blob: 503a2d38ff69aa3d80d0bc70e6642c4dd6da1cb6 [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "debug.h"
#include "runtime.h"
namespace v8 { namespace internal {
#define __ masm->
void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id) {
// TODO(1238487): Don't pass the function in a static variable.
__ mov(ip, Operand(ExternalReference::builtin_passed_function()));
__ str(r1, MemOperand(ip, 0));
// The actual argument count has already been loaded into register
// r0, but JumpToBuiltin expects r0 to contain the number of
// arguments including the receiver.
__ add(r0, r0, Operand(1));
__ JumpToBuiltin(ExternalReference(id));
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
__ EnterConstructFrame();
// Preserve the two incoming parameters
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
__ push(r0); // smi-tagged arguments count
__ push(r1); // constructor function
// Allocate the new receiver object.
__ push(r1); // argument for Runtime_NewObject
__ CallRuntime(Runtime::kNewObject, 1);
__ push(r0); // save the receiver
// Push the function and the allocated receiver from the stack.
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ ldr(r1, MemOperand(sp, kPointerSize));
__ push(r1); // function
__ push(r0); // receiver
// Reload the number of arguments from the stack.
// r1: constructor function
// sp[0]: receiver
// sp[1]: constructor function
// sp[2]: receiver
// sp[3]: constructor function
// sp[4]: number of arguments (smi-tagged)
__ ldr(r3, MemOperand(sp, 4 * kPointerSize));
// Setup pointer to last argument.
__ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Setup number of arguments for function call below
__ mov(r0, Operand(r3, LSR, kSmiTagSize));
// Copy arguments and receiver to the expression stack.
// r0: number of arguments
// r2: address of last argument (caller sp)
// r1: constructor function
// r3: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: constructor function
// sp[2]: receiver
// sp[3]: constructor function
// sp[4]: number of arguments (smi-tagged)
Label loop, entry;
__ b(&entry);
__ bind(&loop);
__ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
__ push(ip);
__ bind(&entry);
__ sub(r3, r3, Operand(2), SetCC);
__ b(ge, &loop);
// Call the function.
// r0: number of arguments
// r1: constructor function
ParameterCount actual(r0);
__ InvokeFunction(r1, actual, CALL_FUNCTION);
// Pop the function from the stack.
// sp[0]: constructor function
// sp[2]: receiver
// sp[3]: constructor function
// sp[4]: number of arguments (smi-tagged)
__ pop();
// Restore context from the frame.
// r0: result
// sp[0]: receiver
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// r0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
__ ldr(r3, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
__ cmp(r3, Operand(FIRST_JS_OBJECT_TYPE));
__ b(ge, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ ldr(r0, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// r0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ ldr(r1, MemOperand(sp, 2 * kPointerSize));
__ LeaveConstructFrame();
__ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
__ add(sp, sp, Operand(kPointerSize));
__ mov(pc, Operand(lr));
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
// r5-r7, cp may be clobbered
// Clear the context before we push it when entering the JS frame.
__ mov(cp, Operand(0));
// Enter an internal frame.
__ EnterInternalFrame();
// Setup the context from the function argument.
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ push(r1);
__ push(r2);
// Copy arguments to the stack in a loop.
// r1: function
// r3: argc
// r4: argv, i.e. points to first arg
Label loop, entry;
__ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
// r2 points past last arg.
__ b(&entry);
__ bind(&loop);
__ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter
__ ldr(r0, MemOperand(r0)); // dereference handle
__ push(r0); // push parameter
__ bind(&entry);
__ cmp(r4, Operand(r2));
__ b(ne, &loop);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ mov(r4, Operand(Factory::undefined_value()));
__ mov(r5, Operand(r4));
__ mov(r6, Operand(r4));
__ mov(r7, Operand(r4));
if (kR9Available == 1)
__ mov(r9, Operand(r4));
// Invoke the code and pass argc as r0.
__ mov(r0, Operand(r3));
if (is_construct) {
__ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(r0);
__ InvokeFunction(r1, actual, CALL_FUNCTION);
}
// Exit the JS frame and remove the parameters (except function), and return.
// Respect ABI stack constraint.
__ LeaveInternalFrame();
__ mov(pc, lr);
// r0: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// r0: actual number of argument
{ Label done;
__ tst(r0, Operand(r0));
__ b(ne, &done);
__ mov(r2, Operand(Factory::undefined_value()));
__ push(r2);
__ add(r0, r0, Operand(1));
__ bind(&done);
}
// 2. Get the function to call from the stack.
// r0: actual number of argument
{ Label done, non_function, function;
__ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &non_function);
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
__ cmp(r2, Operand(JS_FUNCTION_TYPE));
__ b(eq, &function);
// Non-function called: Clear the function to force exception.
__ bind(&non_function);
__ mov(r1, Operand(0));
__ b(&done);
// Change the context eagerly because it will be used below to get the
// right global object.
__ bind(&function);
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
__ bind(&done);
}
// 3. Make sure first argument is an object; convert if necessary.
// r0: actual number of arguments
// r1: function
{ Label call_to_object, use_global_receiver, patch_receiver, done;
__ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
__ ldr(r2, MemOperand(r2, -kPointerSize));
// r0: actual number of arguments
// r1: function
// r2: first argument
__ tst(r2, Operand(kSmiTagMask));
__ b(eq, &call_to_object);
__ mov(r3, Operand(Factory::null_value()));
__ cmp(r2, r3);
__ b(eq, &use_global_receiver);
__ mov(r3, Operand(Factory::undefined_value()));
__ cmp(r2, r3);
__ b(eq, &use_global_receiver);
__ ldr(r3, FieldMemOperand(r2, HeapObject::kMapOffset));
__ ldrb(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
__ cmp(r3, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, &call_to_object);
__ cmp(r3, Operand(LAST_JS_OBJECT_TYPE));
__ b(le, &done);
__ bind(&call_to_object);
__ EnterInternalFrame();
// Store number of arguments and function across the call into the runtime.
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
__ push(r0);
__ push(r1);
__ push(r2);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
__ mov(r2, r0);
// Restore number of arguments and function.
__ pop(r1);
__ pop(r0);
__ mov(r0, Operand(r0, ASR, kSmiTagSize));
__ LeaveInternalFrame();
__ b(&patch_receiver);
// Use the global receiver object from the called function as the receiver.
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
__ str(r2, MemOperand(r3, -kPointerSize));
__ bind(&done);
}
// 4. Shift stuff one slot down the stack
// r0: actual number of arguments (including call() receiver)
// r1: function
{ Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
__ add(r2, r2, Operand(kPointerSize)); // copy receiver too
__ bind(&loop);
__ ldr(ip, MemOperand(r2, -kPointerSize));
__ str(ip, MemOperand(r2));
__ sub(r2, r2, Operand(kPointerSize));
__ cmp(r2, sp);
__ b(ne, &loop);
}
// 5. Adjust the actual number of arguments and remove the top element.
// r0: actual number of arguments (including call() receiver)
// r1: function
__ sub(r0, r0, Operand(1));
__ add(sp, sp, Operand(kPointerSize));
// 6. Get the code for the function or the non-function builtin.
// If number of expected arguments matches, then call. Otherwise restart
// the arguments adaptor stub.
// r0: actual number of arguments
// r1: function
{ Label invoke;
__ tst(r1, r1);
__ b(ne, &invoke);
__ mov(r2, Operand(0)); // expected arguments is 0 for CALL_NON_FUNCTION
__ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
__ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
__ bind(&invoke);
__ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r2,
FieldMemOperand(r3,
SharedFunctionInfo::kFormalParameterCountOffset));
__ ldr(r3,
MemOperand(r3, SharedFunctionInfo::kCodeOffset - kHeapObjectTag));
__ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
__ cmp(r2, r0); // Check formal and actual parameter counts.
__ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET, ne);
// 7. Jump to the code in r3 without checking arguments.
ParameterCount expected(0);
__ InvokeCode(r3, expected, expected, JUMP_FUNCTION);
}
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
const int kIndexOffset = -5 * kPointerSize;
const int kLimitOffset = -4 * kPointerSize;
const int kArgsOffset = 2 * kPointerSize;
const int kRecvOffset = 3 * kPointerSize;
const int kFunctionOffset = 4 * kPointerSize;
__ EnterInternalFrame();
__ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function
__ push(r0);
__ ldr(r0, MemOperand(fp, kArgsOffset)); // get the args array
__ push(r0);
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_JS);
// Eagerly check for stack-overflow before starting to push the arguments.
// r0: number of arguments
Label okay;
ExternalReference stack_guard_limit_address =
ExternalReference::address_of_stack_guard_limit();
__ mov(r2, Operand(stack_guard_limit_address));
__ ldr(r2, MemOperand(r2));
__ sub(r2, sp, r2);
__ sub(r2, r2, Operand(3 * kPointerSize)); // limit, index, receiver
__ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
__ b(hi, &okay);
// Out of stack space.
__ ldr(r1, MemOperand(fp, kFunctionOffset));
__ push(r1);
__ push(r0);
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_JS);
// Push current limit and index.
__ bind(&okay);
__ push(r0); // limit
__ mov(r1, Operand(0)); // initial index
__ push(r1);
// Change context eagerly to get the right global object if necessary.
__ ldr(r0, MemOperand(fp, kFunctionOffset));
__ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
// Compute the receiver.
Label call_to_object, use_global_receiver, push_receiver;
__ ldr(r0, MemOperand(fp, kRecvOffset));
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &call_to_object);
__ mov(r1, Operand(Factory::null_value()));
__ cmp(r0, r1);
__ b(eq, &use_global_receiver);
__ mov(r1, Operand(Factory::undefined_value()));
__ cmp(r0, r1);
__ b(eq, &use_global_receiver);
// Check if the receiver is already a JavaScript object.
// r0: receiver
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
__ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, &call_to_object);
__ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
__ b(le, &push_receiver);
// Convert the receiver to a regular object.
// r0: receiver
__ bind(&call_to_object);
__ push(r0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
__ b(&push_receiver);
// Use the current global receiver object as the receiver.
__ bind(&use_global_receiver);
const int kGlobalOffset =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
__ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
// r0: receiver
__ bind(&push_receiver);
__ push(r0);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ ldr(r0, MemOperand(fp, kIndexOffset));
__ b(&entry);
// Load the current argument from the arguments array and push it to the
// stack.
// r0: current argument index
__ bind(&loop);
__ ldr(r1, MemOperand(fp, kArgsOffset));
__ push(r1);
__ push(r0);
// Call the runtime to access the property in the arguments array.
__ CallRuntime(Runtime::kGetProperty, 2);
__ push(r0);
// Use inline caching to access the arguments.
__ ldr(r0, MemOperand(fp, kIndexOffset));
__ add(r0, r0, Operand(1 << kSmiTagSize));
__ str(r0, MemOperand(fp, kIndexOffset));
// Test if the copy loop has finished copying all the elements from the
// arguments object.
__ bind(&entry);
__ ldr(r1, MemOperand(fp, kLimitOffset));
__ cmp(r0, r1);
__ b(ne, &loop);
// Invoke the function.
ParameterCount actual(r0);
__ mov(r0, Operand(r0, ASR, kSmiTagSize));
__ ldr(r1, MemOperand(fp, kFunctionOffset));
__ InvokeFunction(r1, actual, CALL_FUNCTION);
// Tear down the internal frame and remove function, receiver and args.
__ LeaveInternalFrame();
__ add(sp, sp, Operand(3 * kPointerSize));
__ mov(pc, lr);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
__ mov(r4, Operand(ArgumentsAdaptorFrame::SENTINEL));
__ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
__ add(fp, sp, Operand(3 * kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ ldr(r1, MemOperand(fp, -3 * kPointerSize));
__ mov(sp, fp);
__ ldm(ia_w, sp, fp.bit() | lr.bit());
__ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(sp, sp, Operand(kPointerSize)); // adjust for receiver
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : actual number of arguments
// -- r1 : function (passed through to callee)
// -- r2 : expected number of arguments
// -- r3 : code entry to call
// -----------------------------------
Label invoke, dont_adapt_arguments;
Label enough, too_few;
__ cmp(r0, Operand(r2));
__ b(lt, &too_few);
__ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ b(eq, &dont_adapt_arguments);
{ // Enough parameters: actual >= excpected
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into r0 and copy end address into r2.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: code entry to call
__ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
// adjust for return address and receiver
__ add(r0, r0, Operand(2 * kPointerSize));
__ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: copy end address
// r3: code entry to call
Label copy;
__ bind(&copy);
__ ldr(ip, MemOperand(r0, 0));
__ push(ip);
__ cmp(r0, r2); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, &copy);
__ b(&invoke);
}
{ // Too few parameters: Actual < expected
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into r0 and copy end address is fp.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: code entry to call
__ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: code entry to call
Label copy;
__ bind(&copy);
// Adjust load for return address and receiver.
__ ldr(ip, MemOperand(r0, 2 * kPointerSize));
__ push(ip);
__ cmp(r0, fp); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, &copy);
// Fill the remaining expected arguments with undefined.
// r1: function
// r2: expected number of arguments
// r3: code entry to call
__ mov(ip, Operand(Factory::undefined_value()));
__ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
__ sub(r2, r2, Operand(4 * kPointerSize)); // Adjust for frame.
Label fill;
__ bind(&fill);
__ push(ip);
__ cmp(sp, r2);
__ b(ne, &fill);
}
// Call the entry point.
__ bind(&invoke);
__ Call(r3);
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ mov(pc, lr);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ mov(pc, r3);
}
static void Generate_DebugBreakCallHelper(MacroAssembler* masm,
RegList pointer_regs) {
// Save the content of all general purpose registers in memory. This copy in
// memory is later pushed onto the JS expression stack for the fake JS frame
// generated and also to the C frame generated on top of that. In the JS
// frame ONLY the registers containing pointers will be pushed on the
// expression stack. This causes the GC to update these pointers so that
// they will have the correct value when returning from the debugger.
__ SaveRegistersToMemory(kJSCallerSaved);
__ EnterInternalFrame();
// Store the registers containing object pointers on the expression stack to
// make sure that these are correctly updated during GC.
// Use sp as base to push.
__ CopyRegistersFromMemoryToStack(sp, pointer_regs);
#ifdef DEBUG
__ RecordComment("// Calling from debug break to runtime - come in - over");
#endif
__ mov(r0, Operand(0)); // no arguments
__ mov(r1, Operand(ExternalReference::debug_break()));
CEntryDebugBreakStub ceb;
__ CallStub(&ceb);
// Restore the register values containing object pointers from the expression
// stack in the reverse order as they where pushed.
// Use sp as base to pop.
__ CopyRegistersFromStackToMemory(sp, r3, pointer_regs);
__ LeaveInternalFrame();
// Inlined ExitJSFrame ends here.
// Finally restore all registers.
__ RestoreRegistersFromMemory(kJSCallerSaved);
// Now that the break point has been handled, resume normal execution by
// jumping to the target address intended by the caller and that was
// overwritten by the address of DebugBreakXXX.
__ mov(ip, Operand(ExternalReference(Debug_Address::AfterBreakTarget())));
__ ldr(ip, MemOperand(ip));
__ Jump(ip);
}
void Builtins::Generate_LoadIC_DebugBreak(MacroAssembler* masm) {
// Calling convention for IC load (from ic-arm.cc).
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -- [sp] : receiver
// -----------------------------------
// Registers r0 and r2 contain objects that needs to be pushed on the
// expression stack of the fake JS frame.
Generate_DebugBreakCallHelper(masm, r0.bit() | r2.bit());
}
void Builtins::Generate_StoreIC_DebugBreak(MacroAssembler* masm) {
// Calling convention for IC store (from ic-arm.cc).
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -- [sp] : receiver
// -----------------------------------
// Registers r0 and r2 contain objects that needs to be pushed on the
// expression stack of the fake JS frame.
Generate_DebugBreakCallHelper(masm, r0.bit() | r2.bit());
}
void Builtins::Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) {
// Keyed load IC not implemented on ARM.
}
void Builtins::Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) {
// Keyed store IC not implemented on ARM.
}
void Builtins::Generate_CallIC_DebugBreak(MacroAssembler* masm) {
// Calling convention for IC call (from ic-arm.cc)
// ----------- S t a t e -------------
// -- r0: number of arguments
// -- r1: receiver
// -- lr: return address
// -----------------------------------
// Register r1 contains an object that needs to be pushed on the expression
// stack of the fake JS frame. r0 is the actual number of arguments not
// encoded as a smi, therefore it cannot be on the expression stack of the
// fake JS frame as it can easily be an invalid pointer (e.g. 1). r0 will be
// pushed on the stack of the C frame and restored from there.
Generate_DebugBreakCallHelper(masm, r1.bit());
}
void Builtins::Generate_ConstructCall_DebugBreak(MacroAssembler* masm) {
// In places other than IC call sites it is expected that r0 is TOS which
// is an object - this is not generally the case so this should be used with
// care.
Generate_DebugBreakCallHelper(masm, r0.bit());
}
void Builtins::Generate_Return_DebugBreak(MacroAssembler* masm) {
// In places other than IC call sites it is expected that r0 is TOS which
// is an object - this is not generally the case so this should be used with
// care.
Generate_DebugBreakCallHelper(masm, r0.bit());
}
void Builtins::Generate_Return_DebugBreakEntry(MacroAssembler* masm) {
// Generate nothing as this handling of debug break return is not done this
// way on ARM - yet.
}
void Builtins::Generate_StubNoRegisters_DebugBreak(MacroAssembler* masm) {
// Generate nothing as CodeStub CallFunction is not used on ARM.
}
#undef __
} } // namespace v8::internal