blob: 1df87c07a7cd34c92341ac08c0eba616c21f616f [file] [log] [blame]
// Copyright 2008 Google Inc. All Rights Reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "disasm.h"
#include "constants-arm.h"
#include "simulator-arm.h"
#if !defined(__arm__)
// Only build the simulator if not compiling for real ARM hardware.
namespace assembler { namespace arm {
using ::v8::internal::Object;
using ::v8::internal::PrintF;
using ::v8:: internal::ReadLine;
using ::v8:: internal::DeleteArray;
DEFINE_bool(trace_sim, false, "trace simulator execution");
// The Debugger class is used by the simulator while debugging simulated ARM
// code.
class Debugger {
public:
explicit Debugger(Simulator* sim);
~Debugger();
void Stop(Instr* instr);
void Debug();
private:
static const instr_t kBreakpointInstr =
(AL << 28 | 7 << 25 | 1 << 24 | break_point);
Simulator* sim_;
bool GetValue(char* desc, int32_t* value);
// Set or delete a breakpoint. Returns true if successful.
bool SetBreakpoint(Instr* breakpc);
bool DeleteBreakpoint(Instr* breakpc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
};
Debugger::Debugger(Simulator* sim) {
sim_ = sim;
}
Debugger::~Debugger() {
}
void Debugger::Stop(Instr* instr) {
const char* str = (const char*)(instr->InstructionBits() & 0x0fffffff);
PrintF("Simulator hit %s\n", str);
sim_->set_pc(sim_->get_pc() + Instr::kInstrSize);
Debug();
}
static char* reg_names[] = { "r0", "r1", "r2", "r3",
"r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11",
"r12", "r13", "r14", "r15",
"pc", "lr", "sp", "ip",
"fp", "sl", ""};
static int reg_nums[] = { 0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
15, 14, 13, 12,
11, 10};
static int RegNameToRegNum(char* name) {
int reg = 0;
while (*reg_names[reg] != 0) {
if (strcmp(reg_names[reg], name) == 0) {
return reg_nums[reg];
}
reg++;
}
return -1;
}
bool Debugger::GetValue(char* desc, int32_t* value) {
int regnum = RegNameToRegNum(desc);
if (regnum >= 0) {
if (regnum == 15) {
*value = sim_->get_pc();
} else {
*value = sim_->get_register(regnum);
}
return true;
} else {
return sscanf(desc, "%i", value) == 1;
}
return false;
}
bool Debugger::SetBreakpoint(Instr* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool Debugger::DeleteBreakpoint(Instr* breakpc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = NULL;
sim_->break_instr_ = 0;
return true;
}
void Debugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
void Debugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
}
}
void Debugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
// make sure to have a proper terminating character if reaching the limit
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
UndoBreakpoints();
while (!done) {
if (last_pc != sim_->get_pc()) {
disasm::Disassembler dasm;
char buffer[256]; // use a reasonably large buffer
dasm.InstructionDecode(buffer, sizeof(buffer),
reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%x %s\n", sim_->get_pc(), buffer);
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == NULL) {
break;
} else {
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int args = sscanf(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (args == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
PrintF("%s: %d 0x%x\n", arg1, value, value);
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("print value\n");
}
} else if ((strcmp(cmd, "po") == 0)
|| (strcmp(cmd, "printobject") == 0)) {
if (args == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
USE(obj);
PrintF("%s: \n", arg1);
#if defined(DEBUG)
obj->PrintLn();
#endif // defined(DEBUG)
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("printobject value\n");
}
} else if (strcmp(cmd, "disasm") == 0) {
disasm::Disassembler dasm;
char buffer[256]; // use a reasonably large buffer
byte* cur = NULL;
byte* end = NULL;
if (args == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instr::kInstrSize);
} else if (args == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// no length parameter passed, assume 10 instructions
end = cur + (10 * Instr::kInstrSize);
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instr::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, sizeof(buffer), cur);
PrintF(" 0x%x %s\n", cur, buffer);
cur += Instr::kInstrSize;
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
asm("int $3");
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (args == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instr*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break addr\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!DeleteBreakpoint(NULL)) {
PrintF("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "flags") == 0) {
PrintF("N flag: %d; ", sim_->n_flag_);
PrintF("Z flag: %d; ", sim_->z_flag_);
PrintF("C flag: %d; ", sim_->c_flag_);
PrintF("V flag: %d\n", sim_->v_flag_);
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
DeleteArray(line);
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
RedoBreakpoints();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
Simulator::Simulator() {
// Setup simulator support first. Some of this information is needed to
// setup the architecture state.
size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack
stack_ = reinterpret_cast<char*>(malloc(stack_size));
pc_modified_ = false;
icount_ = 0;
break_pc_ = NULL;
break_instr_ = 0;
// Setup architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < num_registers; i++) {
registers_[i] = 0;
}
n_flag_ = false;
z_flag_ = false;
c_flag_ = false;
v_flag_ = false;
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
// The lr and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_lr;
registers_[lr] = bad_lr;
}
// This is the Simulator singleton. Currently only one thread is supported by
// V8. If we had multiple threads, then we should have a Simulator instance on
// a per thread basis.
static Simulator* the_sim = NULL;
// Get the active Simulator for the current thread. See comment above about
// using a singleton currently.
Simulator* Simulator::current() {
if (the_sim == NULL) {
the_sim = new Simulator();
}
return the_sim;
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
ASSERT((reg >= 0) && (reg < num_registers));
if (reg == pc) {
pc_modified_ = true;
}
registers_[reg] = value;
}
// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
ASSERT((reg >= 0) && (reg < num_registers));
return registers_[reg] + ((reg == pc) ? Instr::kPCReadOffset : 0);
}
// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const {
return registers_[pc];
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit() const {
// Leave a safety margin of 256 bytes to prevent overrunning the stack when
// pushing values.
return reinterpret_cast<uintptr_t>(stack_) + 256;
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instr* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%x: %s\n",
instr, format);
UNIMPLEMENTED();
}
// Checks if the current instruction should be executed based on its
// condition bits.
bool Simulator::ConditionallyExecute(Instr* instr) {
switch (instr->ConditionField()) {
case EQ: return z_flag_;
case NE: return !z_flag_;
case CS: return c_flag_;
case CC: return !c_flag_;
case MI: return n_flag_;
case PL: return !n_flag_;
case VS: return v_flag_;
case VC: return !v_flag_;
case HI: return c_flag_ && !z_flag_;
case LS: return !c_flag_ || z_flag_;
case GE: return n_flag_ == v_flag_;
case LT: return n_flag_ != v_flag_;
case GT: return !z_flag_ && (n_flag_ == v_flag_);
case LE: return z_flag_ || (n_flag_ != v_flag_);
case AL: return true;
default: UNREACHABLE();
}
return false;
}
// Calculate and set the Negative and Zero flags.
void Simulator::SetNZFlags(int32_t val) {
n_flag_ = (val < 0);
z_flag_ = (val == 0);
}
// Set the Carry flag.
void Simulator::SetCFlag(bool val) {
c_flag_ = val;
}
// Set the oVerflow flag.
void Simulator::SetVFlag(bool val) {
v_flag_ = val;
}
// Calculate C flag value for additions.
bool Simulator::CarryFrom(int32_t left, int32_t right) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
uint32_t urest = 0xffffffffU - uleft;
return (uright > urest);
}
// Calculate C flag value for subtractions.
bool Simulator::BorrowFrom(int32_t left, int32_t right) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
return (uright > uleft);
}
// Calculate V flag value for additions and subtractions.
bool Simulator::OverflowFrom(int32_t alu_out,
int32_t left, int32_t right, bool addition) {
bool overflow;
if (addition) {
// operands have the same sign
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
// and operands and result have different sign
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
} else {
// operands have different signs
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
// and first operand and result have different signs
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
}
return overflow;
}
// Addressing Mode 1 - Data-processing operands:
// Get the value based on the shifter_operand with register.
int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) {
Shift shift = instr->ShiftField();
int shift_amount = instr->ShiftAmountField();
int32_t result = get_register(instr->RmField());
if (instr->Bit(4) == 0) {
// by immediate
if ((shift == ROR) && (shift_amount == 0)) {
UNIMPLEMENTED();
return result;
} else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
shift_amount = 32;
}
switch (shift) {
case ASR: {
if (shift_amount == 0) {
if (result < 0) {
result = 0xffffffff;
*carry_out = true;
} else {
result = 0;
*carry_out = false;
}
} else {
result >>= (shift_amount - 1);
*carry_out = (result & 1) == 1;
result >>= 1;
}
break;
}
case LSL: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else {
result <<= (shift_amount - 1);
*carry_out = (result < 0);
result <<= 1;
}
break;
}
case LSR: {
if (shift_amount == 0) {
result = 0;
*carry_out = c_flag_;
} else {
uint32_t uresult = static_cast<uint32_t>(result);
uresult >>= (shift_amount - 1);
*carry_out = (uresult & 1) == 1;
uresult >>= 1;
result = static_cast<int32_t>(uresult);
}
break;
}
case ROR: {
UNIMPLEMENTED();
break;
}
default: {
UNREACHABLE();
break;
}
}
} else {
// by register
int rs = instr->RsField();
shift_amount = get_register(rs) &0xff;
switch (shift) {
case ASR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
result >>= (shift_amount - 1);
*carry_out = (result & 1) == 1;
result >>= 1;
} else {
ASSERT(shift_amount >= 32);
if (result < 0) {
*carry_out = true;
result = 0xffffffff;
} else {
*carry_out = false;
result = 0;
}
}
break;
}
case LSL: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
result <<= (shift_amount - 1);
*carry_out = (result < 0);
result <<= 1;
} else if (shift_amount == 32) {
*carry_out = (result & 1) == 1;
result = 0;
} else {
ASSERT(shift_amount > 32);
*carry_out = false;
result = 0;
}
break;
}
case LSR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
uint32_t uresult = static_cast<uint32_t>(result);
uresult >>= (shift_amount - 1);
*carry_out = (uresult & 1) == 1;
uresult >>= 1;
result = static_cast<int32_t>(uresult);
} else if (shift_amount == 32) {
*carry_out = (result < 0);
result = 0;
} else {
*carry_out = false;
result = 0;
}
break;
}
case ROR: {
UNIMPLEMENTED();
break;
}
default: {
UNREACHABLE();
break;
}
}
}
return result;
}
// Addressing Mode 1 - Data-processing operands:
// Get the value based on the shifter_operand with immediate.
int32_t Simulator::GetImm(Instr* instr, bool* carry_out) {
int rotate = instr->RotateField() * 2;
int immed8 = instr->Immed8Field();
int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
*carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
return imm;
}
static int count_bits(int bit_vector) {
int count = 0;
while (bit_vector != 0) {
if (bit_vector & 1 != 0) {
count++;
}
bit_vector >>= 1;
}
return count;
}
// Addressing Mode 4 - Load and Store Multiple
void Simulator::HandleRList(Instr* instr, bool load) {
int rn = instr->RnField();
int32_t rn_val = get_register(rn);
int rlist = instr->RlistField();
int num_regs = count_bits(rlist);
intptr_t start_address = 0;
intptr_t end_address = 0;
switch (instr->PUField()) {
case 0: {
// Print("da");
UNIMPLEMENTED();
break;
}
case 1: {
// Print("ia");
start_address = rn_val;
end_address = rn_val + (num_regs * 4) - 4;
rn_val = rn_val + (num_regs * 4);
break;
}
case 2: {
// Print("db");
start_address = rn_val - (num_regs * 4);
end_address = rn_val - 4;
rn_val = start_address;
break;
}
case 3: {
// Print("ib");
UNIMPLEMENTED();
break;
}
default: {
UNREACHABLE();
break;
}
}
if (instr->HasW()) {
set_register(rn, rn_val);
}
intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
int reg = 0;
while (rlist != 0) {
if ((rlist & 1) != 0) {
if (load) {
set_register(reg, *address);
} else {
*address = get_register(reg);
}
address += 1;
}
reg++;
rlist >>= 1;
}
ASSERT(end_address == ((intptr_t)address) - 4);
}
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the r1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1);
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime.
void Simulator::SoftwareInterrupt(Instr* instr) {
switch (instr->SwiField()) {
case call_rt_r5: {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(get_register(r5));
intptr_t arg0 = get_register(r0);
intptr_t arg1 = get_register(r1);
int64_t result = target(arg0, arg1);
int32_t lo_res = static_cast<int32_t>(result);
int32_t hi_res = static_cast<int32_t>(result >> 32);
set_register(r0, lo_res);
set_register(r1, hi_res);
set_pc(reinterpret_cast<int32_t>(instr) + Instr::kInstrSize);
break;
}
case call_rt_r2: {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(get_register(r2));
intptr_t arg0 = get_register(r0);
intptr_t arg1 = get_register(r1);
int64_t result = target(arg0, arg1);
int32_t lo_res = static_cast<int32_t>(result);
int32_t hi_res = static_cast<int32_t>(result >> 32);
set_register(r0, lo_res);
set_register(r1, hi_res);
set_pc(reinterpret_cast<int32_t>(instr) + Instr::kInstrSize);
break;
}
case break_point: {
Debugger dbg(this);
dbg.Debug();
break;
}
default: {
UNREACHABLE();
break;
}
}
}
// Handle execution based on instruction types.
// Instruction types 0 and 1 are both rolled into one function because they
// only differ in the handling of the shifter_operand.
void Simulator::DecodeType01(Instr* instr) {
int type = instr->TypeField();
if ((type == 0) && instr->IsSpecialType0()) {
// multiply instruction or extra loads and stores
if (instr->Bits(7, 4) == 9) {
if (instr->Bit(24) == 0) {
// multiply instructions
int rd = instr->RdField();
int rm = instr->RmField();
int rs = instr->RsField();
int32_t rs_val = get_register(rs);
int32_t rm_val = get_register(rm);
if (instr->Bit(23) == 0) {
if (instr->Bit(21) == 0) {
// Format(instr, "mul'cond's 'rd, 'rm, 'rs");
int32_t alu_out = rm_val * rs_val;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
}
} else {
Format(instr, "mla'cond's 'rd, 'rm, 'rs, 'rn");
}
} else {
// Format(instr, "'um'al'cond's 'rn, 'rd, 'rs, 'rm");
int rn = instr->RnField();
int32_t hi_res = 0;
int32_t lo_res = 0;
if (instr->Bit(22) == 0) {
// signed multiply
UNIMPLEMENTED();
} else {
// unsigned multiply
uint64_t left_op = rm_val;
uint64_t right_op = rs_val;
uint64_t result = left_op * right_op;
hi_res = static_cast<int32_t>(result >> 32);
lo_res = static_cast<int32_t>(result & 0xffffffff);
}
set_register(rn, hi_res);
set_register(rd, lo_res);
if (instr->HasS()) {
UNIMPLEMENTED();
}
}
} else {
UNIMPLEMENTED(); // not used by V8
}
} else {
// extra load/store instructions
int rd = instr->RdField();
int rn = instr->RnField();
int32_t rn_val = get_register(rn);
int32_t addr = 0;
if (instr->Bit(22) == 0) {
int rm = instr->RmField();
int32_t rm_val = get_register(rm);
switch (instr->PUField()) {
case 0: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
ASSERT(!instr->HasW());
addr = rn_val;
rn_val -= rm_val;
set_register(rn, rn_val);
break;
}
case 1: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
ASSERT(!instr->HasW());
addr = rn_val;
rn_val += rm_val;
set_register(rn, rn_val);
break;
}
case 2: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
rn_val -= rm_val;
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
case 3: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
rn_val += rm_val;
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
default: {
// The PU field is a 2-bit field.
UNREACHABLE();
break;
}
}
} else {
int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField();
switch (instr->PUField()) {
case 0: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
ASSERT(!instr->HasW());
addr = rn_val;
rn_val -= imm_val;
set_register(rn, rn_val);
break;
}
case 1: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
ASSERT(!instr->HasW());
addr = rn_val;
rn_val += imm_val;
set_register(rn, rn_val);
break;
}
case 2: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
rn_val -= imm_val;
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
case 3: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
rn_val += imm_val;
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
default: {
// The PU field is a 2-bit field.
UNREACHABLE();
break;
}
}
}
if (instr->HasH()) {
if (instr->HasSign()) {
int16_t* haddr = reinterpret_cast<int16_t*>(addr);
if (instr->HasL()) {
int16_t val = *haddr;
set_register(rd, val);
} else {
int16_t val = get_register(rd);
*haddr = val;
}
} else {
uint16_t* haddr = reinterpret_cast<uint16_t*>(addr);
if (instr->HasL()) {
uint16_t val = *haddr;
set_register(rd, val);
} else {
uint16_t val = get_register(rd);
*haddr = val;
}
}
} else {
// signed byte loads
ASSERT(instr->HasSign());
ASSERT(instr->HasL());
int8_t* baddr = reinterpret_cast<int8_t*>(addr);
int8_t val = *baddr;
set_register(rd, val);
}
return;
}
} else {
int rd = instr->RdField();
int rn = instr->RnField();
int32_t rn_val = get_register(rn);
int32_t shifter_operand = 0;
bool shifter_carry_out = 0;
if (type == 0) {
shifter_operand = GetShiftRm(instr, &shifter_carry_out);
} else {
ASSERT(instr->TypeField() == 1);
shifter_operand = GetImm(instr, &shifter_carry_out);
}
int32_t alu_out;
switch (instr->OpcodeField()) {
case AND: {
// Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "and'cond's 'rd, 'rn, 'imm");
alu_out = rn_val & shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case EOR: {
// Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "eor'cond's 'rd, 'rn, 'imm");
alu_out = rn_val ^ shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case SUB: {
// Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "sub'cond's 'rd, 'rn, 'imm");
alu_out = rn_val - shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(!BorrowFrom(rn_val, shifter_operand));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
}
break;
}
case RSB: {
// Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
alu_out = shifter_operand - rn_val;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(!BorrowFrom(shifter_operand, rn_val));
SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
}
break;
}
case ADD: {
// Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "add'cond's 'rd, 'rn, 'imm");
alu_out = rn_val + shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(CarryFrom(rn_val, shifter_operand));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
}
break;
}
case ADC: {
Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
Format(instr, "adc'cond's 'rd, 'rn, 'imm");
break;
}
case SBC: {
Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
break;
}
case RSC: {
Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
break;
}
case TST: {
if (instr->HasS()) {
// Format(instr, "tst'cond 'rn, 'shift_rm");
// Format(instr, "tst'cond 'rn, 'imm");
alu_out = rn_val & shifter_operand;
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
} else {
UNIMPLEMENTED();
}
break;
}
case TEQ: {
if (instr->HasS()) {
// Format(instr, "teq'cond 'rn, 'shift_rm");
// Format(instr, "teq'cond 'rn, 'imm");
alu_out = rn_val ^ shifter_operand;
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
} else {
UNIMPLEMENTED();
}
break;
}
case CMP: {
if (instr->HasS()) {
// Format(instr, "cmp'cond 'rn, 'shift_rm");
// Format(instr, "cmp'cond 'rn, 'imm");
alu_out = rn_val - shifter_operand;
SetNZFlags(alu_out);
SetCFlag(!BorrowFrom(rn_val, shifter_operand));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
} else {
UNIMPLEMENTED();
}
break;
}
case CMN: {
if (instr->HasS()) {
Format(instr, "cmn'cond 'rn, 'shift_rm");
Format(instr, "cmn'cond 'rn, 'imm");
} else {
UNIMPLEMENTED();
}
break;
}
case ORR: {
// Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "orr'cond's 'rd, 'rn, 'imm");
alu_out = rn_val | shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case MOV: {
// Format(instr, "mov'cond's 'rd, 'shift_rm");
// Format(instr, "mov'cond's 'rd, 'imm");
alu_out = shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case BIC: {
// Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "bic'cond's 'rd, 'rn, 'imm");
alu_out = rn_val & ~shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case MVN: {
// Format(instr, "mvn'cond's 'rd, 'shift_rm");
// Format(instr, "mvn'cond's 'rd, 'imm");
alu_out = ~shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
default: {
UNREACHABLE();
break;
}
}
}
}
void Simulator::DecodeType2(Instr* instr) {
int rd = instr->RdField();
int rn = instr->RnField();
int32_t rn_val = get_register(rn);
int32_t im_val = instr->Offset12Field();
int32_t addr = 0;
switch (instr->PUField()) {
case 0: {
// Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
ASSERT(!instr->HasW());
addr = rn_val;
rn_val -= im_val;
set_register(rn, rn_val);
break;
}
case 1: {
// Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
ASSERT(!instr->HasW());
addr = rn_val;
rn_val += im_val;
set_register(rn, rn_val);
break;
}
case 2: {
// Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
rn_val -= im_val;
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
case 3: {
// Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
rn_val += im_val;
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
default: {
UNREACHABLE();
break;
}
}
if (instr->HasB()) {
byte* baddr = reinterpret_cast<byte*>(addr);
if (instr->HasL()) {
byte val = *baddr;
set_register(rd, val);
} else {
byte val = get_register(rd);
*baddr = val;
}
} else {
intptr_t* iaddr = reinterpret_cast<intptr_t*>(addr);
if (instr->HasL()) {
set_register(rd, *iaddr);
} else {
*iaddr = get_register(rd);
}
}
}
void Simulator::DecodeType3(Instr* instr) {
int rd = instr->RdField();
int rn = instr->RnField();
int32_t rn_val = get_register(rn);
bool shifter_carry_out = 0;
int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
int32_t addr = 0;
switch (instr->PUField()) {
case 0: {
ASSERT(!instr->HasW());
Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
break;
}
case 1: {
ASSERT(!instr->HasW());
Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
break;
}
case 2: {
// Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
addr = rn_val - shifter_operand;
if (instr->HasW()) {
set_register(rn, addr);
}
break;
}
case 3: {
// Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
addr = rn_val + shifter_operand;
if (instr->HasW()) {
set_register(rn, addr);
}
break;
}
default: {
UNREACHABLE();
break;
}
}
if (instr->HasB()) {
UNIMPLEMENTED();
} else {
intptr_t* iaddr = reinterpret_cast<intptr_t*>(addr);
if (instr->HasL()) {
set_register(rd, *iaddr);
} else {
*iaddr = get_register(rd);
}
}
}
void Simulator::DecodeType4(Instr* instr) {
ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode
if (instr->HasL()) {
// Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
HandleRList(instr, true);
} else {
// Format(instr, "stm'cond'pu 'rn'w, 'rlist");
HandleRList(instr, false);
}
}
void Simulator::DecodeType5(Instr* instr) {
// Format(instr, "b'l'cond 'target");
int off = (instr->SImmed24Field() << 2) + 8;
intptr_t pc = get_pc();
if (instr->HasLink()) {
set_register(lr, pc + Instr::kInstrSize);
}
set_pc(pc+off);
}
void Simulator::DecodeType6(Instr* instr) {
UNIMPLEMENTED();
}
void Simulator::DecodeType7(Instr* instr) {
if (instr->Bit(24) == 1) {
// Format(instr, "swi 'swi");
SoftwareInterrupt(instr);
} else {
UNIMPLEMENTED();
}
}
// Executes the current instruction.
void Simulator::InstructionDecode(Instr* instr) {
pc_modified_ = false;
if (instr->ConditionField() == special_condition) {
Debugger dbg(this);
dbg.Stop(instr);
return;
}
if (FLAG_trace_sim) {
disasm::Disassembler dasm;
char buffer[256]; // use a reasonably large buffer
dasm.InstructionDecode(buffer,
sizeof(buffer),
reinterpret_cast<byte*>(instr));
PrintF(" 0x%x %s\n", instr, buffer);
}
if (ConditionallyExecute(instr)) {
switch (instr->TypeField()) {
case 0:
case 1: {
DecodeType01(instr);
break;
}
case 2: {
DecodeType2(instr);
break;
}
case 3: {
DecodeType3(instr);
break;
}
case 4: {
DecodeType4(instr);
break;
}
case 5: {
DecodeType5(instr);
break;
}
case 6: {
DecodeType6(instr);
break;
}
case 7: {
DecodeType7(instr);
break;
}
default: {
UNIMPLEMENTED();
break;
}
}
}
if (!pc_modified_) {
set_register(pc, reinterpret_cast<int32_t>(instr) + Instr::kInstrSize);
}
}
DEFINE_int(stop_sim_at, -1, "Simulator stop after x number of instructions");
//
void Simulator::execute() {
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
int program_counter = get_pc();
while (program_counter != end_sim_pc) {
Instr* instr = reinterpret_cast<Instr*>(program_counter);
icount_++;
if (icount_ == FLAG_stop_sim_at) {
Debugger dbg(this);
dbg.Debug();
} else {
InstructionDecode(instr);
}
program_counter = get_pc();
}
}
Object* Simulator::call(int32_t entry, int32_t p0, int32_t p1, int32_t p2,
int32_t p3, int32_t p4) {
// Setup parameters
set_register(r0, p0);
set_register(r1, p1);
set_register(r2, p2);
set_register(r3, p3);
intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp));
*(--stack_pointer) = p4;
set_register(sp, reinterpret_cast<int32_t>(stack_pointer));
// Prepare to execute the code at entry
set_register(pc, entry);
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
set_register(lr, end_sim_pc);
// Start the simulation
execute();
int result = get_register(r0);
return reinterpret_cast<Object*>(result);
}
} } // namespace assembler::arm
#endif // !defined(__arm__)