blob: 278b82bc63086e033c5d706ec9dec5e79716700e [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "data-flow.h"
#include "scopes.h"
namespace v8 {
namespace internal {
#ifdef DEBUG
void BitVector::Print() {
bool first = true;
PrintF("{");
for (int i = 0; i < length(); i++) {
if (Contains(i)) {
if (!first) PrintF(",");
first = false;
PrintF("%d");
}
}
PrintF("}");
}
#endif
void FlowGraph::AppendInstruction(AstNode* instruction) {
// Add a (non-null) AstNode to the end of the graph fragment.
ASSERT(instruction != NULL);
if (exit()->IsExitNode()) return;
if (!exit()->IsBlockNode()) AppendNode(new BlockNode());
BlockNode::cast(exit())->AddInstruction(instruction);
}
void FlowGraph::AppendNode(Node* node) {
// Add a node to the end of the graph. An empty block is added to
// maintain edge-split form (that no join nodes or exit nodes as
// successors to branch nodes).
ASSERT(node != NULL);
if (exit()->IsExitNode()) return;
if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
AppendNode(new BlockNode());
}
exit()->AddSuccessor(node);
node->AddPredecessor(exit());
exit_ = node;
}
void FlowGraph::AppendGraph(FlowGraph* graph) {
// Add a flow graph fragment to the end of this one. An empty block is
// added to maintain edge-split form (that no join nodes or exit nodes as
// successors to branch nodes).
ASSERT(graph != NULL);
if (exit()->IsExitNode()) return;
Node* node = graph->entry();
if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
AppendNode(new BlockNode());
}
exit()->AddSuccessor(node);
node->AddPredecessor(exit());
exit_ = graph->exit();
}
void FlowGraph::Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* join) {
// Add the branch node, left flowgraph, join node.
AppendNode(branch);
AppendGraph(left);
AppendNode(join);
// Splice in the right flowgraph.
right->AppendNode(join);
branch->AddSuccessor(right->entry());
right->entry()->AddPredecessor(branch);
}
void FlowGraph::Loop(JoinNode* join,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body) {
// Add the join, condition and branch. Add join's predecessors in
// left-to-right order.
AppendNode(join);
body->AppendNode(join);
AppendGraph(condition);
AppendNode(branch);
// Splice in the body flowgraph.
branch->AddSuccessor(body->entry());
body->entry()->AddPredecessor(branch);
}
void ExitNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
preorder->Add(this);
postorder->Add(this);
}
void BlockNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void BranchNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor0_ != NULL && successor1_ != NULL);
preorder->Add(this);
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
successor1_->Traverse(mark, preorder, postorder);
}
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
successor0_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void JoinNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void FlowGraphBuilder::Build(FunctionLiteral* lit) {
global_exit_ = new ExitNode();
VisitStatements(lit->body());
if (HasStackOverflow()) return;
// The graph can end with a branch node (if the function ended with a
// loop). Maintain edge-split form (no join nodes or exit nodes as
// successors to branch nodes).
if (graph_.exit()->IsBranchNode()) graph_.AppendNode(new BlockNode());
graph_.AppendNode(global_exit_);
// Build preorder and postorder traversal orders. All the nodes in
// the graph have the same mark flag. For the traversal, use that
// flag's negation. Traversal will flip all the flags.
bool mark = graph_.entry()->IsMarkedWith(false);
graph_.entry()->MarkWith(mark);
graph_.entry()->Traverse(mark, &preorder_, &postorder_);
}
void FlowGraphBuilder::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
// Nothing to do.
}
void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) {
Visit(stmt->condition());
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->then_statement());
FlowGraph left = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->else_statement());
if (HasStackOverflow()) return;
JoinNode* join = new JoinNode();
original.Split(branch, &left, &graph_, join);
graph_ = original;
}
void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) Visit(stmt->init());
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
if (stmt->cond() != NULL) Visit(stmt->cond());
BranchNode* branch = new BranchNode();
FlowGraph condition = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
if (stmt->next() != NULL) Visit(stmt->next());
if (HasStackOverflow()) return;
original.Loop(join, &condition, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitConditional(Conditional* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitLiteral(Literal* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
// Left-hand side can be a variable or property (or reference error) but
// not both.
ASSERT(var == NULL || prop == NULL);
if (var != NULL) {
if (expr->is_compound()) Visit(expr->target());
Visit(expr->value());
if (var->IsStackAllocated()) {
expr->set_num(definitions_.length());
definitions_.Add(expr);
}
} else if (prop != NULL) {
Visit(prop->obj());
if (!prop->key()->IsPropertyName()) Visit(prop->key());
Visit(expr->value());
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitThrow(Throw* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitProperty(Property* expr) {
Visit(expr->obj());
if (!expr->key()->IsPropertyName()) Visit(expr->key());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCall(Call* expr) {
Visit(expr->expression());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCallNew(CallNew* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::NOT:
case Token::BIT_NOT:
case Token::DELETE:
case Token::TYPEOF:
case Token::VOID:
SetStackOverflow();
break;
case Token::ADD:
case Token::SUB:
Visit(expr->expression());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) {
Visit(expr->expression());
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (var != NULL && var->IsStackAllocated()) {
expr->set_num(definitions_.length());
definitions_.Add(expr);
}
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
switch (expr->op()) {
case Token::COMMA:
case Token::OR:
case Token::AND:
SetStackOverflow();
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
case Token::SAR:
Visit(expr->left());
Visit(expr->right());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
switch (expr->op()) {
case Token::EQ:
case Token::NE:
case Token::EQ_STRICT:
case Token::NE_STRICT:
case Token::INSTANCEOF:
case Token::IN:
SetStackOverflow();
break;
case Token::LT:
case Token::GT:
case Token::LTE:
case Token::GTE:
Visit(expr->left());
Visit(expr->right());
if (HasStackOverflow()) return;
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) {
SetStackOverflow();
}
void AstLabeler::Label(CompilationInfo* info) {
info_ = info;
VisitStatements(info_->function()->body());
}
void AstLabeler::VisitStatements(ZoneList<Statement*>* stmts) {
for (int i = 0, len = stmts->length(); i < len; i++) {
Visit(stmts->at(i));
}
}
void AstLabeler::VisitDeclarations(ZoneList<Declaration*>* decls) {
UNREACHABLE();
}
void AstLabeler::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void AstLabeler::VisitExpressionStatement(
ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void AstLabeler::VisitEmptyStatement(EmptyStatement* stmt) {
// Do nothing.
}
void AstLabeler::VisitIfStatement(IfStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitReturnStatement(ReturnStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWithEnterStatement(
WithEnterStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWithExitStatement(WithExitStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitDoWhileStatement(DoWhileStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWhileStatement(WhileStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitForStatement(ForStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitForInStatement(ForInStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitDebuggerStatement(
DebuggerStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitFunctionLiteral(FunctionLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitConditional(Conditional* expr) {
UNREACHABLE();
}
void AstLabeler::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void AstLabeler::VisitVariableProxy(VariableProxy* expr) {
expr->set_num(next_number_++);
Variable* var = expr->var();
if (var->is_global() && !var->is_this()) {
info_->set_has_globals(true);
}
}
void AstLabeler::VisitLiteral(Literal* expr) {
UNREACHABLE();
}
void AstLabeler::VisitRegExpLiteral(RegExpLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitObjectLiteral(ObjectLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitArrayLiteral(ArrayLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
UNREACHABLE();
}
void AstLabeler::VisitAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->IsPropertyName());
VariableProxy* proxy = prop->obj()->AsVariableProxy();
USE(proxy);
ASSERT(proxy != NULL && proxy->var()->is_this());
info()->set_has_this_properties(true);
prop->obj()->set_num(AstNode::kNoNumber);
prop->key()->set_num(AstNode::kNoNumber);
Visit(expr->value());
expr->set_num(next_number_++);
}
void AstLabeler::VisitThrow(Throw* expr) {
UNREACHABLE();
}
void AstLabeler::VisitProperty(Property* expr) {
ASSERT(expr->key()->IsPropertyName());
VariableProxy* proxy = expr->obj()->AsVariableProxy();
USE(proxy);
ASSERT(proxy != NULL && proxy->var()->is_this());
info()->set_has_this_properties(true);
expr->obj()->set_num(AstNode::kNoNumber);
expr->key()->set_num(AstNode::kNoNumber);
expr->set_num(next_number_++);
}
void AstLabeler::VisitCall(Call* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCallNew(CallNew* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCallRuntime(CallRuntime* expr) {
UNREACHABLE();
}
void AstLabeler::VisitUnaryOperation(UnaryOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCountOperation(CountOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitBinaryOperation(BinaryOperation* expr) {
Visit(expr->left());
Visit(expr->right());
expr->set_num(next_number_++);
}
void AstLabeler::VisitCompareOperation(CompareOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitThisFunction(ThisFunction* expr) {
UNREACHABLE();
}
void AstLabeler::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
ZoneList<Expression*>* VarUseMap::Lookup(Variable* var) {
HashMap::Entry* entry = HashMap::Lookup(var, var->name()->Hash(), true);
if (entry->value == NULL) {
entry->value = new ZoneList<Expression*>(1);
}
return reinterpret_cast<ZoneList<Expression*>*>(entry->value);
}
void LivenessAnalyzer::Analyze(FunctionLiteral* fun) {
// Process the function body.
VisitStatements(fun->body());
// All variables are implicitly defined at the function start.
// Record a definition of all variables live at function entry.
for (HashMap::Entry* p = live_vars_.Start();
p != NULL;
p = live_vars_.Next(p)) {
Variable* var = reinterpret_cast<Variable*>(p->key);
RecordDef(var, fun);
}
}
void LivenessAnalyzer::VisitStatements(ZoneList<Statement*>* stmts) {
// Visit statements right-to-left.
for (int i = stmts->length() - 1; i >= 0; i--) {
Visit(stmts->at(i));
}
}
void LivenessAnalyzer::RecordUse(Variable* var, Expression* expr) {
ASSERT(var->is_global() || var->is_this());
ZoneList<Expression*>* uses = live_vars_.Lookup(var);
uses->Add(expr);
}
void LivenessAnalyzer::RecordDef(Variable* var, Expression* expr) {
ASSERT(var->is_global() || var->is_this());
// We do not support other expressions that can define variables.
ASSERT(expr->AsFunctionLiteral() != NULL);
// Add the variable to the list of defined variables.
if (expr->defined_vars() == NULL) {
expr->set_defined_vars(new ZoneList<DefinitionInfo*>(1));
}
DefinitionInfo* def = new DefinitionInfo();
expr->AsFunctionLiteral()->defined_vars()->Add(def);
// Compute the last use of the definition. The variable uses are
// inserted in reversed evaluation order. The first element
// in the list of live uses is the last use.
ZoneList<Expression*>* uses = live_vars_.Lookup(var);
while (uses->length() > 0) {
Expression* use_site = uses->RemoveLast();
use_site->set_var_def(def);
if (uses->length() == 0) {
def->set_last_use(use_site);
}
}
}
// Visitor functions for live variable analysis.
void LivenessAnalyzer::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void LivenessAnalyzer::VisitExpressionStatement(
ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void LivenessAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) {
// Do nothing.
}
void LivenessAnalyzer::VisitIfStatement(IfStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitReturnStatement(ReturnStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitWithEnterStatement(
WithEnterStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitWithExitStatement(WithExitStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitWhileStatement(WhileStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitForStatement(ForStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitForInStatement(ForInStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitDebuggerStatement(
DebuggerStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitConditional(Conditional* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->var();
ASSERT(var->is_global());
ASSERT(!var->is_this());
RecordUse(var, expr);
}
void LivenessAnalyzer::VisitLiteral(Literal* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->IsPropertyName());
VariableProxy* proxy = prop->obj()->AsVariableProxy();
ASSERT(proxy != NULL && proxy->var()->is_this());
// Record use of this at the assignment node. Assignments to
// this-properties are treated like unary operations.
RecordUse(proxy->var(), expr);
// Visit right-hand side.
Visit(expr->value());
}
void LivenessAnalyzer::VisitThrow(Throw* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitProperty(Property* expr) {
ASSERT(expr->key()->IsPropertyName());
VariableProxy* proxy = expr->obj()->AsVariableProxy();
ASSERT(proxy != NULL && proxy->var()->is_this());
RecordUse(proxy->var(), expr);
}
void LivenessAnalyzer::VisitCall(Call* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitCallNew(CallNew* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitCallRuntime(CallRuntime* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitUnaryOperation(UnaryOperation* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitCountOperation(CountOperation* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitBinaryOperation(BinaryOperation* expr) {
// Visit child nodes in reverse evaluation order.
Visit(expr->right());
Visit(expr->left());
}
void LivenessAnalyzer::VisitCompareOperation(CompareOperation* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitThisFunction(ThisFunction* expr) {
UNREACHABLE();
}
AssignedVariablesAnalyzer::AssignedVariablesAnalyzer(FunctionLiteral* fun)
: fun_(fun),
av_(fun->scope()->num_parameters() + fun->scope()->num_stack_slots()) {}
void AssignedVariablesAnalyzer::Analyze() {
ASSERT(av_.length() > 0);
VisitStatements(fun_->body());
}
Variable* AssignedVariablesAnalyzer::FindSmiLoopVariable(ForStatement* stmt) {
// The loop must have all necessary parts.
if (stmt->init() == NULL || stmt->cond() == NULL || stmt->next() == NULL) {
return NULL;
}
// The initialization statement has to be a simple assignment.
Assignment* init = stmt->init()->StatementAsSimpleAssignment();
if (init == NULL) return NULL;
// We only deal with local variables.
Variable* loop_var = init->target()->AsVariableProxy()->AsVariable();
if (loop_var == NULL || !loop_var->IsStackAllocated()) return NULL;
// The initial value has to be a smi.
Literal* init_lit = init->value()->AsLiteral();
if (init_lit == NULL || !init_lit->handle()->IsSmi()) return NULL;
int init_value = Smi::cast(*init_lit->handle())->value();
// The condition must be a compare of variable with <, <=, >, or >=.
CompareOperation* cond = stmt->cond()->AsCompareOperation();
if (cond == NULL) return NULL;
if (cond->op() != Token::LT
&& cond->op() != Token::LTE
&& cond->op() != Token::GT
&& cond->op() != Token::GTE) return NULL;
// The lhs must be the same variable as in the init expression.
if (cond->left()->AsVariableProxy()->AsVariable() != loop_var) return NULL;
// The rhs must be a smi.
Literal* term_lit = cond->right()->AsLiteral();
if (term_lit == NULL || !term_lit->handle()->IsSmi()) return NULL;
int term_value = Smi::cast(*term_lit->handle())->value();
// The count operation updates the same variable as in the init expression.
CountOperation* update = stmt->next()->StatementAsCountOperation();
if (update == NULL) return NULL;
if (update->expression()->AsVariableProxy()->AsVariable() != loop_var) {
return NULL;
}
// The direction of the count operation must agree with the start and the end
// value. We currently do not allow the initial value to be the same as the
// terminal value. This _would_ be ok as long as the loop body never executes
// or executes exactly one time.
if (init_value == term_value) return NULL;
if (init_value < term_value && update->op() != Token::INC) return NULL;
if (init_value > term_value && update->op() != Token::DEC) return NULL;
// Check that the update operation cannot overflow the smi range. This can
// occur in the two cases where the loop bound is equal to the largest or
// smallest smi.
if (update->op() == Token::INC && term_value == Smi::kMaxValue) return NULL;
if (update->op() == Token::DEC && term_value == Smi::kMinValue) return NULL;
// Found a smi loop variable.
return loop_var;
}
int AssignedVariablesAnalyzer::BitIndex(Variable* var) {
ASSERT(var != NULL);
ASSERT(var->IsStackAllocated());
Slot* slot = var->slot();
if (slot->type() == Slot::PARAMETER) {
return slot->index();
} else {
return fun_->scope()->num_parameters() + slot->index();
}
}
void AssignedVariablesAnalyzer::RecordAssignedVar(Variable* var) {
ASSERT(var != NULL);
if (var->IsStackAllocated()) {
av_.Add(BitIndex(var));
}
}
void AssignedVariablesAnalyzer::MarkIfTrivial(Expression* expr) {
Variable* var = expr->AsVariableProxy()->AsVariable();
if (var != NULL &&
var->IsStackAllocated() &&
!var->is_arguments() &&
var->mode() != Variable::CONST &&
(var->is_this() || !av_.Contains(BitIndex(var)))) {
expr->AsVariableProxy()->set_is_trivial(true);
}
}
void AssignedVariablesAnalyzer::ProcessExpression(Expression* expr) {
BitVector saved_av(av_);
av_.Clear();
Visit(expr);
av_.Union(saved_av);
}
void AssignedVariablesAnalyzer::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void AssignedVariablesAnalyzer::VisitExpressionStatement(
ExpressionStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) {
// Do nothing.
}
void AssignedVariablesAnalyzer::VisitIfStatement(IfStatement* stmt) {
ProcessExpression(stmt->condition());
Visit(stmt->then_statement());
Visit(stmt->else_statement());
}
void AssignedVariablesAnalyzer::VisitContinueStatement(
ContinueStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitBreakStatement(BreakStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitReturnStatement(ReturnStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitWithEnterStatement(
WithEnterStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitWithExitStatement(
WithExitStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) {
BitVector result(av_);
av_.Clear();
Visit(stmt->tag());
result.Union(av_);
for (int i = 0; i < stmt->cases()->length(); i++) {
CaseClause* clause = stmt->cases()->at(i);
if (!clause->is_default()) {
av_.Clear();
Visit(clause->label());
result.Union(av_);
}
VisitStatements(clause->statements());
}
av_.Union(result);
}
void AssignedVariablesAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) {
ProcessExpression(stmt->cond());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitWhileStatement(WhileStatement* stmt) {
ProcessExpression(stmt->cond());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) Visit(stmt->init());
if (stmt->cond() != NULL) ProcessExpression(stmt->cond());
if (stmt->next() != NULL) Visit(stmt->next());
// Process loop body. After visiting the loop body av_ contains
// the assigned variables of the loop body.
BitVector saved_av(av_);
av_.Clear();
Visit(stmt->body());
Variable* var = FindSmiLoopVariable(stmt);
if (var != NULL && !av_.Contains(BitIndex(var))) {
stmt->set_loop_variable(var);
}
av_.Union(saved_av);
}
void AssignedVariablesAnalyzer::VisitForInStatement(ForInStatement* stmt) {
ProcessExpression(stmt->each());
ProcessExpression(stmt->enumerable());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitTryCatchStatement(
TryCatchStatement* stmt) {
Visit(stmt->try_block());
Visit(stmt->catch_block());
}
void AssignedVariablesAnalyzer::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
Visit(stmt->try_block());
Visit(stmt->finally_block());
}
void AssignedVariablesAnalyzer::VisitDebuggerStatement(
DebuggerStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitConditional(Conditional* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->condition());
BitVector result(av_);
av_.Clear();
Visit(expr->then_expression());
result.Union(av_);
av_.Clear();
Visit(expr->else_expression());
av_.Union(result);
}
void AssignedVariablesAnalyzer::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void AssignedVariablesAnalyzer::VisitVariableProxy(VariableProxy* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitLiteral(Literal* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_.length());
for (int i = 0; i < expr->properties()->length(); i++) {
Visit(expr->properties()->at(i)->value());
result.Union(av_);
av_.Clear();
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_.length());
for (int i = 0; i < expr->values()->length(); i++) {
Visit(expr->values()->at(i));
result.Union(av_);
av_.Clear();
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->key());
ProcessExpression(expr->value());
}
void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) {
ASSERT(av_.IsEmpty());
if (expr->target()->AsProperty() != NULL) {
// Visit receiver and key of property store and rhs.
Visit(expr->target()->AsProperty()->obj());
ProcessExpression(expr->target()->AsProperty()->key());
ProcessExpression(expr->value());
// If we have a variable as a receiver in a property store, check if
// we can mark it as trivial.
MarkIfTrivial(expr->target()->AsProperty()->obj());
} else {
Visit(expr->target());
ProcessExpression(expr->value());
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
if (var != NULL) RecordAssignedVar(var);
}
}
void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->exception());
}
void AssignedVariablesAnalyzer::VisitProperty(Property* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->obj());
ProcessExpression(expr->key());
// In case we have a variable as a receiver, check if we can mark
// it as trivial.
MarkIfTrivial(expr->obj());
}
void AssignedVariablesAnalyzer::VisitCall(Call* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCallNew(CallNew* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCallRuntime(CallRuntime* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitUnaryOperation(UnaryOperation* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
}
void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (var != NULL) RecordAssignedVar(var);
}
void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->left());
ProcessExpression(expr->right());
// In case we have a variable on the left side, check if we can mark
// it as trivial.
MarkIfTrivial(expr->left());
}
void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->left());
ProcessExpression(expr->right());
// In case we have a variable on the left side, check if we can mark
// it as trivial.
MarkIfTrivial(expr->left());
}
void AssignedVariablesAnalyzer::VisitThisFunction(ThisFunction* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
#ifdef DEBUG
// Print a textual representation of an instruction in a flow graph. Using
// the AstVisitor is overkill because there is no recursion here. It is
// only used for printing in debug mode.
class TextInstructionPrinter: public AstVisitor {
public:
TextInstructionPrinter() : number_(0) {}
int NextNumber() { return number_; }
void AssignNumber(AstNode* node) { node->set_num(number_++); }
private:
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
int number_;
DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter);
};
void TextInstructionPrinter::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBlock(Block* stmt) {
PrintF("Block");
}
void TextInstructionPrinter::VisitExpressionStatement(
ExpressionStatement* stmt) {
PrintF("ExpressionStatement");
}
void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) {
PrintF("EmptyStatement");
}
void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) {
PrintF("IfStatement");
}
void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) {
PrintF("return @%d", stmt->expression()->num());
}
void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) {
PrintF("WithEnterStatement");
}
void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) {
PrintF("WithExitStatement");
}
void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) {
PrintF("DoWhileStatement");
}
void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) {
PrintF("WhileStatement");
}
void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) {
PrintF("ForStatement");
}
void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) {
PrintF("ForInStatement");
}
void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) {
PrintF("DebuggerStatement");
}
void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) {
PrintF("FunctionLiteral");
}
void TextInstructionPrinter::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
PrintF("FunctionBoilerplateLiteral");
}
void TextInstructionPrinter::VisitConditional(Conditional* expr) {
PrintF("Conditional");
}
void TextInstructionPrinter::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->AsVariable();
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
if (var->IsStackAllocated() && expr->reaching_definitions() != NULL) {
expr->reaching_definitions()->Print();
}
} else {
ASSERT(expr->AsProperty() != NULL);
VisitProperty(expr->AsProperty());
}
}
void TextInstructionPrinter::VisitLiteral(Literal* expr) {
expr->handle()->ShortPrint();
}
void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) {
PrintF("RegExpLiteral");
}
void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) {
PrintF("ObjectLiteral");
}
void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) {
PrintF("ArrayLiteral");
}
void TextInstructionPrinter::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
PrintF("CatchExtensionObject");
}
void TextInstructionPrinter::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
if (var == NULL && prop == NULL) {
// Throw reference error.
Visit(expr->target());
return;
}
// Print the left-hand side.
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
} else if (prop != NULL) {
PrintF("@%d", prop->obj()->num());
if (prop->key()->IsPropertyName()) {
PrintF(".");
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[@%d]", prop->key()->num());
}
}
// Print the operation.
if (expr->is_compound()) {
PrintF(" = ");
// Print the left-hand side again when compound.
if (var != NULL) {
PrintF("@%d", expr->target()->num());
} else {
PrintF("@%d", prop->obj()->num());
if (prop->key()->IsPropertyName()) {
PrintF(".");
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[@%d]", prop->key()->num());
}
}
// Print the corresponding binary operator.
PrintF(" %s ", Token::String(expr->binary_op()));
} else {
PrintF(" %s ", Token::String(expr->op()));
}
// Print the right-hand side.
PrintF("@%d", expr->value()->num());
if (expr->num() != AstNode::kNoNumber) {
PrintF(" ;; D%d", expr->num());
}
}
void TextInstructionPrinter::VisitThrow(Throw* expr) {
PrintF("throw @%d", expr->exception()->num());
}
void TextInstructionPrinter::VisitProperty(Property* expr) {
if (expr->key()->IsPropertyName()) {
PrintF("@%d.", expr->obj()->num());
ASSERT(expr->key()->AsLiteral() != NULL);
expr->key()->AsLiteral()->handle()->Print();
} else {
PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num());
}
}
void TextInstructionPrinter::VisitCall(Call* expr) {
PrintF("@%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallNew(CallNew* expr) {
PrintF("new @%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) {
PrintF("%s(", *expr->name()->ToCString());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) {
PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num());
}
void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) {
if (expr->is_prefix()) {
PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num());
} else {
PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op()));
}
if (expr->num() != AstNode::kNoNumber) {
PrintF(" ;; D%d", expr->num());
}
}
void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(expr->op() != Token::COMMA);
ASSERT(expr->op() != Token::OR);
ASSERT(expr->op() != Token::AND);
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) {
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) {
PrintF("ThisFunction");
}
static int node_count = 0;
static int instruction_count = 0;
void Node::AssignNodeNumber() {
set_number(node_count++);
}
void Node::PrintReachingDefinitions() {
if (rd_.rd_in() != NULL) {
ASSERT(rd_.kill() != NULL && rd_.gen() != NULL);
PrintF("RD_in = ");
rd_.rd_in()->Print();
PrintF("\n");
PrintF("RD_kill = ");
rd_.kill()->Print();
PrintF("\n");
PrintF("RD_gen = ");
rd_.gen()->Print();
PrintF("\n");
}
}
void ExitNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Exit\n\n", number());
}
void BlockNode::PrintText() {
PrintReachingDefinitions();
// Print the instructions in the block.
PrintF("L%d: Block\n", number());
TextInstructionPrinter printer;
for (int i = 0, len = instructions_.length(); i < len; i++) {
PrintF("%d ", printer.NextNumber());
printer.Visit(instructions_[i]);
printer.AssignNumber(instructions_[i]);
PrintF("\n");
}
PrintF("goto L%d\n\n", successor_->number());
}
void BranchNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Branch\n", number());
PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number());
}
void JoinNode::PrintText() {
PrintReachingDefinitions();
PrintF("L%d: Join(", number());
for (int i = 0, len = predecessors_.length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("L%d", predecessors_[i]->number());
}
PrintF(")\ngoto L%d\n\n", successor_->number());
}
void FlowGraph::PrintText(ZoneList<Node*>* postorder) {
PrintF("\n========\n");
// Number nodes and instructions in reverse postorder.
node_count = 0;
instruction_count = 0;
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->AssignNodeNumber();
}
// Print basic blocks in reverse postorder.
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->PrintText();
}
}
#endif // defined(DEBUG)
int ReachingDefinitions::IndexFor(Variable* var, int variable_count) {
// Parameters are numbered left-to-right from the beginning of the bit
// set. Stack-allocated locals are allocated right-to-left from the end.
ASSERT(var != NULL && var->IsStackAllocated());
Slot* slot = var->slot();
if (slot->type() == Slot::PARAMETER) {
return slot->index();
} else {
return (variable_count - 1) - slot->index();
}
}
void Node::InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark) {
ASSERT(!IsMarkedWith(mark));
rd_.Initialize(definition_count);
MarkWith(mark);
worklist->Insert(this);
}
void BlockNode::InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark) {
ASSERT(!IsMarkedWith(mark));
int instruction_count = instructions_.length();
int variable_count = variables->length();
rd_.Initialize(definition_count);
for (int i = 0; i < instruction_count; i++) {
Expression* expr = instructions_[i]->AsExpression();
if (expr == NULL) continue;
Variable* var = expr->AssignedVar();
if (var == NULL || !var->IsStackAllocated()) continue;
// All definitions of this variable are killed.
BitVector* def_set =
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
rd_.kill()->Union(*def_set);
// All previously generated definitions are not generated.
rd_.gen()->Subtract(*def_set);
// This one is generated.
rd_.gen()->Add(expr->num());
}
// Add all blocks except the entry node to the worklist.
if (predecessor_ != NULL) {
MarkWith(mark);
worklist->Insert(this);
}
}
void ExitNode::ComputeRDOut(BitVector* result) {
// Should not be the predecessor of any node.
UNREACHABLE();
}
void BlockNode::ComputeRDOut(BitVector* result) {
// All definitions reaching this block ...
*result = *rd_.rd_in();
// ... except those killed by the block ...
result->Subtract(*rd_.kill());
// ... but including those generated by the block.
result->Union(*rd_.gen());
}
void BranchNode::ComputeRDOut(BitVector* result) {
// Branch nodes don't kill or generate definitions.
*result = *rd_.rd_in();
}
void JoinNode::ComputeRDOut(BitVector* result) {
// Join nodes don't kill or generate definitions.
*result = *rd_.rd_in();
}
void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
// The exit node has no successors so we can just update in place. New
// RD_in is the union over all predecessors.
int definition_count = rd_.rd_in()->length();
rd_.rd_in()->Clear();
BitVector temp(definition_count);
for (int i = 0, len = predecessors_.length(); i < len; i++) {
// Because ComputeRDOut always overwrites temp and its value is
// always read out before calling ComputeRDOut again, we do not
// have to clear it on each iteration of the loop.
predecessors_[i]->ComputeRDOut(&temp);
rd_.rd_in()->Union(temp);
}
}
void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
// The entry block has no predecessor. Its RD_in does not change.
if (predecessor_ == NULL) return;
BitVector new_rd_in(rd_.rd_in()->length());
predecessor_->ComputeRDOut(&new_rd_in);
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successor to the worklist if not already present.
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
worklist->Insert(successor_);
}
}
void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
BitVector new_rd_in(rd_.rd_in()->length());
predecessor_->ComputeRDOut(&new_rd_in);
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successors to the worklist if not already present.
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
worklist->Insert(successor0_);
}
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
worklist->Insert(successor1_);
}
}
void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
int definition_count = rd_.rd_in()->length();
BitVector new_rd_in(definition_count);
// New RD_in is the union over all predecessors.
BitVector temp(definition_count);
for (int i = 0, len = predecessors_.length(); i < len; i++) {
predecessors_[i]->ComputeRDOut(&temp);
new_rd_in.Union(temp);
}
if (rd_.rd_in()->Equals(new_rd_in)) return;
// Update RD_in.
*rd_.rd_in() = new_rd_in;
// Add the successor to the worklist if not already present.
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
worklist->Insert(successor_);
}
}
void Node::PropagateReachingDefinitions(List<BitVector*>* variables) {
// Nothing to do.
}
void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) {
// Propagate RD_in from the start of the block to all the variable
// references.
int variable_count = variables->length();
BitVector rd = *rd_.rd_in();
for (int i = 0, len = instructions_.length(); i < len; i++) {
Expression* expr = instructions_[i]->AsExpression();
if (expr == NULL) continue;
// Look for a variable reference to record its reaching definitions.
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy == NULL) {
// Not a VariableProxy? Maybe it's a count operation.
CountOperation* count_operation = expr->AsCountOperation();
if (count_operation != NULL) {
proxy = count_operation->expression()->AsVariableProxy();
}
}
if (proxy == NULL) {
// OK, Maybe it's a compound assignment.
Assignment* assignment = expr->AsAssignment();
if (assignment != NULL && assignment->is_compound()) {
proxy = assignment->target()->AsVariableProxy();
}
}
if (proxy != NULL &&
proxy->var()->IsStackAllocated() &&
!proxy->var()->is_this()) {
// All definitions for this variable.
BitVector* definitions =
variables->at(ReachingDefinitions::IndexFor(proxy->var(),
variable_count));
BitVector* reaching_definitions = new BitVector(*definitions);
// Intersected with all definitions (of any variable) reaching this
// instruction.
reaching_definitions->Intersect(rd);
proxy->set_reaching_definitions(reaching_definitions);
}
// It may instead (or also) be a definition. If so update the running
// value of reaching definitions for the block.
Variable* var = expr->AssignedVar();
if (var == NULL || !var->IsStackAllocated()) continue;
// All definitions of this variable are killed.
BitVector* def_set =
variables->at(ReachingDefinitions::IndexFor(var, variable_count));
rd.Subtract(*def_set);
// This definition is generated.
rd.Add(expr->num());
}
}
void ReachingDefinitions::Compute() {
ASSERT(!definitions_->is_empty());
int variable_count = variables_.length();
int definition_count = definitions_->length();
int node_count = postorder_->length();
// Step 1: For each variable, identify the set of all its definitions in
// the body.
for (int i = 0; i < definition_count; i++) {
Variable* var = definitions_->at(i)->AssignedVar();
variables_[IndexFor(var, variable_count)]->Add(i);
}
if (FLAG_print_graph_text) {
for (int i = 0; i < variable_count; i++) {
BitVector* def_set = variables_[i];
if (!def_set->IsEmpty()) {
// At least one definition.
bool first = true;
for (int j = 0; j < definition_count; j++) {
if (def_set->Contains(j)) {
if (first) {
Variable* var = definitions_->at(j)->AssignedVar();
ASSERT(var != NULL);
PrintF("Def[%s] = {%d", *var->name()->ToCString(), j);
first = false;
} else {
PrintF(",%d", j);
}
}
}
PrintF("}\n");
}
}
}
// Step 2: Compute KILL and GEN for each block node, initialize RD_in for
// all nodes, and mark and add all nodes to the worklist in reverse
// postorder. All nodes should currently have the same mark.
bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current.
WorkList<Node> worklist(node_count);
for (int i = node_count - 1; i >= 0; i--) {
postorder_->at(i)->InitializeReachingDefinitions(definition_count,
&variables_,
&worklist,
mark);
}
// Step 3: Until the worklist is empty, remove an item compute and update
// its rd_in based on its predecessor's rd_out. If rd_in has changed, add
// all necessary successors to the worklist.
while (!worklist.is_empty()) {
Node* node = worklist.Remove();
node->MarkWith(!mark);
node->UpdateRDIn(&worklist, mark);
}
// Step 4: Based on RD_in for block nodes, propagate reaching definitions
// to all variable uses in the block.
for (int i = 0; i < node_count; i++) {
postorder_->at(i)->PropagateReachingDefinitions(&variables_);
}
}
} } // namespace v8::internal