
{
CriticalSectionScoped cs(_sendCritSect);
// input frame rate, not compensated
if (!_encoder) {
return VCM_UNINITIALIZED;
}
*framerate = _encoder->FrameRate();
return 0;
}
// Set channel parameters
int32_t
VideoCodingModuleImpl::SetChannelParameters(uint32_t target_bitrate,
uint8_t lossRate,
uint32_t rtt)
{
int32_t ret = 0;
{
CriticalSectionScoped sendCs(_sendCritSect);
uint32_t targetRate = _mediaOpt.SetTargetRates(target_bitrate,
lossRate,
rtt);
if (_encoder != NULL)
{
ret = _encoder->SetChannelParameters(lossRate, rtt);
if (ret < 0 )
{
return ret;
}
ret = (int32_t)_encoder->SetRates(targetRate,
_mediaOpt.InputFrameRate());
if (ret < 0)
{
return ret;
}
}
else
{
return VCM_UNINITIALIZED;
} // encoder
}// send side
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::SetReceiveChannelParameters(uint32_t rtt)
{
CriticalSectionScoped receiveCs(_receiveCritSect);
_receiver.UpdateRtt(rtt);
return 0;
}
// Register a transport callback which will be called to deliver the encoded
// buffers
int32_t
VideoCodingModuleImpl::RegisterTransportCallback(
VCMPacketizationCallback* transport)
{
CriticalSectionScoped cs(_sendCritSect);
_encodedFrameCallback.SetMediaOpt(&_mediaOpt);
_encodedFrameCallback.SetTransportCallback(transport);
return VCM_OK;
}
// Register video output information callback which will be called to deliver
// information about the video stream produced by the encoder, for instance the
// average frame rate and bit rate.
int32_t
VideoCodingModuleImpl::RegisterSendStatisticsCallback(
VCMSendStatisticsCallback* sendStats)
{
CriticalSectionScoped cs(_sendCritSect);
_sendStatsCallback = sendStats;
return VCM_OK;
}
// Register a video quality settings callback which will be called when frame
// rate/dimensions need to be updated for video quality optimization
int32_t
VideoCodingModuleImpl::RegisterVideoQMCallback(
VCMQMSettingsCallback* videoQMSettings)
{
CriticalSectionScoped cs(_sendCritSect);
return _mediaOpt.RegisterVideoQMCallback(videoQMSettings);
}
// Register a video protection callback which will be called to deliver the
// requested FEC rate and NACK status (on/off).
int32_t
VideoCodingModuleImpl::RegisterProtectionCallback(
VCMProtectionCallback* protection)
{
CriticalSectionScoped cs(_sendCritSect);
_mediaOpt.RegisterProtectionCallback(protection);
return VCM_OK;
}
// Enable or disable a video protection method.
// Note: This API should be deprecated, as it does not offer a distinction
// between the protection method and decoding with or without errors. If such a
// behavior is desired, use the following API: SetReceiverRobustnessMode.
int32_t
VideoCodingModuleImpl::SetVideoProtection(VCMVideoProtection videoProtection,
bool enable)
{
// By default, do not decode with errors.
_receiver.SetDecodeWithErrors(false);
// The dual decoder should always be error free.
_dualReceiver.SetDecodeWithErrors(false);
switch (videoProtection)
{
case kProtectionNack:
{
// Both send-side and receive-side
SetVideoProtection(kProtectionNackSender, enable);
SetVideoProtection(kProtectionNackReceiver, enable);
break;
}
case kProtectionNackSender:
{
CriticalSectionScoped cs(_sendCritSect);
_mediaOpt.EnableProtectionMethod(enable, media_optimization::kNack);
break;
}
case kProtectionNackReceiver:
{
CriticalSectionScoped cs(_receiveCritSect);
if (enable)
{
// Enable NACK and always wait for retransmits.
_receiver.SetNackMode(kNack, -1, -1);
}
else
{
_receiver.SetNackMode(kNoNack, -1, -1);
}
break;
}
case kProtectionDualDecoder:
{
CriticalSectionScoped cs(_receiveCritSect);
if (enable)
{
// Enable NACK but don't wait for retransmissions and don't
// add any extra delay.
_receiver.SetNackMode(kNack, 0, 0);
// Enable NACK and always wait for retransmissions and
// compensate with extra delay.
_dualReceiver.SetNackMode(kNack, -1, -1);
_receiver.SetDecodeWithErrors(true);
}
else
{
_dualReceiver.SetNackMode(kNoNack, -1, -1);
}
break;
}
case kProtectionKeyOnLoss:
{
CriticalSectionScoped cs(_receiveCritSect);
if (enable)
{
_keyRequestMode = kKeyOnLoss;
_receiver.SetDecodeWithErrors(true);
}
else if (_keyRequestMode == kKeyOnLoss)
{
_keyRequestMode = kKeyOnError; // default mode
}
else
{
return VCM_PARAMETER_ERROR;
}
break;
}
case kProtectionKeyOnKeyLoss:
{
CriticalSectionScoped cs(_receiveCritSect);
if (enable)
{
_keyRequestMode = kKeyOnKeyLoss;
}
else if (_keyRequestMode == kKeyOnKeyLoss)
{
_keyRequestMode = kKeyOnError; // default mode
}
else
{
return VCM_PARAMETER_ERROR;
}
break;
}
case kProtectionNackFEC:
{
{
// Receive side
CriticalSectionScoped cs(_receiveCritSect);
if (enable)
{
// Enable hybrid NACK/FEC. Always wait for retransmissions
// and don't add extra delay when RTT is above
// kLowRttNackMs.
_receiver.SetNackMode(kNack,
media_optimization::kLowRttNackMs,
-1);
_receiver.SetDecodeWithErrors(false);
_receiver.SetDecodeWithErrors(false);
}
else
{
_receiver.SetNackMode(kNoNack, -1, -1);
}
}
// Send Side
{
CriticalSectionScoped cs(_sendCritSect);
_mediaOpt.EnableProtectionMethod(enable,
media_optimization::kNackFec);
}
break;
}
case kProtectionFEC:
{
CriticalSectionScoped cs(_sendCritSect);
_mediaOpt.EnableProtectionMethod(enable, media_optimization::kFec);
break;
}
case kProtectionPeriodicKeyFrames:
{
CriticalSectionScoped cs(_sendCritSect);
return _codecDataBase.SetPeriodicKeyFrames(enable) ? 0 : -1;
break;
}
}
return VCM_OK;
}
// Add one raw video frame to the encoder, blocking.
int32_t
VideoCodingModuleImpl::AddVideoFrame(const I420VideoFrame& videoFrame,
const VideoContentMetrics* contentMetrics,
const CodecSpecificInfo* codecSpecificInfo)
{
CriticalSectionScoped cs(_sendCritSect);
if (_encoder == NULL)
{
return VCM_UNINITIALIZED;
}
// TODO(holmer): Add support for dropping frames per stream. Currently we
// only have one frame dropper for all streams.
if (_nextFrameTypes[0] == kFrameEmpty)
{
return VCM_OK;
}
_mediaOpt.UpdateIncomingFrameRate();
if (_mediaOpt.DropFrame())
{
WEBRTC_TRACE(webrtc::kTraceStream,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Drop frame due to bitrate");
}
else
{
_mediaOpt.UpdateContentData(contentMetrics);
int32_t ret = _encoder->Encode(videoFrame,
codecSpecificInfo,
_nextFrameTypes);
if (_encoderInputFile != NULL)
{
if (PrintI420VideoFrame(videoFrame, _encoderInputFile) < 0)
{
return -1;
}
}
if (ret < 0)
{
WEBRTC_TRACE(webrtc::kTraceError,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Encode error: %d", ret);
return ret;
}
for (size_t i = 0; i < _nextFrameTypes.size(); ++i) {
_nextFrameTypes[i] = kVideoFrameDelta; // Default frame type.
}
}
return VCM_OK;
}
int32_t VideoCodingModuleImpl::IntraFrameRequest(int stream_index) {
CriticalSectionScoped cs(_sendCritSect);
if (stream_index < 0 ||
static_cast<unsigned int>(stream_index) >= _nextFrameTypes.size()) {
return -1;
}
_nextFrameTypes[stream_index] = kVideoFrameKey;
if (_encoder != NULL && _encoder->InternalSource()) {
// Try to request the frame if we have an external encoder with
// internal source since AddVideoFrame never will be called.
if (_encoder->RequestFrame(_nextFrameTypes) ==
WEBRTC_VIDEO_CODEC_OK) {
_nextFrameTypes[stream_index] = kVideoFrameDelta;
}
}
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::EnableFrameDropper(bool enable)
{
CriticalSectionScoped cs(_sendCritSect);
frame_dropper_enabled_ = enable;
_mediaOpt.EnableFrameDropper(enable);
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::SentFrameCount(VCMFrameCount &frameCount) const
{
CriticalSectionScoped cs(_sendCritSect);
return _mediaOpt.SentFrameCount(frameCount);
}
// Initialize receiver, resets codec database etc
int32_t
VideoCodingModuleImpl::InitializeReceiver()
{
CriticalSectionScoped cs(_receiveCritSect);
int32_t ret = _receiver.Initialize();
if (ret < 0)
{
return ret;
}
ret = _dualReceiver.Initialize();
if (ret < 0)
{
return ret;
}
_codecDataBase.ResetReceiver();
_timing.Reset();
_decoder = NULL;
_decodedFrameCallback.SetUserReceiveCallback(NULL);
_receiverInited = true;
_frameTypeCallback = NULL;
_frameStorageCallback = NULL;
_receiveStatsCallback = NULL;
_packetRequestCallback = NULL;
_keyRequestMode = kKeyOnError;
_scheduleKeyRequest = false;
return VCM_OK;
}
// Register a receive callback. Will be called whenever there is a new frame
// ready for rendering.
int32_t
VideoCodingModuleImpl::RegisterReceiveCallback(
VCMReceiveCallback* receiveCallback)
{
CriticalSectionScoped cs(_receiveCritSect);
_decodedFrameCallback.SetUserReceiveCallback(receiveCallback);
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::RegisterReceiveStatisticsCallback(
VCMReceiveStatisticsCallback* receiveStats)
{
CriticalSectionScoped cs(_receiveCritSect);
_receiveStatsCallback = receiveStats;
return VCM_OK;
}
// Register an externally defined decoder/render object.
// Can be a decoder only or a decoder coupled with a renderer.
int32_t
VideoCodingModuleImpl::RegisterExternalDecoder(VideoDecoder* externalDecoder,
uint8_t payloadType,
bool internalRenderTiming)
{
CriticalSectionScoped cs(_receiveCritSect);
if (externalDecoder == NULL)
{
// Make sure the VCM updates the decoder next time it decodes.
_decoder = NULL;
return _codecDataBase.DeregisterExternalDecoder(payloadType) ? 0 : -1;
}
return _codecDataBase.RegisterExternalDecoder(
externalDecoder, payloadType, internalRenderTiming) ? 0 : -1;
}
// Register a frame type request callback.
int32_t
VideoCodingModuleImpl::RegisterFrameTypeCallback(
VCMFrameTypeCallback* frameTypeCallback)
{
CriticalSectionScoped cs(_receiveCritSect);
_frameTypeCallback = frameTypeCallback;
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::RegisterFrameStorageCallback(
VCMFrameStorageCallback* frameStorageCallback)
{
CriticalSectionScoped cs(_receiveCritSect);
_frameStorageCallback = frameStorageCallback;
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::RegisterPacketRequestCallback(
VCMPacketRequestCallback* callback)
{
CriticalSectionScoped cs(_receiveCritSect);
_packetRequestCallback = callback;
return VCM_OK;
}
int VideoCodingModuleImpl::RegisterRenderBufferSizeCallback(
VCMRenderBufferSizeCallback* callback) {
CriticalSectionScoped cs(_receiveCritSect);
render_buffer_callback_ = callback;
return VCM_OK;
}
// Decode next frame, blocking.
// Should be called as often as possible to get the most out of the decoder.
int32_t
VideoCodingModuleImpl::Decode(uint16_t maxWaitTimeMs)
{
TRACE_EVENT1("webrtc", "VCM::Decode", "max_wait", maxWaitTimeMs);
int64_t nextRenderTimeMs;
{
CriticalSectionScoped cs(_receiveCritSect);
if (!_receiverInited)
{
return VCM_UNINITIALIZED;
}
if (!_codecDataBase.DecoderRegistered())
{
return VCM_NO_CODEC_REGISTERED;
}
}
const bool dualReceiverEnabledNotReceiving =
(_dualReceiver.State() != kReceiving &&
_dualReceiver.NackMode() == kNack);
VCMEncodedFrame* frame = _receiver.FrameForDecoding(
maxWaitTimeMs,
nextRenderTimeMs,
_codecDataBase.SupportsRenderScheduling(),
&_dualReceiver);
if (dualReceiverEnabledNotReceiving && _dualReceiver.State() == kReceiving)
{
// Dual receiver is enabled (kNACK enabled), but was not receiving
// before the call to FrameForDecoding(). After the call the state
// changed to receiving, and therefore we must copy the primary decoder
// state to the dual decoder to make it possible for the dual decoder to
// start decoding retransmitted frames and recover.
CriticalSectionScoped cs(_receiveCritSect);
if (_dualDecoder != NULL)
{
_codecDataBase.ReleaseDecoder(_dualDecoder);
}
_dualDecoder = _codecDataBase.CreateDecoderCopy();
if (_dualDecoder != NULL)
{
_dualDecoder->RegisterDecodeCompleteCallback(
&_dualDecodedFrameCallback);
}
else
{
_dualReceiver.Reset();
}
}
if (frame == NULL)
return VCM_FRAME_NOT_READY;
else
{
CriticalSectionScoped cs(_receiveCritSect);
// If this frame was too late, we should adjust the delay accordingly
_timing.UpdateCurrentDelay(frame->RenderTimeMs(),
clock_->TimeInMilliseconds());
#ifdef DEBUG_DECODER_BIT_STREAM
if (_bitStreamBeforeDecoder != NULL)
{
// Write bit stream to file for debugging purposes
if (fwrite(frame->Buffer(), 1, frame->Length(),
_bitStreamBeforeDecoder) != frame->Length()) {
return -1;
}
}
#endif
if (_frameStorageCallback != NULL)
{
int32_t ret = frame->Store(*_frameStorageCallback);
if (ret < 0)
{
return ret;
}
}
const int32_t ret = Decode(*frame);
_receiver.ReleaseFrame(frame);
frame = NULL;
if (ret != VCM_OK)
{
return ret;
}
}
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::RequestSliceLossIndication(
const uint64_t pictureID) const
{
TRACE_EVENT1("webrtc", "RequestSLI", "picture_id", pictureID);
if (_frameTypeCallback != NULL)
{
const int32_t ret =
_frameTypeCallback->SliceLossIndicationRequest(pictureID);
if (ret < 0)
{
WEBRTC_TRACE(webrtc::kTraceError,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Failed to request key frame");
return ret;
}
} else
{
WEBRTC_TRACE(webrtc::kTraceWarning,
webrtc::kTraceVideoCoding,
VCMId(_id),
"No frame type request callback registered");
return VCM_MISSING_CALLBACK;
}
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::RequestKeyFrame()
{
TRACE_EVENT0("webrtc", "RequestKeyFrame");
if (_frameTypeCallback != NULL)
{
const int32_t ret = _frameTypeCallback->RequestKeyFrame();
if (ret < 0)
{
WEBRTC_TRACE(webrtc::kTraceError,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Failed to request key frame");
return ret;
}
_scheduleKeyRequest = false;
}
else
{
WEBRTC_TRACE(webrtc::kTraceWarning,
webrtc::kTraceVideoCoding,
VCMId(_id),
"No frame type request callback registered");
return VCM_MISSING_CALLBACK;
}
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::DecodeDualFrame(uint16_t maxWaitTimeMs)
{
CriticalSectionScoped cs(_receiveCritSect);
if (_dualReceiver.State() != kReceiving ||
_dualReceiver.NackMode() != kNack)
{
// The dual receiver is currently not receiving or
// dual decoder mode is disabled.
return VCM_OK;
}
int64_t dummyRenderTime;
int32_t decodeCount = 0;
// The dual decoder's state is copied from the main decoder, which may
// decode with errors. Make sure that the dual decoder does not introduce
// error.
_dualReceiver.SetDecodeWithErrors(false);
VCMEncodedFrame* dualFrame = _dualReceiver.FrameForDecoding(
maxWaitTimeMs,
dummyRenderTime);
if (dualFrame != NULL && _dualDecoder != NULL)
{
WEBRTC_TRACE(webrtc::kTraceStream,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Decoding frame %u with dual decoder",
dualFrame->TimeStamp());
// Decode dualFrame and try to catch up
int32_t ret = _dualDecoder->Decode(*dualFrame,
clock_->TimeInMilliseconds());
if (ret != WEBRTC_VIDEO_CODEC_OK)
{
WEBRTC_TRACE(webrtc::kTraceWarning,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Failed to decode frame with dual decoder");
_dualReceiver.ReleaseFrame(dualFrame);
return VCM_CODEC_ERROR;
}
if (_receiver.DualDecoderCaughtUp(dualFrame, _dualReceiver))
{
// Copy the complete decoder state of the dual decoder
// to the primary decoder.
WEBRTC_TRACE(webrtc::kTraceStream,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Dual decoder caught up");
_codecDataBase.CopyDecoder(*_dualDecoder);
_codecDataBase.ReleaseDecoder(_dualDecoder);
_dualDecoder = NULL;
}
decodeCount++;
}
_dualReceiver.ReleaseFrame(dualFrame);
return decodeCount;
}
// Must be called from inside the receive side critical section.
int32_t
VideoCodingModuleImpl::Decode(const VCMEncodedFrame& frame)
{
TRACE_EVENT2("webrtc", "Decode",
"timestamp", frame.TimeStamp(),
"type", frame.FrameType());
// Change decoder if payload type has changed
const bool renderTimingBefore = _codecDataBase.SupportsRenderScheduling();
_decoder = _codecDataBase.GetDecoder(frame.PayloadType(),
&_decodedFrameCallback);
if (renderTimingBefore != _codecDataBase.SupportsRenderScheduling())
{
// Make sure we reset the decode time estimate since it will
// be zero for codecs without render timing.
_timing.ResetDecodeTime();
}
if (_decoder == NULL)
{
return VCM_NO_CODEC_REGISTERED;
}
// Decode a frame
int32_t ret = _decoder->Decode(frame, clock_->TimeInMilliseconds());
// Check for failed decoding, run frame type request callback if needed.
if (ret < 0)
{
if (ret == VCM_ERROR_REQUEST_SLI)
{
return RequestSliceLossIndication(
_decodedFrameCallback.LastReceivedPictureID() + 1);
}
else
{
WEBRTC_TRACE(webrtc::kTraceError,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Failed to decode frame %u, requesting key frame",
frame.TimeStamp());
ret = RequestKeyFrame();
}
}
else if (ret == VCM_REQUEST_SLI)
{
ret = RequestSliceLossIndication(
_decodedFrameCallback.LastReceivedPictureID() + 1);
}
if (!frame.Complete() || frame.MissingFrame())
{
switch (_keyRequestMode)
{
case kKeyOnKeyLoss:
{
if (frame.FrameType() == kVideoFrameKey)
{
_scheduleKeyRequest = true;
return VCM_OK;
}
break;
}
case kKeyOnLoss:
{
_scheduleKeyRequest = true;
return VCM_OK;
}
default:
break;
}
}
return ret;
}
int32_t
VideoCodingModuleImpl::DecodeFromStorage(
const EncodedVideoData& frameFromStorage)
{
CriticalSectionScoped cs(_receiveCritSect);
int32_t ret = _frameFromFile.ExtractFromStorage(frameFromStorage);
if (ret < 0)
{
return ret;
}
return Decode(_frameFromFile);
}
// Reset the decoder state
int32_t
VideoCodingModuleImpl::ResetDecoder()
{
CriticalSectionScoped cs(_receiveCritSect);
if (_decoder != NULL)
{
_receiver.Initialize();
_timing.Reset();
_scheduleKeyRequest = false;
_decoder->Reset();
}
if (_dualReceiver.State() != kPassive)
{
_dualReceiver.Initialize();
}
if (_dualDecoder != NULL)
{
_codecDataBase.ReleaseDecoder(_dualDecoder);
_dualDecoder = NULL;
}
return VCM_OK;
}
// Register possible receive codecs, can be called multiple times
int32_t
VideoCodingModuleImpl::RegisterReceiveCodec(const VideoCodec* receiveCodec,
int32_t numberOfCores,
bool requireKeyFrame)
{
CriticalSectionScoped cs(_receiveCritSect);
if (receiveCodec == NULL)
{
return VCM_PARAMETER_ERROR;
}
if (!_codecDataBase.RegisterReceiveCodec(receiveCodec, numberOfCores,
requireKeyFrame)) {
return -1;
}
return 0;
}
// Get current received codec
int32_t
VideoCodingModuleImpl::ReceiveCodec(VideoCodec* currentReceiveCodec) const
{
CriticalSectionScoped cs(_receiveCritSect);
if (currentReceiveCodec == NULL)
{
return VCM_PARAMETER_ERROR;
}
return _codecDataBase.ReceiveCodec(currentReceiveCodec) ? 0 : -1;
}
// Get current received codec
VideoCodecType
VideoCodingModuleImpl::ReceiveCodec() const
{
CriticalSectionScoped cs(_receiveCritSect);
return _codecDataBase.ReceiveCodec();
}
// Incoming packet from network parsed and ready for decode, non blocking.
int32_t
VideoCodingModuleImpl::IncomingPacket(const uint8_t* incomingPayload,
uint32_t payloadLength,
const WebRtcRTPHeader& rtpInfo)
{
if (rtpInfo.frameType == kVideoFrameKey) {
TRACE_EVENT1("webrtc", "VCM::PacketKeyFrame",
"seqnum", rtpInfo.header.sequenceNumber);
} else {
TRACE_EVENT2("webrtc", "VCM::Packet",
"seqnum", rtpInfo.header.sequenceNumber,
"type", rtpInfo.frameType);
}
if (incomingPayload == NULL) {
// The jitter buffer doesn't handle non-zero payload lengths for packets
// without payload.
// TODO(holmer): We should fix this in the jitter buffer.
payloadLength = 0;
}
const VCMPacket packet(incomingPayload, payloadLength, rtpInfo);
int32_t ret;
if (_dualReceiver.State() != kPassive)
{
ret = _dualReceiver.InsertPacket(packet,
rtpInfo.type.Video.width,
rtpInfo.type.Video.height);
if (ret == VCM_FLUSH_INDICATOR) {
RequestKeyFrame();
ResetDecoder();
} else if (ret < 0) {
return ret;
}
}
ret = _receiver.InsertPacket(packet,
rtpInfo.type.Video.width,
rtpInfo.type.Video.height);
// TODO(holmer): Investigate if this somehow should use the key frame
// request scheduling to throttle the requests.
if (ret == VCM_FLUSH_INDICATOR) {
RequestKeyFrame();
ResetDecoder();
} else if (ret < 0) {
return ret;
}
return VCM_OK;
}
// Minimum playout delay (used for lip-sync). This is the minimum delay required
// to sync with audio. Not included in VideoCodingModule::Delay()
// Defaults to 0 ms.
int32_t
VideoCodingModuleImpl::SetMinimumPlayoutDelay(uint32_t minPlayoutDelayMs)
{
_timing.set_min_playout_delay(minPlayoutDelayMs);
return VCM_OK;
}
// The estimated delay caused by rendering, defaults to
// kDefaultRenderDelayMs = 10 ms
int32_t
VideoCodingModuleImpl::SetRenderDelay(uint32_t timeMS)
{
_timing.set_render_delay(timeMS);
return VCM_OK;
}
// Current video delay
int32_t
VideoCodingModuleImpl::Delay() const
{
return _timing.TargetVideoDelay();
}
// Nack list
int32_t
VideoCodingModuleImpl::NackList(uint16_t* nackList, uint16_t& size)
{
VCMNackStatus nackStatus = kNackOk;
uint16_t nack_list_length = 0;
// Collect sequence numbers from the default receiver
// if in normal nack mode. Otherwise collect them from
// the dual receiver if the dual receiver is receiving.
if (_receiver.NackMode() != kNoNack)
{
nackStatus = _receiver.NackList(nackList, size, &nack_list_length);
}
if (nack_list_length == 0 && _dualReceiver.State() != kPassive)
{
nackStatus = _dualReceiver.NackList(nackList, size, &nack_list_length);
}
size = nack_list_length;
switch (nackStatus)
{
case kNackNeedMoreMemory:
{
WEBRTC_TRACE(webrtc::kTraceError,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Out of memory");
return VCM_MEMORY;
}
case kNackKeyFrameRequest:
{
CriticalSectionScoped cs(_receiveCritSect);
WEBRTC_TRACE(webrtc::kTraceWarning,
webrtc::kTraceVideoCoding,
VCMId(_id),
"Failed to get NACK list, requesting key frame");
return RequestKeyFrame();
}
default:
break;
}
return VCM_OK;
}
int32_t
VideoCodingModuleImpl::ReceivedFrameCount(VCMFrameCount& frameCount) const
{
_receiver.ReceivedFrameCount(&frameCount);
return VCM_OK;
}
uint32_t VideoCodingModuleImpl::DiscardedPackets() const {
return _receiver.DiscardedPackets();
}
int VideoCodingModuleImpl::SetSenderNackMode(SenderNackMode mode) {
CriticalSectionScoped cs(_sendCritSect);
switch (mode) {
case kNackNone:
_mediaOpt.EnableProtectionMethod(false, media_optimization::kNack);
break;
case kNackAll:
_mediaOpt.EnableProtectionMethod(true, media_optimization::kNack);
break;
case kNackSelective:
return VCM_NOT_IMPLEMENTED;
break;
}
return VCM_OK;
}
int VideoCodingModuleImpl::SetSenderReferenceSelection(bool enable) {
return VCM_NOT_IMPLEMENTED;
}
int VideoCodingModuleImpl::SetSenderFEC(bool enable) {
CriticalSectionScoped cs(_sendCritSect);
_mediaOpt.EnableProtectionMethod(enable, media_optimization::kFec);
return VCM_OK;
}
int VideoCodingModuleImpl::SetSenderKeyFramePeriod(int periodMs) {
return VCM_NOT_IMPLEMENTED;
}
int VideoCodingModuleImpl::SetReceiverRobustnessMode(
ReceiverRobustness robustnessMode,
DecodeErrors errorMode) {
CriticalSectionScoped cs(_receiveCritSect);
switch (robustnessMode) {
case kNone:
_receiver.SetNackMode(kNoNack, -1, -1);
_dualReceiver.SetNackMode(kNoNack, -1, -1);
if (errorMode == kNoDecodeErrors) {
_keyRequestMode = kKeyOnLoss;
} else {
_keyRequestMode = kKeyOnError;
}
break;
case kHardNack:
if (errorMode == kAllowDecodeErrors) {
return VCM_PARAMETER_ERROR;
}
// Always wait for retransmissions.
_receiver.SetNackMode(kNack, -1, -1);
_dualReceiver.SetNackMode(kNoNack, -1, -1);
_keyRequestMode = kKeyOnError; // TODO(hlundin): On long NACK list?
break;
case kSoftNack:
assert(false); // TODO(hlundin): Not completed.
return VCM_NOT_IMPLEMENTED;
// Enable hybrid NACK/FEC. Always wait for retransmissions and don't add
// extra delay when RTT is above kLowRttNackMs.
_receiver.SetNackMode(kNack, media_optimization::kLowRttNackMs, -1);
_dualReceiver.SetNackMode(kNoNack, -1, -1);
_keyRequestMode = kKeyOnError;
break;
case kDualDecoder:
if (errorMode == kNoDecodeErrors) {
return VCM_PARAMETER_ERROR;
}
// Enable NACK but don't wait for retransmissions and don't add any extra
// delay.
_receiver.SetNackMode(kNack, 0, 0);
// Enable NACK, compensate with extra delay and wait for retransmissions.
_dualReceiver.SetNackMode(kNack, -1, -1);
_keyRequestMode = kKeyOnError;
break;
case kReferenceSelection:
assert(false); // TODO(hlundin): Not completed.
return VCM_NOT_IMPLEMENTED;
if (errorMode == kNoDecodeErrors) {
return VCM_PARAMETER_ERROR;
}
_receiver.SetNackMode(kNoNack, -1, -1);
_dualReceiver.SetNackMode(kNoNack, -1, -1);
break;
}
_receiver.SetDecodeWithErrors(errorMode == kAllowDecodeErrors);
// The dual decoder should never decode with errors.
_dualReceiver.SetDecodeWithErrors(false);
return VCM_OK;
}
void VideoCodingModuleImpl::SetNackSettings(size_t max_nack_list_size,
int max_packet_age_to_nack,
int max_incomplete_time_ms) {
if (max_nack_list_size != 0) {
CriticalSectionScoped cs(_receiveCritSect);
max_nack_list_size_ = max_nack_list_size;
}
_receiver.SetNackSettings(max_nack_list_size, max_packet_age_to_nack,
max_incomplete_time_ms);
_dualReceiver.SetNackSettings(max_nack_list_size, max_packet_age_to_nack,
max_incomplete_time_ms);
}
int VideoCodingModuleImpl::SetMinReceiverDelay(int desired_delay_ms) {
return _receiver.SetMinReceiverDelay(desired_delay_ms);
}
int VideoCodingModuleImpl::StartDebugRecording(const char* file_name_utf8) {
CriticalSectionScoped cs(_sendCritSect);
_encoderInputFile = fopen(file_name_utf8, "wb");
if (_encoderInputFile == NULL)
return VCM_GENERAL_ERROR;
return VCM_OK;
}
int VideoCodingModuleImpl::StopDebugRecording(){
CriticalSectionScoped cs(_sendCritSect);
if (_encoderInputFile != NULL) {
fclose(_encoderInputFile);
_encoderInputFile = NULL;
}
return VCM_OK;
}
} // namespace webrtc