blob: cff5e4dcb5fc678231eed2945db99eed48d6c6e3 [file] [log] [blame]
henrike@webrtc.orgf7795df2014-05-13 18:00:26 +00001/*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#if defined(_MSC_VER) && _MSC_VER < 1300
12#pragma warning(disable:4786)
13#endif
14
15#include <assert.h>
16
17#if defined(WEBRTC_POSIX)
18#include <string.h>
19#include <errno.h>
20#include <fcntl.h>
21#include <sys/time.h>
22#include <sys/select.h>
23#include <unistd.h>
24#include <signal.h>
25#endif
26
27#if defined(WEBRTC_WIN)
28#define WIN32_LEAN_AND_MEAN
29#include <windows.h>
30#include <winsock2.h>
31#include <ws2tcpip.h>
32#undef SetPort
33#endif
34
35#include <algorithm>
36#include <map>
37
38#include "webrtc/base/basictypes.h"
39#include "webrtc/base/byteorder.h"
40#include "webrtc/base/common.h"
41#include "webrtc/base/logging.h"
42#include "webrtc/base/nethelpers.h"
43#include "webrtc/base/physicalsocketserver.h"
44#include "webrtc/base/timeutils.h"
45#include "webrtc/base/winping.h"
46#include "webrtc/base/win32socketinit.h"
47
48// stm: this will tell us if we are on OSX
49#ifdef HAVE_CONFIG_H
50#include "config.h"
51#endif
52
53#if defined(WEBRTC_POSIX)
54#include <netinet/tcp.h> // for TCP_NODELAY
55#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
56typedef void* SockOptArg;
57#endif // WEBRTC_POSIX
58
59#if defined(WEBRTC_WIN)
60typedef char* SockOptArg;
61#endif
62
63namespace rtc {
64
65#if defined(WEBRTC_WIN)
66// Standard MTUs, from RFC 1191
67const uint16 PACKET_MAXIMUMS[] = {
68 65535, // Theoretical maximum, Hyperchannel
69 32000, // Nothing
70 17914, // 16Mb IBM Token Ring
71 8166, // IEEE 802.4
72 //4464, // IEEE 802.5 (4Mb max)
73 4352, // FDDI
74 //2048, // Wideband Network
75 2002, // IEEE 802.5 (4Mb recommended)
76 //1536, // Expermental Ethernet Networks
77 //1500, // Ethernet, Point-to-Point (default)
78 1492, // IEEE 802.3
79 1006, // SLIP, ARPANET
80 //576, // X.25 Networks
81 //544, // DEC IP Portal
82 //512, // NETBIOS
83 508, // IEEE 802/Source-Rt Bridge, ARCNET
84 296, // Point-to-Point (low delay)
85 68, // Official minimum
86 0, // End of list marker
87};
88
89static const int IP_HEADER_SIZE = 20u;
90static const int IPV6_HEADER_SIZE = 40u;
91static const int ICMP_HEADER_SIZE = 8u;
92static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
93#endif
94
95class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> {
96 public:
97 PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
98 : ss_(ss), s_(s), enabled_events_(0), error_(0),
99 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
100 resolver_(NULL) {
101#if defined(WEBRTC_WIN)
102 // EnsureWinsockInit() ensures that winsock is initialized. The default
103 // version of this function doesn't do anything because winsock is
104 // initialized by constructor of a static object. If neccessary libjingle
105 // users can link it with a different version of this function by replacing
106 // win32socketinit.cc. See win32socketinit.cc for more details.
107 EnsureWinsockInit();
108#endif
109 if (s_ != INVALID_SOCKET) {
110 enabled_events_ = DE_READ | DE_WRITE;
111
112 int type = SOCK_STREAM;
113 socklen_t len = sizeof(type);
114 VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
115 udp_ = (SOCK_DGRAM == type);
116 }
117 }
118
119 virtual ~PhysicalSocket() {
120 Close();
121 }
122
123 // Creates the underlying OS socket (same as the "socket" function).
124 virtual bool Create(int family, int type) {
125 Close();
126 s_ = ::socket(family, type, 0);
127 udp_ = (SOCK_DGRAM == type);
128 UpdateLastError();
129 if (udp_)
130 enabled_events_ = DE_READ | DE_WRITE;
131 return s_ != INVALID_SOCKET;
132 }
133
134 SocketAddress GetLocalAddress() const {
135 sockaddr_storage addr_storage = {0};
136 socklen_t addrlen = sizeof(addr_storage);
137 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
138 int result = ::getsockname(s_, addr, &addrlen);
139 SocketAddress address;
140 if (result >= 0) {
141 SocketAddressFromSockAddrStorage(addr_storage, &address);
142 } else {
143 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
144 << s_;
145 }
146 return address;
147 }
148
149 SocketAddress GetRemoteAddress() const {
150 sockaddr_storage addr_storage = {0};
151 socklen_t addrlen = sizeof(addr_storage);
152 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
153 int result = ::getpeername(s_, addr, &addrlen);
154 SocketAddress address;
155 if (result >= 0) {
156 SocketAddressFromSockAddrStorage(addr_storage, &address);
157 } else {
158 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
159 << s_;
160 }
161 return address;
162 }
163
164 int Bind(const SocketAddress& bind_addr) {
165 sockaddr_storage addr_storage;
166 size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
167 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
168 int err = ::bind(s_, addr, static_cast<int>(len));
169 UpdateLastError();
170#ifdef _DEBUG
171 if (0 == err) {
172 dbg_addr_ = "Bound @ ";
173 dbg_addr_.append(GetLocalAddress().ToString());
174 }
175#endif // _DEBUG
176 return err;
177 }
178
179 int Connect(const SocketAddress& addr) {
180 // TODO: Implicit creation is required to reconnect...
181 // ...but should we make it more explicit?
182 if (state_ != CS_CLOSED) {
183 SetError(EALREADY);
184 return SOCKET_ERROR;
185 }
186 if (addr.IsUnresolved()) {
187 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
188 resolver_ = new AsyncResolver();
189 resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
190 resolver_->Start(addr);
191 state_ = CS_CONNECTING;
192 return 0;
193 }
194
195 return DoConnect(addr);
196 }
197
198 int DoConnect(const SocketAddress& connect_addr) {
199 if ((s_ == INVALID_SOCKET) &&
200 !Create(connect_addr.family(), SOCK_STREAM)) {
201 return SOCKET_ERROR;
202 }
203 sockaddr_storage addr_storage;
204 size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
205 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
206 int err = ::connect(s_, addr, static_cast<int>(len));
207 UpdateLastError();
208 if (err == 0) {
209 state_ = CS_CONNECTED;
210 } else if (IsBlockingError(GetError())) {
211 state_ = CS_CONNECTING;
212 enabled_events_ |= DE_CONNECT;
213 } else {
214 return SOCKET_ERROR;
215 }
216
217 enabled_events_ |= DE_READ | DE_WRITE;
218 return 0;
219 }
220
221 int GetError() const {
222 CritScope cs(&crit_);
223 return error_;
224 }
225
226 void SetError(int error) {
227 CritScope cs(&crit_);
228 error_ = error;
229 }
230
231 ConnState GetState() const {
232 return state_;
233 }
234
235 int GetOption(Option opt, int* value) {
236 int slevel;
237 int sopt;
238 if (TranslateOption(opt, &slevel, &sopt) == -1)
239 return -1;
240 socklen_t optlen = sizeof(*value);
241 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
242 if (ret != -1 && opt == OPT_DONTFRAGMENT) {
243#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
244 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
245#endif
246 }
247 return ret;
248 }
249
250 int SetOption(Option opt, int value) {
251 int slevel;
252 int sopt;
253 if (TranslateOption(opt, &slevel, &sopt) == -1)
254 return -1;
255 if (opt == OPT_DONTFRAGMENT) {
256#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
257 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
258#endif
259 }
260 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
261 }
262
263 int Send(const void *pv, size_t cb) {
264 int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
265#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
266 // Suppress SIGPIPE. Without this, attempting to send on a socket whose
267 // other end is closed will result in a SIGPIPE signal being raised to
268 // our process, which by default will terminate the process, which we
269 // don't want. By specifying this flag, we'll just get the error EPIPE
270 // instead and can handle the error gracefully.
271 MSG_NOSIGNAL
272#else
273 0
274#endif
275 );
276 UpdateLastError();
277 MaybeRemapSendError();
278 // We have seen minidumps where this may be false.
279 ASSERT(sent <= static_cast<int>(cb));
280 if ((sent < 0) && IsBlockingError(GetError())) {
281 enabled_events_ |= DE_WRITE;
282 }
283 return sent;
284 }
285
286 int SendTo(const void* buffer, size_t length, const SocketAddress& addr) {
287 sockaddr_storage saddr;
288 size_t len = addr.ToSockAddrStorage(&saddr);
289 int sent = ::sendto(
290 s_, static_cast<const char *>(buffer), static_cast<int>(length),
291#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
292 // Suppress SIGPIPE. See above for explanation.
293 MSG_NOSIGNAL,
294#else
295 0,
296#endif
297 reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
298 UpdateLastError();
299 MaybeRemapSendError();
300 // We have seen minidumps where this may be false.
301 ASSERT(sent <= static_cast<int>(length));
302 if ((sent < 0) && IsBlockingError(GetError())) {
303 enabled_events_ |= DE_WRITE;
304 }
305 return sent;
306 }
307
308 int Recv(void* buffer, size_t length) {
309 int received = ::recv(s_, static_cast<char*>(buffer),
310 static_cast<int>(length), 0);
311 if ((received == 0) && (length != 0)) {
312 // Note: on graceful shutdown, recv can return 0. In this case, we
313 // pretend it is blocking, and then signal close, so that simplifying
314 // assumptions can be made about Recv.
315 LOG(LS_WARNING) << "EOF from socket; deferring close event";
316 // Must turn this back on so that the select() loop will notice the close
317 // event.
318 enabled_events_ |= DE_READ;
319 SetError(EWOULDBLOCK);
320 return SOCKET_ERROR;
321 }
322 UpdateLastError();
323 int error = GetError();
324 bool success = (received >= 0) || IsBlockingError(error);
325 if (udp_ || success) {
326 enabled_events_ |= DE_READ;
327 }
328 if (!success) {
329 LOG_F(LS_VERBOSE) << "Error = " << error;
330 }
331 return received;
332 }
333
334 int RecvFrom(void* buffer, size_t length, SocketAddress *out_addr) {
335 sockaddr_storage addr_storage;
336 socklen_t addr_len = sizeof(addr_storage);
337 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
338 int received = ::recvfrom(s_, static_cast<char*>(buffer),
339 static_cast<int>(length), 0, addr, &addr_len);
340 UpdateLastError();
341 if ((received >= 0) && (out_addr != NULL))
342 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
343 int error = GetError();
344 bool success = (received >= 0) || IsBlockingError(error);
345 if (udp_ || success) {
346 enabled_events_ |= DE_READ;
347 }
348 if (!success) {
349 LOG_F(LS_VERBOSE) << "Error = " << error;
350 }
351 return received;
352 }
353
354 int Listen(int backlog) {
355 int err = ::listen(s_, backlog);
356 UpdateLastError();
357 if (err == 0) {
358 state_ = CS_CONNECTING;
359 enabled_events_ |= DE_ACCEPT;
360#ifdef _DEBUG
361 dbg_addr_ = "Listening @ ";
362 dbg_addr_.append(GetLocalAddress().ToString());
363#endif // _DEBUG
364 }
365 return err;
366 }
367
368 AsyncSocket* Accept(SocketAddress *out_addr) {
369 sockaddr_storage addr_storage;
370 socklen_t addr_len = sizeof(addr_storage);
371 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
372 SOCKET s = ::accept(s_, addr, &addr_len);
373 UpdateLastError();
374 if (s == INVALID_SOCKET)
375 return NULL;
376 enabled_events_ |= DE_ACCEPT;
377 if (out_addr != NULL)
378 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
379 return ss_->WrapSocket(s);
380 }
381
382 int Close() {
383 if (s_ == INVALID_SOCKET)
384 return 0;
385 int err = ::closesocket(s_);
386 UpdateLastError();
387 s_ = INVALID_SOCKET;
388 state_ = CS_CLOSED;
389 enabled_events_ = 0;
390 if (resolver_) {
391 resolver_->Destroy(false);
392 resolver_ = NULL;
393 }
394 return err;
395 }
396
397 int EstimateMTU(uint16* mtu) {
398 SocketAddress addr = GetRemoteAddress();
399 if (addr.IsAny()) {
400 SetError(ENOTCONN);
401 return -1;
402 }
403
404#if defined(WEBRTC_WIN)
405 // Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
406 WinPing ping;
407 if (!ping.IsValid()) {
408 SetError(EINVAL); // can't think of a better error ID
409 return -1;
410 }
411 int header_size = ICMP_HEADER_SIZE;
412 if (addr.family() == AF_INET6) {
413 header_size += IPV6_HEADER_SIZE;
414 } else if (addr.family() == AF_INET) {
415 header_size += IP_HEADER_SIZE;
416 }
417
418 for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
419 int32 size = PACKET_MAXIMUMS[level] - header_size;
420 WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
421 ICMP_PING_TIMEOUT_MILLIS,
422 1, false);
423 if (result == WinPing::PING_FAIL) {
424 SetError(EINVAL); // can't think of a better error ID
425 return -1;
426 } else if (result != WinPing::PING_TOO_LARGE) {
427 *mtu = PACKET_MAXIMUMS[level];
428 return 0;
429 }
430 }
431
432 ASSERT(false);
433 return -1;
434#elif defined(WEBRTC_MAC)
435 // No simple way to do this on Mac OS X.
436 // SIOCGIFMTU would work if we knew which interface would be used, but
437 // figuring that out is pretty complicated. For now we'll return an error
438 // and let the caller pick a default MTU.
439 SetError(EINVAL);
440 return -1;
441#elif defined(WEBRTC_LINUX)
442 // Gets the path MTU.
443 int value;
444 socklen_t vlen = sizeof(value);
445 int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
446 if (err < 0) {
447 UpdateLastError();
448 return err;
449 }
450
451 ASSERT((0 <= value) && (value <= 65536));
452 *mtu = value;
453 return 0;
454#elif defined(__native_client__)
455 // Most socket operations, including this, will fail in NaCl's sandbox.
456 error_ = EACCES;
457 return -1;
458#endif
459 }
460
461 SocketServer* socketserver() { return ss_; }
462
463 protected:
464 void OnResolveResult(AsyncResolverInterface* resolver) {
465 if (resolver != resolver_) {
466 return;
467 }
468
469 int error = resolver_->GetError();
470 if (error == 0) {
471 error = DoConnect(resolver_->address());
472 } else {
473 Close();
474 }
475
476 if (error) {
477 SetError(error);
478 SignalCloseEvent(this, error);
479 }
480 }
481
482 void UpdateLastError() {
483 SetError(LAST_SYSTEM_ERROR);
484 }
485
486 void MaybeRemapSendError() {
487#if defined(WEBRTC_MAC)
488 // https://developer.apple.com/library/mac/documentation/Darwin/
489 // Reference/ManPages/man2/sendto.2.html
490 // ENOBUFS - The output queue for a network interface is full.
491 // This generally indicates that the interface has stopped sending,
492 // but may be caused by transient congestion.
493 if (GetError() == ENOBUFS) {
494 SetError(EWOULDBLOCK);
495 }
496#endif
497 }
498
499 static int TranslateOption(Option opt, int* slevel, int* sopt) {
500 switch (opt) {
501 case OPT_DONTFRAGMENT:
502#if defined(WEBRTC_WIN)
503 *slevel = IPPROTO_IP;
504 *sopt = IP_DONTFRAGMENT;
505 break;
506#elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__)
507 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
508 return -1;
509#elif defined(WEBRTC_POSIX)
510 *slevel = IPPROTO_IP;
511 *sopt = IP_MTU_DISCOVER;
512 break;
513#endif
514 case OPT_RCVBUF:
515 *slevel = SOL_SOCKET;
516 *sopt = SO_RCVBUF;
517 break;
518 case OPT_SNDBUF:
519 *slevel = SOL_SOCKET;
520 *sopt = SO_SNDBUF;
521 break;
522 case OPT_NODELAY:
523 *slevel = IPPROTO_TCP;
524 *sopt = TCP_NODELAY;
525 break;
526 case OPT_DSCP:
527 LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
528 return -1;
529 case OPT_RTP_SENDTIME_EXTN_ID:
530 return -1; // No logging is necessary as this not a OS socket option.
531 default:
532 ASSERT(false);
533 return -1;
534 }
535 return 0;
536 }
537
538 PhysicalSocketServer* ss_;
539 SOCKET s_;
540 uint8 enabled_events_;
541 bool udp_;
542 int error_;
543 // Protects |error_| that is accessed from different threads.
544 mutable CriticalSection crit_;
545 ConnState state_;
546 AsyncResolver* resolver_;
547
548#ifdef _DEBUG
549 std::string dbg_addr_;
550#endif // _DEBUG;
551};
552
553#if defined(WEBRTC_POSIX)
554class EventDispatcher : public Dispatcher {
555 public:
556 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
557 if (pipe(afd_) < 0)
558 LOG(LERROR) << "pipe failed";
559 ss_->Add(this);
560 }
561
562 virtual ~EventDispatcher() {
563 ss_->Remove(this);
564 close(afd_[0]);
565 close(afd_[1]);
566 }
567
568 virtual void Signal() {
569 CritScope cs(&crit_);
570 if (!fSignaled_) {
571 const uint8 b[1] = { 0 };
572 if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
573 fSignaled_ = true;
574 }
575 }
576 }
577
578 virtual uint32 GetRequestedEvents() {
579 return DE_READ;
580 }
581
582 virtual void OnPreEvent(uint32 ff) {
583 // It is not possible to perfectly emulate an auto-resetting event with
584 // pipes. This simulates it by resetting before the event is handled.
585
586 CritScope cs(&crit_);
587 if (fSignaled_) {
588 uint8 b[4]; // Allow for reading more than 1 byte, but expect 1.
589 VERIFY(1 == read(afd_[0], b, sizeof(b)));
590 fSignaled_ = false;
591 }
592 }
593
594 virtual void OnEvent(uint32 ff, int err) {
595 ASSERT(false);
596 }
597
598 virtual int GetDescriptor() {
599 return afd_[0];
600 }
601
602 virtual bool IsDescriptorClosed() {
603 return false;
604 }
605
606 private:
607 PhysicalSocketServer *ss_;
608 int afd_[2];
609 bool fSignaled_;
610 CriticalSection crit_;
611};
612
613// These two classes use the self-pipe trick to deliver POSIX signals to our
614// select loop. This is the only safe, reliable, cross-platform way to do
615// non-trivial things with a POSIX signal in an event-driven program (until
616// proper pselect() implementations become ubiquitous).
617
618class PosixSignalHandler {
619 public:
620 // POSIX only specifies 32 signals, but in principle the system might have
621 // more and the programmer might choose to use them, so we size our array
622 // for 128.
623 static const int kNumPosixSignals = 128;
624
625 // There is just a single global instance. (Signal handlers do not get any
626 // sort of user-defined void * parameter, so they can't access anything that
627 // isn't global.)
628 static PosixSignalHandler* Instance() {
629 LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
630 return &instance;
631 }
632
633 // Returns true if the given signal number is set.
634 bool IsSignalSet(int signum) const {
635 ASSERT(signum < ARRAY_SIZE(received_signal_));
636 if (signum < ARRAY_SIZE(received_signal_)) {
637 return received_signal_[signum];
638 } else {
639 return false;
640 }
641 }
642
643 // Clears the given signal number.
644 void ClearSignal(int signum) {
645 ASSERT(signum < ARRAY_SIZE(received_signal_));
646 if (signum < ARRAY_SIZE(received_signal_)) {
647 received_signal_[signum] = false;
648 }
649 }
650
651 // Returns the file descriptor to monitor for signal events.
652 int GetDescriptor() const {
653 return afd_[0];
654 }
655
656 // This is called directly from our real signal handler, so it must be
657 // signal-handler-safe. That means it cannot assume anything about the
658 // user-level state of the process, since the handler could be executed at any
659 // time on any thread.
660 void OnPosixSignalReceived(int signum) {
661 if (signum >= ARRAY_SIZE(received_signal_)) {
662 // We don't have space in our array for this.
663 return;
664 }
665 // Set a flag saying we've seen this signal.
666 received_signal_[signum] = true;
667 // Notify application code that we got a signal.
668 const uint8 b[1] = { 0 };
669 if (-1 == write(afd_[1], b, sizeof(b))) {
670 // Nothing we can do here. If there's an error somehow then there's
671 // nothing we can safely do from a signal handler.
672 // No, we can't even safely log it.
673 // But, we still have to check the return value here. Otherwise,
674 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
675 return;
676 }
677 }
678
679 private:
680 PosixSignalHandler() {
681 if (pipe(afd_) < 0) {
682 LOG_ERR(LS_ERROR) << "pipe failed";
683 return;
684 }
685 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
686 LOG_ERR(LS_WARNING) << "fcntl #1 failed";
687 }
688 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
689 LOG_ERR(LS_WARNING) << "fcntl #2 failed";
690 }
691 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
692 0,
693 sizeof(received_signal_));
694 }
695
696 ~PosixSignalHandler() {
697 int fd1 = afd_[0];
698 int fd2 = afd_[1];
699 // We clobber the stored file descriptor numbers here or else in principle
700 // a signal that happens to be delivered during application termination
701 // could erroneously write a zero byte to an unrelated file handle in
702 // OnPosixSignalReceived() if some other file happens to be opened later
703 // during shutdown and happens to be given the same file descriptor number
704 // as our pipe had. Unfortunately even with this precaution there is still a
705 // race where that could occur if said signal happens to be handled
706 // concurrently with this code and happens to have already read the value of
707 // afd_[1] from memory before we clobber it, but that's unlikely.
708 afd_[0] = -1;
709 afd_[1] = -1;
710 close(fd1);
711 close(fd2);
712 }
713
714 int afd_[2];
715 // These are boolean flags that will be set in our signal handler and read
716 // and cleared from Wait(). There is a race involved in this, but it is
717 // benign. The signal handler sets the flag before signaling the pipe, so
718 // we'll never end up blocking in select() while a flag is still true.
719 // However, if two of the same signal arrive close to each other then it's
720 // possible that the second time the handler may set the flag while it's still
721 // true, meaning that signal will be missed. But the first occurrence of it
722 // will still be handled, so this isn't a problem.
723 // Volatile is not necessary here for correctness, but this data _is_ volatile
724 // so I've marked it as such.
725 volatile uint8 received_signal_[kNumPosixSignals];
726};
727
728class PosixSignalDispatcher : public Dispatcher {
729 public:
730 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
731 owner_->Add(this);
732 }
733
734 virtual ~PosixSignalDispatcher() {
735 owner_->Remove(this);
736 }
737
738 virtual uint32 GetRequestedEvents() {
739 return DE_READ;
740 }
741
742 virtual void OnPreEvent(uint32 ff) {
743 // Events might get grouped if signals come very fast, so we read out up to
744 // 16 bytes to make sure we keep the pipe empty.
745 uint8 b[16];
746 ssize_t ret = read(GetDescriptor(), b, sizeof(b));
747 if (ret < 0) {
748 LOG_ERR(LS_WARNING) << "Error in read()";
749 } else if (ret == 0) {
750 LOG(LS_WARNING) << "Should have read at least one byte";
751 }
752 }
753
754 virtual void OnEvent(uint32 ff, int err) {
755 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
756 ++signum) {
757 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
758 PosixSignalHandler::Instance()->ClearSignal(signum);
759 HandlerMap::iterator i = handlers_.find(signum);
760 if (i == handlers_.end()) {
761 // This can happen if a signal is delivered to our process at around
762 // the same time as we unset our handler for it. It is not an error
763 // condition, but it's unusual enough to be worth logging.
764 LOG(LS_INFO) << "Received signal with no handler: " << signum;
765 } else {
766 // Otherwise, execute our handler.
767 (*i->second)(signum);
768 }
769 }
770 }
771 }
772
773 virtual int GetDescriptor() {
774 return PosixSignalHandler::Instance()->GetDescriptor();
775 }
776
777 virtual bool IsDescriptorClosed() {
778 return false;
779 }
780
781 void SetHandler(int signum, void (*handler)(int)) {
782 handlers_[signum] = handler;
783 }
784
785 void ClearHandler(int signum) {
786 handlers_.erase(signum);
787 }
788
789 bool HasHandlers() {
790 return !handlers_.empty();
791 }
792
793 private:
794 typedef std::map<int, void (*)(int)> HandlerMap;
795
796 HandlerMap handlers_;
797 // Our owner.
798 PhysicalSocketServer *owner_;
799};
800
801class SocketDispatcher : public Dispatcher, public PhysicalSocket {
802 public:
803 explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
804 }
805 SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
806 }
807
808 virtual ~SocketDispatcher() {
809 Close();
810 }
811
812 bool Initialize() {
813 ss_->Add(this);
814 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
815 return true;
816 }
817
818 virtual bool Create(int type) {
819 return Create(AF_INET, type);
820 }
821
822 virtual bool Create(int family, int type) {
823 // Change the socket to be non-blocking.
824 if (!PhysicalSocket::Create(family, type))
825 return false;
826
827 return Initialize();
828 }
829
830 virtual int GetDescriptor() {
831 return s_;
832 }
833
834 virtual bool IsDescriptorClosed() {
835 // We don't have a reliable way of distinguishing end-of-stream
836 // from readability. So test on each readable call. Is this
837 // inefficient? Probably.
838 char ch;
839 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
840 if (res > 0) {
841 // Data available, so not closed.
842 return false;
843 } else if (res == 0) {
844 // EOF, so closed.
845 return true;
846 } else { // error
847 switch (errno) {
848 // Returned if we've already closed s_.
849 case EBADF:
850 // Returned during ungraceful peer shutdown.
851 case ECONNRESET:
852 return true;
853 default:
854 // Assume that all other errors are just blocking errors, meaning the
855 // connection is still good but we just can't read from it right now.
856 // This should only happen when connecting (and at most once), because
857 // in all other cases this function is only called if the file
858 // descriptor is already known to be in the readable state. However,
859 // it's not necessary a problem if we spuriously interpret a
860 // "connection lost"-type error as a blocking error, because typically
861 // the next recv() will get EOF, so we'll still eventually notice that
862 // the socket is closed.
863 LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
864 return false;
865 }
866 }
867 }
868
869 virtual uint32 GetRequestedEvents() {
870 return enabled_events_;
871 }
872
873 virtual void OnPreEvent(uint32 ff) {
874 if ((ff & DE_CONNECT) != 0)
875 state_ = CS_CONNECTED;
876 if ((ff & DE_CLOSE) != 0)
877 state_ = CS_CLOSED;
878 }
879
880 virtual void OnEvent(uint32 ff, int err) {
881 // Make sure we deliver connect/accept first. Otherwise, consumers may see
882 // something like a READ followed by a CONNECT, which would be odd.
883 if ((ff & DE_CONNECT) != 0) {
884 enabled_events_ &= ~DE_CONNECT;
885 SignalConnectEvent(this);
886 }
887 if ((ff & DE_ACCEPT) != 0) {
888 enabled_events_ &= ~DE_ACCEPT;
889 SignalReadEvent(this);
890 }
891 if ((ff & DE_READ) != 0) {
892 enabled_events_ &= ~DE_READ;
893 SignalReadEvent(this);
894 }
895 if ((ff & DE_WRITE) != 0) {
896 enabled_events_ &= ~DE_WRITE;
897 SignalWriteEvent(this);
898 }
899 if ((ff & DE_CLOSE) != 0) {
900 // The socket is now dead to us, so stop checking it.
901 enabled_events_ = 0;
902 SignalCloseEvent(this, err);
903 }
904 }
905
906 virtual int Close() {
907 if (s_ == INVALID_SOCKET)
908 return 0;
909
910 ss_->Remove(this);
911 return PhysicalSocket::Close();
912 }
913};
914
915class FileDispatcher: public Dispatcher, public AsyncFile {
916 public:
917 FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
918 set_readable(true);
919
920 ss_->Add(this);
921
922 fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
923 }
924
925 virtual ~FileDispatcher() {
926 ss_->Remove(this);
927 }
928
929 SocketServer* socketserver() { return ss_; }
930
931 virtual int GetDescriptor() {
932 return fd_;
933 }
934
935 virtual bool IsDescriptorClosed() {
936 return false;
937 }
938
939 virtual uint32 GetRequestedEvents() {
940 return flags_;
941 }
942
943 virtual void OnPreEvent(uint32 ff) {
944 }
945
946 virtual void OnEvent(uint32 ff, int err) {
947 if ((ff & DE_READ) != 0)
948 SignalReadEvent(this);
949 if ((ff & DE_WRITE) != 0)
950 SignalWriteEvent(this);
951 if ((ff & DE_CLOSE) != 0)
952 SignalCloseEvent(this, err);
953 }
954
955 virtual bool readable() {
956 return (flags_ & DE_READ) != 0;
957 }
958
959 virtual void set_readable(bool value) {
960 flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
961 }
962
963 virtual bool writable() {
964 return (flags_ & DE_WRITE) != 0;
965 }
966
967 virtual void set_writable(bool value) {
968 flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
969 }
970
971 private:
972 PhysicalSocketServer* ss_;
973 int fd_;
974 int flags_;
975};
976
977AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
978 return new FileDispatcher(fd, this);
979}
980
981#endif // WEBRTC_POSIX
982
983#if defined(WEBRTC_WIN)
984static uint32 FlagsToEvents(uint32 events) {
985 uint32 ffFD = FD_CLOSE;
986 if (events & DE_READ)
987 ffFD |= FD_READ;
988 if (events & DE_WRITE)
989 ffFD |= FD_WRITE;
990 if (events & DE_CONNECT)
991 ffFD |= FD_CONNECT;
992 if (events & DE_ACCEPT)
993 ffFD |= FD_ACCEPT;
994 return ffFD;
995}
996
997class EventDispatcher : public Dispatcher {
998 public:
999 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1000 hev_ = WSACreateEvent();
1001 if (hev_) {
1002 ss_->Add(this);
1003 }
1004 }
1005
1006 ~EventDispatcher() {
1007 if (hev_ != NULL) {
1008 ss_->Remove(this);
1009 WSACloseEvent(hev_);
1010 hev_ = NULL;
1011 }
1012 }
1013
1014 virtual void Signal() {
1015 if (hev_ != NULL)
1016 WSASetEvent(hev_);
1017 }
1018
1019 virtual uint32 GetRequestedEvents() {
1020 return 0;
1021 }
1022
1023 virtual void OnPreEvent(uint32 ff) {
1024 WSAResetEvent(hev_);
1025 }
1026
1027 virtual void OnEvent(uint32 ff, int err) {
1028 }
1029
1030 virtual WSAEVENT GetWSAEvent() {
1031 return hev_;
1032 }
1033
1034 virtual SOCKET GetSocket() {
1035 return INVALID_SOCKET;
1036 }
1037
1038 virtual bool CheckSignalClose() { return false; }
1039
1040private:
1041 PhysicalSocketServer* ss_;
1042 WSAEVENT hev_;
1043};
1044
1045class SocketDispatcher : public Dispatcher, public PhysicalSocket {
1046 public:
1047 static int next_id_;
1048 int id_;
1049 bool signal_close_;
1050 int signal_err_;
1051
1052 SocketDispatcher(PhysicalSocketServer* ss)
1053 : PhysicalSocket(ss),
1054 id_(0),
1055 signal_close_(false) {
1056 }
1057
1058 SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
1059 : PhysicalSocket(ss, s),
1060 id_(0),
1061 signal_close_(false) {
1062 }
1063
1064 virtual ~SocketDispatcher() {
1065 Close();
1066 }
1067
1068 bool Initialize() {
1069 ASSERT(s_ != INVALID_SOCKET);
1070 // Must be a non-blocking
1071 u_long argp = 1;
1072 ioctlsocket(s_, FIONBIO, &argp);
1073 ss_->Add(this);
1074 return true;
1075 }
1076
1077 virtual bool Create(int type) {
1078 return Create(AF_INET, type);
1079 }
1080
1081 virtual bool Create(int family, int type) {
1082 // Create socket
1083 if (!PhysicalSocket::Create(family, type))
1084 return false;
1085
1086 if (!Initialize())
1087 return false;
1088
1089 do { id_ = ++next_id_; } while (id_ == 0);
1090 return true;
1091 }
1092
1093 virtual int Close() {
1094 if (s_ == INVALID_SOCKET)
1095 return 0;
1096
1097 id_ = 0;
1098 signal_close_ = false;
1099 ss_->Remove(this);
1100 return PhysicalSocket::Close();
1101 }
1102
1103 virtual uint32 GetRequestedEvents() {
1104 return enabled_events_;
1105 }
1106
1107 virtual void OnPreEvent(uint32 ff) {
1108 if ((ff & DE_CONNECT) != 0)
1109 state_ = CS_CONNECTED;
1110 // We set CS_CLOSED from CheckSignalClose.
1111 }
1112
1113 virtual void OnEvent(uint32 ff, int err) {
1114 int cache_id = id_;
1115 // Make sure we deliver connect/accept first. Otherwise, consumers may see
1116 // something like a READ followed by a CONNECT, which would be odd.
1117 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
1118 if (ff != DE_CONNECT)
1119 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
1120 enabled_events_ &= ~DE_CONNECT;
1121#ifdef _DEBUG
1122 dbg_addr_ = "Connected @ ";
1123 dbg_addr_.append(GetRemoteAddress().ToString());
1124#endif // _DEBUG
1125 SignalConnectEvent(this);
1126 }
1127 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
1128 enabled_events_ &= ~DE_ACCEPT;
1129 SignalReadEvent(this);
1130 }
1131 if ((ff & DE_READ) != 0) {
1132 enabled_events_ &= ~DE_READ;
1133 SignalReadEvent(this);
1134 }
1135 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
1136 enabled_events_ &= ~DE_WRITE;
1137 SignalWriteEvent(this);
1138 }
1139 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
1140 signal_close_ = true;
1141 signal_err_ = err;
1142 }
1143 }
1144
1145 virtual WSAEVENT GetWSAEvent() {
1146 return WSA_INVALID_EVENT;
1147 }
1148
1149 virtual SOCKET GetSocket() {
1150 return s_;
1151 }
1152
1153 virtual bool CheckSignalClose() {
1154 if (!signal_close_)
1155 return false;
1156
1157 char ch;
1158 if (recv(s_, &ch, 1, MSG_PEEK) > 0)
1159 return false;
1160
1161 state_ = CS_CLOSED;
1162 signal_close_ = false;
1163 SignalCloseEvent(this, signal_err_);
1164 return true;
1165 }
1166};
1167
1168int SocketDispatcher::next_id_ = 0;
1169
1170#endif // WEBRTC_WIN
1171
1172// Sets the value of a boolean value to false when signaled.
1173class Signaler : public EventDispatcher {
1174 public:
1175 Signaler(PhysicalSocketServer* ss, bool* pf)
1176 : EventDispatcher(ss), pf_(pf) {
1177 }
1178 virtual ~Signaler() { }
1179
1180 void OnEvent(uint32 ff, int err) {
1181 if (pf_)
1182 *pf_ = false;
1183 }
1184
1185 private:
1186 bool *pf_;
1187};
1188
1189PhysicalSocketServer::PhysicalSocketServer()
1190 : fWait_(false) {
1191 signal_wakeup_ = new Signaler(this, &fWait_);
1192#if defined(WEBRTC_WIN)
1193 socket_ev_ = WSACreateEvent();
1194#endif
1195}
1196
1197PhysicalSocketServer::~PhysicalSocketServer() {
1198#if defined(WEBRTC_WIN)
1199 WSACloseEvent(socket_ev_);
1200#endif
1201#if defined(WEBRTC_POSIX)
1202 signal_dispatcher_.reset();
1203#endif
1204 delete signal_wakeup_;
1205 ASSERT(dispatchers_.empty());
1206}
1207
1208void PhysicalSocketServer::WakeUp() {
1209 signal_wakeup_->Signal();
1210}
1211
1212Socket* PhysicalSocketServer::CreateSocket(int type) {
1213 return CreateSocket(AF_INET, type);
1214}
1215
1216Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1217 PhysicalSocket* socket = new PhysicalSocket(this);
1218 if (socket->Create(family, type)) {
1219 return socket;
1220 } else {
1221 delete socket;
1222 return 0;
1223 }
1224}
1225
1226AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1227 return CreateAsyncSocket(AF_INET, type);
1228}
1229
1230AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1231 SocketDispatcher* dispatcher = new SocketDispatcher(this);
1232 if (dispatcher->Create(family, type)) {
1233 return dispatcher;
1234 } else {
1235 delete dispatcher;
1236 return 0;
1237 }
1238}
1239
1240AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1241 SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1242 if (dispatcher->Initialize()) {
1243 return dispatcher;
1244 } else {
1245 delete dispatcher;
1246 return 0;
1247 }
1248}
1249
1250void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1251 CritScope cs(&crit_);
1252 // Prevent duplicates. This can cause dead dispatchers to stick around.
1253 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1254 dispatchers_.end(),
1255 pdispatcher);
1256 if (pos != dispatchers_.end())
1257 return;
1258 dispatchers_.push_back(pdispatcher);
1259}
1260
1261void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1262 CritScope cs(&crit_);
1263 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1264 dispatchers_.end(),
1265 pdispatcher);
1266 // We silently ignore duplicate calls to Add, so we should silently ignore
1267 // the (expected) symmetric calls to Remove. Note that this may still hide
1268 // a real issue, so we at least log a warning about it.
1269 if (pos == dispatchers_.end()) {
1270 LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1271 << "dispatcher, potentially from a duplicate call to Add.";
1272 return;
1273 }
1274 size_t index = pos - dispatchers_.begin();
1275 dispatchers_.erase(pos);
1276 for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
1277 ++it) {
1278 if (index < **it) {
1279 --**it;
1280 }
1281 }
1282}
1283
1284#if defined(WEBRTC_POSIX)
1285bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1286 // Calculate timing information
1287
1288 struct timeval *ptvWait = NULL;
1289 struct timeval tvWait;
1290 struct timeval tvStop;
1291 if (cmsWait != kForever) {
1292 // Calculate wait timeval
1293 tvWait.tv_sec = cmsWait / 1000;
1294 tvWait.tv_usec = (cmsWait % 1000) * 1000;
1295 ptvWait = &tvWait;
1296
1297 // Calculate when to return in a timeval
1298 gettimeofday(&tvStop, NULL);
1299 tvStop.tv_sec += tvWait.tv_sec;
1300 tvStop.tv_usec += tvWait.tv_usec;
1301 if (tvStop.tv_usec >= 1000000) {
1302 tvStop.tv_usec -= 1000000;
1303 tvStop.tv_sec += 1;
1304 }
1305 }
1306
1307 // Zero all fd_sets. Don't need to do this inside the loop since
1308 // select() zeros the descriptors not signaled
1309
1310 fd_set fdsRead;
1311 FD_ZERO(&fdsRead);
1312 fd_set fdsWrite;
1313 FD_ZERO(&fdsWrite);
1314
1315 fWait_ = true;
1316
1317 while (fWait_) {
1318 int fdmax = -1;
1319 {
1320 CritScope cr(&crit_);
1321 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1322 // Query dispatchers for read and write wait state
1323 Dispatcher *pdispatcher = dispatchers_[i];
1324 ASSERT(pdispatcher);
1325 if (!process_io && (pdispatcher != signal_wakeup_))
1326 continue;
1327 int fd = pdispatcher->GetDescriptor();
1328 if (fd > fdmax)
1329 fdmax = fd;
1330
1331 uint32 ff = pdispatcher->GetRequestedEvents();
1332 if (ff & (DE_READ | DE_ACCEPT))
1333 FD_SET(fd, &fdsRead);
1334 if (ff & (DE_WRITE | DE_CONNECT))
1335 FD_SET(fd, &fdsWrite);
1336 }
1337 }
1338
1339 // Wait then call handlers as appropriate
1340 // < 0 means error
1341 // 0 means timeout
1342 // > 0 means count of descriptors ready
1343 int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
1344
1345 // If error, return error.
1346 if (n < 0) {
1347 if (errno != EINTR) {
1348 LOG_E(LS_ERROR, EN, errno) << "select";
1349 return false;
1350 }
1351 // Else ignore the error and keep going. If this EINTR was for one of the
1352 // signals managed by this PhysicalSocketServer, the
1353 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1354 // iteration.
1355 } else if (n == 0) {
1356 // If timeout, return success
1357 return true;
1358 } else {
1359 // We have signaled descriptors
1360 CritScope cr(&crit_);
1361 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1362 Dispatcher *pdispatcher = dispatchers_[i];
1363 int fd = pdispatcher->GetDescriptor();
1364 uint32 ff = 0;
1365 int errcode = 0;
1366
1367 // Reap any error code, which can be signaled through reads or writes.
1368 // TODO: Should we set errcode if getsockopt fails?
1369 if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
1370 socklen_t len = sizeof(errcode);
1371 ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
1372 }
1373
1374 // Check readable descriptors. If we're waiting on an accept, signal
1375 // that. Otherwise we're waiting for data, check to see if we're
1376 // readable or really closed.
1377 // TODO: Only peek at TCP descriptors.
1378 if (FD_ISSET(fd, &fdsRead)) {
1379 FD_CLR(fd, &fdsRead);
1380 if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
1381 ff |= DE_ACCEPT;
1382 } else if (errcode || pdispatcher->IsDescriptorClosed()) {
1383 ff |= DE_CLOSE;
1384 } else {
1385 ff |= DE_READ;
1386 }
1387 }
1388
1389 // Check writable descriptors. If we're waiting on a connect, detect
1390 // success versus failure by the reaped error code.
1391 if (FD_ISSET(fd, &fdsWrite)) {
1392 FD_CLR(fd, &fdsWrite);
1393 if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
1394 if (!errcode) {
1395 ff |= DE_CONNECT;
1396 } else {
1397 ff |= DE_CLOSE;
1398 }
1399 } else {
1400 ff |= DE_WRITE;
1401 }
1402 }
1403
1404 // Tell the descriptor about the event.
1405 if (ff != 0) {
1406 pdispatcher->OnPreEvent(ff);
1407 pdispatcher->OnEvent(ff, errcode);
1408 }
1409 }
1410 }
1411
1412 // Recalc the time remaining to wait. Doing it here means it doesn't get
1413 // calced twice the first time through the loop
1414 if (ptvWait) {
1415 ptvWait->tv_sec = 0;
1416 ptvWait->tv_usec = 0;
1417 struct timeval tvT;
1418 gettimeofday(&tvT, NULL);
1419 if ((tvStop.tv_sec > tvT.tv_sec)
1420 || ((tvStop.tv_sec == tvT.tv_sec)
1421 && (tvStop.tv_usec > tvT.tv_usec))) {
1422 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1423 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1424 if (ptvWait->tv_usec < 0) {
1425 ASSERT(ptvWait->tv_sec > 0);
1426 ptvWait->tv_usec += 1000000;
1427 ptvWait->tv_sec -= 1;
1428 }
1429 }
1430 }
1431 }
1432
1433 return true;
1434}
1435
1436static void GlobalSignalHandler(int signum) {
1437 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1438}
1439
1440bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1441 void (*handler)(int)) {
1442 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1443 // otherwise set one.
1444 if (handler == SIG_IGN || handler == SIG_DFL) {
1445 if (!InstallSignal(signum, handler)) {
1446 return false;
1447 }
1448 if (signal_dispatcher_) {
1449 signal_dispatcher_->ClearHandler(signum);
1450 if (!signal_dispatcher_->HasHandlers()) {
1451 signal_dispatcher_.reset();
1452 }
1453 }
1454 } else {
1455 if (!signal_dispatcher_) {
1456 signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1457 }
1458 signal_dispatcher_->SetHandler(signum, handler);
1459 if (!InstallSignal(signum, &GlobalSignalHandler)) {
1460 return false;
1461 }
1462 }
1463 return true;
1464}
1465
1466Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1467 return signal_dispatcher_.get();
1468}
1469
1470bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1471 struct sigaction act;
1472 // It doesn't really matter what we set this mask to.
1473 if (sigemptyset(&act.sa_mask) != 0) {
1474 LOG_ERR(LS_ERROR) << "Couldn't set mask";
1475 return false;
1476 }
1477 act.sa_handler = handler;
1478#if !defined(__native_client__)
1479 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1480 // and it's a nuisance. Though some syscalls still return EINTR and there's no
1481 // real standard for which ones. :(
1482 act.sa_flags = SA_RESTART;
1483#else
1484 act.sa_flags = 0;
1485#endif
1486 if (sigaction(signum, &act, NULL) != 0) {
1487 LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1488 return false;
1489 }
1490 return true;
1491}
1492#endif // WEBRTC_POSIX
1493
1494#if defined(WEBRTC_WIN)
1495bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1496 int cmsTotal = cmsWait;
1497 int cmsElapsed = 0;
1498 uint32 msStart = Time();
1499
1500 fWait_ = true;
1501 while (fWait_) {
1502 std::vector<WSAEVENT> events;
1503 std::vector<Dispatcher *> event_owners;
1504
1505 events.push_back(socket_ev_);
1506
1507 {
1508 CritScope cr(&crit_);
1509 size_t i = 0;
1510 iterators_.push_back(&i);
1511 // Don't track dispatchers_.size(), because we want to pick up any new
1512 // dispatchers that were added while processing the loop.
1513 while (i < dispatchers_.size()) {
1514 Dispatcher* disp = dispatchers_[i++];
1515 if (!process_io && (disp != signal_wakeup_))
1516 continue;
1517 SOCKET s = disp->GetSocket();
1518 if (disp->CheckSignalClose()) {
1519 // We just signalled close, don't poll this socket
1520 } else if (s != INVALID_SOCKET) {
1521 WSAEventSelect(s,
1522 events[0],
1523 FlagsToEvents(disp->GetRequestedEvents()));
1524 } else {
1525 events.push_back(disp->GetWSAEvent());
1526 event_owners.push_back(disp);
1527 }
1528 }
1529 ASSERT(iterators_.back() == &i);
1530 iterators_.pop_back();
1531 }
1532
1533 // Which is shorter, the delay wait or the asked wait?
1534
1535 int cmsNext;
1536 if (cmsWait == kForever) {
1537 cmsNext = cmsWait;
1538 } else {
1539 cmsNext = _max(0, cmsTotal - cmsElapsed);
1540 }
1541
1542 // Wait for one of the events to signal
1543 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1544 &events[0],
1545 false,
1546 cmsNext,
1547 false);
1548
1549 if (dw == WSA_WAIT_FAILED) {
1550 // Failed?
1551 // TODO: need a better strategy than this!
1552 WSAGetLastError();
1553 ASSERT(false);
1554 return false;
1555 } else if (dw == WSA_WAIT_TIMEOUT) {
1556 // Timeout?
1557 return true;
1558 } else {
1559 // Figure out which one it is and call it
1560 CritScope cr(&crit_);
1561 int index = dw - WSA_WAIT_EVENT_0;
1562 if (index > 0) {
1563 --index; // The first event is the socket event
1564 event_owners[index]->OnPreEvent(0);
1565 event_owners[index]->OnEvent(0, 0);
1566 } else if (process_io) {
1567 size_t i = 0, end = dispatchers_.size();
1568 iterators_.push_back(&i);
1569 iterators_.push_back(&end); // Don't iterate over new dispatchers.
1570 while (i < end) {
1571 Dispatcher* disp = dispatchers_[i++];
1572 SOCKET s = disp->GetSocket();
1573 if (s == INVALID_SOCKET)
1574 continue;
1575
1576 WSANETWORKEVENTS wsaEvents;
1577 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1578 if (err == 0) {
1579
1580#if LOGGING
1581 {
1582 if ((wsaEvents.lNetworkEvents & FD_READ) &&
1583 wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1584 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1585 << wsaEvents.iErrorCode[FD_READ_BIT];
1586 }
1587 if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1588 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1589 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1590 << wsaEvents.iErrorCode[FD_WRITE_BIT];
1591 }
1592 if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1593 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1594 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1595 << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1596 }
1597 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1598 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1599 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1600 << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1601 }
1602 if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1603 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1604 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1605 << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1606 }
1607 }
1608#endif
1609 uint32 ff = 0;
1610 int errcode = 0;
1611 if (wsaEvents.lNetworkEvents & FD_READ)
1612 ff |= DE_READ;
1613 if (wsaEvents.lNetworkEvents & FD_WRITE)
1614 ff |= DE_WRITE;
1615 if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1616 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1617 ff |= DE_CONNECT;
1618 } else {
1619 ff |= DE_CLOSE;
1620 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1621 }
1622 }
1623 if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1624 ff |= DE_ACCEPT;
1625 if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1626 ff |= DE_CLOSE;
1627 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1628 }
1629 if (ff != 0) {
1630 disp->OnPreEvent(ff);
1631 disp->OnEvent(ff, errcode);
1632 }
1633 }
1634 }
1635 ASSERT(iterators_.back() == &end);
1636 iterators_.pop_back();
1637 ASSERT(iterators_.back() == &i);
1638 iterators_.pop_back();
1639 }
1640
1641 // Reset the network event until new activity occurs
1642 WSAResetEvent(socket_ev_);
1643 }
1644
1645 // Break?
1646 if (!fWait_)
1647 break;
1648 cmsElapsed = TimeSince(msStart);
1649 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1650 break;
1651 }
1652 }
1653
1654 // Done
1655 return true;
1656}
1657#endif // WEBRTC_WIN
1658
1659} // namespace rtc