blob: 96cea176ff983ecd003e6e95bc7103dce4b99388 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/video_engine/overuse_frame_detector.h"
#include <algorithm>
#include <assert.h>
#include <math.h>
#include "webrtc/modules/video_coding/utility/include/exp_filter.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/trace.h"
#include "webrtc/video_engine/include/vie_base.h"
namespace webrtc {
// TODO(mflodman) Test different values for all of these to trigger correctly,
// avoid fluctuations etc.
namespace {
const int64_t kProcessIntervalMs = 5000;
// Consecutive checks above threshold to trigger overuse.
const int kConsecutiveChecksAboveThreshold = 2;
// Minimum samples required to perform a check.
const size_t kMinFrameSampleCount = 15;
// Weight factor to apply to the standard deviation.
const float kWeightFactor = 0.997f;
// Weight factor to apply to the average.
const float kWeightFactorMean = 0.98f;
// Delay between consecutive rampups. (Used for quick recovery.)
const int kQuickRampUpDelayMs = 10 * 1000;
// Delay between rampup attempts. Initially uses standard, scales up to max.
const int kStandardRampUpDelayMs = 30 * 1000;
const int kMaxRampUpDelayMs = 120 * 1000;
// Expontential back-off factor, to prevent annoying up-down behaviour.
const double kRampUpBackoffFactor = 2.0;
} // namespace
Statistics::Statistics() :
sum_(0.0),
count_(0),
filtered_samples_(new VCMExpFilter(kWeightFactorMean)),
filtered_variance_(new VCMExpFilter(kWeightFactor)) {
}
void Statistics::Reset() {
sum_ = 0.0;
count_ = 0;
}
void Statistics::AddSample(float sample_ms) {
sum_ += sample_ms;
++count_;
if (count_ < kMinFrameSampleCount) {
// Initialize filtered samples.
filtered_samples_->Reset(kWeightFactorMean);
filtered_samples_->Apply(1.0f, InitialMean());
filtered_variance_->Reset(kWeightFactor);
filtered_variance_->Apply(1.0f, InitialVariance());
return;
}
float exp = sample_ms/33.0f;
exp = std::min(exp, 7.0f);
filtered_samples_->Apply(exp, sample_ms);
filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->Value()) *
(sample_ms - filtered_samples_->Value()));
}
float Statistics::InitialMean() const {
if (count_ == 0)
return 0.0;
return sum_ / count_;
}
float Statistics::InitialVariance() const {
// Start in between the underuse and overuse threshold.
float average_stddev = (kNormalUseStdDevMs + kOveruseStdDevMs)/2.0f;
return average_stddev * average_stddev;
}
float Statistics::Mean() const { return filtered_samples_->Value(); }
float Statistics::StdDev() const {
return sqrt(std::max(filtered_variance_->Value(), 0.0f));
}
uint64_t Statistics::Count() const { return count_; }
OveruseFrameDetector::OveruseFrameDetector(Clock* clock,
float normaluse_stddev_ms,
float overuse_stddev_ms)
: crit_(CriticalSectionWrapper::CreateCriticalSection()),
normaluse_stddev_ms_(normaluse_stddev_ms),
overuse_stddev_ms_(overuse_stddev_ms),
observer_(NULL),
clock_(clock),
next_process_time_(clock_->TimeInMilliseconds()),
last_capture_time_(0),
last_overuse_time_(0),
checks_above_threshold_(0),
last_rampup_time_(0),
in_quick_rampup_(false),
current_rampup_delay_ms_(kStandardRampUpDelayMs),
num_pixels_(0) {}
OveruseFrameDetector::~OveruseFrameDetector() {
}
void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) {
CriticalSectionScoped cs(crit_.get());
observer_ = observer;
}
void OveruseFrameDetector::FrameCaptured(int width, int height) {
CriticalSectionScoped cs(crit_.get());
int num_pixels = width * height;
if (num_pixels != num_pixels_) {
// Frame size changed, reset statistics.
num_pixels_ = num_pixels;
capture_deltas_.Reset();
last_capture_time_ = 0;
}
int64_t time = clock_->TimeInMilliseconds();
if (last_capture_time_ != 0) {
capture_deltas_.AddSample(time - last_capture_time_);
}
last_capture_time_ = time;
}
int32_t OveruseFrameDetector::TimeUntilNextProcess() {
CriticalSectionScoped cs(crit_.get());
return next_process_time_ - clock_->TimeInMilliseconds();
}
int32_t OveruseFrameDetector::Process() {
CriticalSectionScoped cs(crit_.get());
int64_t now = clock_->TimeInMilliseconds();
// Used to protect against Process() being called too often.
if (now < next_process_time_)
return 0;
next_process_time_ = now + kProcessIntervalMs;
// Don't trigger overuse unless we've seen a certain number of frames.
if (capture_deltas_.Count() < kMinFrameSampleCount)
return 0;
if (IsOverusing()) {
// If the last thing we did was going up, and now have to back down, we need
// to check if this peak was short. If so we should back off to avoid going
// back and forth between this load, the system doesn't seem to handle it.
bool check_for_backoff = last_rampup_time_ > last_overuse_time_;
if (check_for_backoff) {
if (now - last_rampup_time_ < kStandardRampUpDelayMs) {
// Going up was not ok for very long, back off.
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
} else {
// Not currently backing off, reset rampup delay.
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
}
}
last_overuse_time_ = now;
in_quick_rampup_ = false;
checks_above_threshold_ = 0;
if (observer_ != NULL)
observer_->OveruseDetected();
} else if (IsUnderusing(now)) {
last_rampup_time_ = now;
in_quick_rampup_ = true;
if (observer_ != NULL)
observer_->NormalUsage();
}
WEBRTC_TRACE(
webrtc::kTraceInfo,
webrtc::kTraceVideo,
-1,
"Capture input stats: avg: %.2fms, std_dev: %.2fms (rampup delay: "
"%dms, overuse: >=%.2fms, "
"underuse: <%.2fms)",
capture_deltas_.Mean(),
capture_deltas_.StdDev(),
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_,
overuse_stddev_ms_,
normaluse_stddev_ms_);
return 0;
}
bool OveruseFrameDetector::IsOverusing() {
if (capture_deltas_.StdDev() >= overuse_stddev_ms_) {
++checks_above_threshold_;
} else {
checks_above_threshold_ = 0;
}
return checks_above_threshold_ >= kConsecutiveChecksAboveThreshold;
}
bool OveruseFrameDetector::IsUnderusing(int64_t time_now) {
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
if (time_now < last_rampup_time_ + delay)
return false;
return capture_deltas_.StdDev() < normaluse_stddev_ms_;
}
} // namespace webrtc