blob: 749bee087774d770f10f7dc92cde8ec03f785383 [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "compiler.h"
#include "cpu.h"
#include "dateparser.h"
#include "debug.h"
#include "execution.h"
#include "jsregexp.h"
#include "platform.h"
#include "runtime.h"
#include "scopeinfo.h"
#include "v8threads.h"
#include "smart-pointer.h"
namespace v8 { namespace internal {
#define RUNTIME_ASSERT(value) do { \
if (!(value)) return IllegalOperation(); \
} while (false)
// Cast the given object to a value of the specified type and store
// it in a variable with the given name. If the object is not of the
// expected type call IllegalOperation and return.
#define CONVERT_CHECKED(Type, name, obj) \
RUNTIME_ASSERT(obj->Is##Type()); \
Type* name = Type::cast(obj);
#define CONVERT_ARG_CHECKED(Type, name, index) \
RUNTIME_ASSERT(args[index]->Is##Type()); \
Handle<Type> name = args.at<Type>(index);
// Cast the given object to a boolean and store it in a variable with
// the given name. If the object is not a boolean call IllegalOperation
// and return.
#define CONVERT_BOOLEAN_CHECKED(name, obj) \
RUNTIME_ASSERT(obj->IsBoolean()); \
bool name = (obj)->IsTrue();
// Cast the given object to a double and store it in a variable with
// the given name. If the object is not a number (as opposed to
// the number not-a-number) call IllegalOperation and return.
#define CONVERT_DOUBLE_CHECKED(name, obj) \
RUNTIME_ASSERT(obj->IsNumber()); \
double name = (obj)->Number();
// Call the specified converter on the object *comand store the result in
// a variable of the specified type with the given name. If the
// object is not a Number call IllegalOperation and return.
#define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
RUNTIME_ASSERT(obj->IsNumber()); \
type name = NumberTo##Type(obj);
// Non-reentrant string buffer for efficient general use in this file.
static StaticResource<StringInputBuffer> string_input_buffer;
static Object* IllegalOperation() {
return Top::Throw(Heap::illegal_access_symbol());
}
static Object* Runtime_CloneObjectLiteralBoilerplate(Arguments args) {
CONVERT_CHECKED(JSObject, boilerplate, args[0]);
return Heap::CopyJSObject(boilerplate);
}
static Handle<Map> ComputeObjectLiteralMap(
Handle<Context> context,
Handle<FixedArray> constant_properties,
bool* is_result_from_cache) {
if (FLAG_canonicalize_object_literal_maps) {
// First find prefix of consecutive symbol keys.
int number_of_properties = constant_properties->length()/2;
int number_of_symbol_keys = 0;
while ((number_of_symbol_keys < number_of_properties) &&
(constant_properties->get(number_of_symbol_keys*2)->IsSymbol())) {
number_of_symbol_keys++;
}
// Based on the number of prefix symbols key we decide whether
// to use the map cache in the global context.
const int kMaxKeys = 10;
if ((number_of_symbol_keys == number_of_properties) &&
(number_of_symbol_keys < kMaxKeys)) {
// Create the fixed array with the key.
Handle<FixedArray> keys = Factory::NewFixedArray(number_of_symbol_keys);
for (int i = 0; i < number_of_symbol_keys; i++) {
keys->set(i, constant_properties->get(i*2));
}
*is_result_from_cache = true;
return Factory::ObjectLiteralMapFromCache(context, keys);
}
}
*is_result_from_cache = false;
return Handle<Map>(context->object_function()->initial_map());
}
static Object* Runtime_CreateObjectLiteralBoilerplate(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
// Copy the arguments.
Handle<FixedArray> literals = args.at<FixedArray>(0);
int literals_index = Smi::cast(args[1])->value();
Handle<FixedArray> constant_properties = args.at<FixedArray>(2);
// Get the global context from the literals array. This is the
// context in which the function was created and we use the object
// function from this context to create the object literal. We do
// not use the object function from the current global context
// because this might be the object function from another context
// which we should not have access to.
Handle<Context> context =
Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals));
bool is_result_from_cache;
Handle<Map> map = ComputeObjectLiteralMap(context,
constant_properties,
&is_result_from_cache);
Handle<JSObject> boilerplate = Factory::NewJSObjectFromMap(map);
{ // Add the constant propeties to the boilerplate.
int length = constant_properties->length();
OptimizedObjectForAddingMultipleProperties opt(boilerplate,
!is_result_from_cache);
for (int index = 0; index < length; index +=2) {
Handle<Object> key(constant_properties->get(index+0));
Handle<Object> value(constant_properties->get(index+1));
uint32_t element_index = 0;
if (key->IsSymbol()) {
// If key is a symbol it is not an array element.
Handle<String> name(String::cast(*key));
ASSERT(!name->AsArrayIndex(&element_index));
SetProperty(boilerplate, name, value, NONE);
} else if (Array::IndexFromObject(*key, &element_index)) {
// Array index (uint32).
SetElement(boilerplate, element_index, value);
} else {
// Non-uint32 number.
ASSERT(key->IsNumber());
double num = key->Number();
char arr[100];
Vector<char> buffer(arr, ARRAY_SIZE(arr));
const char* str = DoubleToCString(num, buffer);
Handle<String> name = Factory::NewStringFromAscii(CStrVector(str));
SetProperty(boilerplate, name, value, NONE);
}
}
}
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *boilerplate);
return *boilerplate;
}
static Object* Runtime_CreateArrayLiteral(Arguments args) {
// Takes a FixedArray of elements containing the literal elements of
// the array literal and produces JSArray with those elements.
// Additionally takes the literals array of the surrounding function
// which contains the context from which to get the Array function
// to use for creating the array literal.
ASSERT(args.length() == 2);
CONVERT_CHECKED(FixedArray, elements, args[0]);
CONVERT_CHECKED(FixedArray, literals, args[1]);
JSFunction* constructor =
JSFunction::GlobalContextFromLiterals(literals)->array_function();
// Create the JSArray.
Object* object = Heap::AllocateJSObject(constructor);
if (object->IsFailure()) return object;
// Copy the elements.
Object* content = elements->Copy();
if (content->IsFailure()) return content;
// Set the elements.
JSArray::cast(object)->SetContent(FixedArray::cast(content));
return object;
}
static Object* Runtime_ClassOf(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (!obj->IsJSObject()) return Heap::null_value();
return JSObject::cast(obj)->class_name();
}
static Object* Runtime_HasStringClass(Arguments args) {
return Heap::ToBoolean(args[0]->HasSpecificClassOf(Heap::String_symbol()));
}
static Object* Runtime_HasDateClass(Arguments args) {
return Heap::ToBoolean(args[0]->HasSpecificClassOf(Heap::Date_symbol()));
}
static Object* Runtime_HasArrayClass(Arguments args) {
return Heap::ToBoolean(args[0]->HasSpecificClassOf(Heap::Array_symbol()));
}
static Object* Runtime_HasFunctionClass(Arguments args) {
return Heap::ToBoolean(
args[0]->HasSpecificClassOf(Heap::function_class_symbol()));
}
static Object* Runtime_HasNumberClass(Arguments args) {
return Heap::ToBoolean(args[0]->HasSpecificClassOf(Heap::Number_symbol()));
}
static Object* Runtime_HasBooleanClass(Arguments args) {
return Heap::ToBoolean(args[0]->HasSpecificClassOf(Heap::Boolean_symbol()));
}
static Object* Runtime_HasArgumentsClass(Arguments args) {
return Heap::ToBoolean(
args[0]->HasSpecificClassOf(Heap::Arguments_symbol()));
}
static Object* Runtime_HasRegExpClass(Arguments args) {
return Heap::ToBoolean(args[0]->HasSpecificClassOf(Heap::RegExp_symbol()));
}
static Object* Runtime_IsInPrototypeChain(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
// See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
Object* O = args[0];
Object* V = args[1];
while (true) {
Object* prototype = V->GetPrototype();
if (prototype->IsNull()) return Heap::false_value();
if (O == prototype) return Heap::true_value();
V = prototype;
}
}
static Object* Runtime_IsConstructCall(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 0);
JavaScriptFrameIterator it;
return Heap::ToBoolean(it.frame()->IsConstructor());
}
static Object* Runtime_RegExpCompile(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_CHECKED(JSRegExp, raw_re, args[0]);
Handle<JSRegExp> re(raw_re);
CONVERT_CHECKED(String, raw_pattern, args[1]);
Handle<String> pattern(raw_pattern);
CONVERT_CHECKED(String, raw_flags, args[2]);
Handle<String> flags(raw_flags);
Handle<Object> result = RegExpImpl::Compile(re, pattern, flags);
if (result.is_null()) return Failure::Exception();
return *result;
}
static Object* Runtime_CreateApiFunction(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_CHECKED(FunctionTemplateInfo, raw_data, args[0]);
Handle<FunctionTemplateInfo> data(raw_data);
return *Factory::CreateApiFunction(data);
}
static Object* Runtime_IsTemplate(Arguments args) {
ASSERT(args.length() == 1);
Object* arg = args[0];
bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
return Heap::ToBoolean(result);
}
static Object* Runtime_GetTemplateField(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(HeapObject, templ, args[0]);
CONVERT_CHECKED(Smi, field, args[1]);
int index = field->value();
int offset = index * kPointerSize + HeapObject::kHeaderSize;
InstanceType type = templ->map()->instance_type();
RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
type == OBJECT_TEMPLATE_INFO_TYPE);
RUNTIME_ASSERT(offset > 0);
if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
} else {
RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
}
return *HeapObject::RawField(templ, offset);
}
static Object* Runtime_DisableAccessChecks(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(HeapObject, object, args[0]);
bool needs_access_checks = object->map()->is_access_check_needed();
object->map()->set_is_access_check_needed(false);
return needs_access_checks ? Heap::true_value() : Heap::false_value();
}
static Object* Runtime_EnableAccessChecks(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(HeapObject, object, args[0]);
object->map()->set_is_access_check_needed(true);
return Heap::undefined_value();
}
static Object* ThrowRedeclarationError(const char* type, Handle<String> name) {
HandleScope scope;
Handle<Object> type_handle = Factory::NewStringFromAscii(CStrVector(type));
Handle<Object> args[2] = { type_handle, name };
Handle<Object> error =
Factory::NewTypeError("redeclaration", HandleVector(args, 2));
return Top::Throw(*error);
}
static Object* Runtime_DeclareGlobals(Arguments args) {
HandleScope scope;
Handle<GlobalObject> global = Handle<GlobalObject>(Top::context()->global());
CONVERT_ARG_CHECKED(FixedArray, pairs, 0);
Handle<Context> context = args.at<Context>(1);
bool is_eval = Smi::cast(args[2])->value() == 1;
// Compute the property attributes. According to ECMA-262, section
// 13, page 71, the property must be read-only and
// non-deletable. However, neither SpiderMonkey nor KJS creates the
// property as read-only, so we don't either.
PropertyAttributes base = is_eval ? NONE : DONT_DELETE;
// Only optimize the object if we intend to add more than 5 properties.
OptimizedObjectForAddingMultipleProperties ba(global, pairs->length()/2 > 5);
// Traverse the name/value pairs and set the properties.
int length = pairs->length();
for (int i = 0; i < length; i += 2) {
HandleScope scope;
Handle<String> name(String::cast(pairs->get(i)));
Handle<Object> value(pairs->get(i + 1));
// We have to declare a global const property. To capture we only
// assign to it when evaluating the assignment for "const x =
// <expr>" the initial value is the hole.
bool is_const_property = value->IsTheHole();
if (value->IsUndefined() || is_const_property) {
// Lookup the property in the global object, and don't set the
// value of the variable if the property is already there.
LookupResult lookup;
global->Lookup(*name, &lookup);
if (lookup.IsProperty()) {
// Determine if the property is local by comparing the holder
// against the global object. The information will be used to
// avoid throwing re-declaration errors when declaring
// variables or constants that exist in the prototype chain.
bool is_local = (*global == lookup.holder());
// Get the property attributes and determine if the property is
// read-only.
PropertyAttributes attributes = global->GetPropertyAttribute(*name);
bool is_read_only = (attributes & READ_ONLY) != 0;
if (lookup.type() == INTERCEPTOR) {
// If the interceptor says the property is there, we
// just return undefined without overwriting the property.
// Otherwise, we continue to setting the property.
if (attributes != ABSENT) {
// Check if the existing property conflicts with regards to const.
if (is_local && (is_read_only || is_const_property)) {
const char* type = (is_read_only) ? "const" : "var";
return ThrowRedeclarationError(type, name);
};
// The property already exists without conflicting: Go to
// the next declaration.
continue;
}
// Fall-through and introduce the absent property by using
// SetProperty.
} else {
if (is_local && (is_read_only || is_const_property)) {
const char* type = (is_read_only) ? "const" : "var";
return ThrowRedeclarationError(type, name);
}
// The property already exists without conflicting: Go to
// the next declaration.
continue;
}
}
} else {
// Copy the function and update its context. Use it as value.
Handle<JSFunction> boilerplate = Handle<JSFunction>::cast(value);
Handle<JSFunction> function =
Factory::NewFunctionFromBoilerplate(boilerplate, context);
value = function;
}
LookupResult lookup;
global->LocalLookup(*name, &lookup);
PropertyAttributes attributes = is_const_property
? static_cast<PropertyAttributes>(base | READ_ONLY)
: base;
if (lookup.IsProperty()) {
// There's a local property that we need to overwrite because
// we're either declaring a function or there's an interceptor
// that claims the property is absent.
// Check for conflicting re-declarations. We cannot have
// conflicting types in case of intercepted properties because
// they are absent.
if (lookup.type() != INTERCEPTOR &&
(lookup.IsReadOnly() || is_const_property)) {
const char* type = (lookup.IsReadOnly()) ? "const" : "var";
return ThrowRedeclarationError(type, name);
}
SetProperty(global, name, value, attributes);
} else {
// If a property with this name does not already exist on the
// global object add the property locally. We take special
// precautions to always add it as a local property even in case
// of callbacks in the prototype chain (this rules out using
// SetProperty). Also, we must use the handle-based version to
// avoid GC issues.
IgnoreAttributesAndSetLocalProperty(global, name, value, attributes);
}
}
return Heap::undefined_value();
}
static Object* Runtime_DeclareContextSlot(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 4);
CONVERT_ARG_CHECKED(Context, context, 0);
Handle<String> name(String::cast(args[1]));
PropertyAttributes mode =
static_cast<PropertyAttributes>(Smi::cast(args[2])->value());
ASSERT(mode == READ_ONLY || mode == NONE);
Handle<Object> initial_value(args[3]);
// Declarations are always done in the function context.
context = Handle<Context>(context->fcontext());
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
if (attributes != ABSENT) {
// The name was declared before; check for conflicting
// re-declarations: This is similar to the code in parser.cc in
// the AstBuildingParser::Declare function.
if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) {
// Functions are not read-only.
ASSERT(mode != READ_ONLY || initial_value->IsTheHole());
const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var";
return ThrowRedeclarationError(type, name);
}
// Initialize it if necessary.
if (*initial_value != NULL) {
if (index >= 0) {
// The variable or constant context slot should always be in
// the function context; not in any outer context nor in the
// arguments object.
ASSERT(holder.is_identical_to(context));
if (((attributes & READ_ONLY) == 0) ||
context->get(index)->IsTheHole()) {
context->set(index, *initial_value);
}
} else {
// Slow case: The property is not in the FixedArray part of the context.
Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);
SetProperty(context_ext, name, initial_value, mode);
}
}
} else {
// The property is not in the function context. It needs to be
// "declared" in the function context's extension context, or in the
// global context.
Handle<JSObject> context_ext;
if (context->has_extension()) {
// The function context's extension context exists - use it.
context_ext = Handle<JSObject>(context->extension());
} else {
// The function context's extension context does not exists - allocate
// it.
context_ext = Factory::NewJSObject(Top::context_extension_function());
// And store it in the extension slot.
context->set_extension(*context_ext);
}
ASSERT(*context_ext != NULL);
// Declare the property by setting it to the initial value if provided,
// or undefined, and use the correct mode (e.g. READ_ONLY attribute for
// constant declarations).
ASSERT(!context_ext->HasLocalProperty(*name));
Handle<Object> value(Heap::undefined_value());
if (*initial_value != NULL) value = initial_value;
SetProperty(context_ext, name, value, mode);
ASSERT(context_ext->GetLocalPropertyAttribute(*name) == mode);
}
return Heap::undefined_value();
}
static Object* Runtime_InitializeVarGlobal(Arguments args) {
NoHandleAllocation nha;
// Determine if we need to assign to the variable if it already
// exists (based on the number of arguments).
RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
bool assign = args.length() == 2;
CONVERT_ARG_CHECKED(String, name, 0);
GlobalObject* global = Top::context()->global();
// According to ECMA-262, section 12.2, page 62, the property must
// not be deletable.
PropertyAttributes attributes = DONT_DELETE;
// Lookup the property locally in the global object. If it isn't
// there, we add the property and take special precautions to always
// add it as a local property even in case of callbacks in the
// prototype chain (this rules out using SetProperty).
// We have IgnoreAttributesAndSetLocalProperty for this.
LookupResult lookup;
global->LocalLookup(*name, &lookup);
if (!lookup.IsProperty()) {
Object* value = (assign) ? args[1] : Heap::undefined_value();
return global->IgnoreAttributesAndSetLocalProperty(*name,
value,
attributes);
}
// Determine if this is a redeclaration of something read-only.
if (lookup.IsReadOnly()) {
return ThrowRedeclarationError("const", name);
}
// Determine if this is a redeclaration of an intercepted read-only
// property and figure out if the property exists at all.
bool found = true;
PropertyType type = lookup.type();
if (type == INTERCEPTOR) {
PropertyAttributes intercepted = global->GetPropertyAttribute(*name);
if (intercepted == ABSENT) {
// The interceptor claims the property isn't there. We need to
// make sure to introduce it.
found = false;
} else if ((intercepted & READ_ONLY) != 0) {
// The property is present, but read-only. Since we're trying to
// overwrite it with a variable declaration we must throw a
// re-declaration error.
return ThrowRedeclarationError("const", name);
}
// Restore global object from context (in case of GC).
global = Top::context()->global();
}
if (found && !assign) {
// The global property is there and we're not assigning any value
// to it. Just return.
return Heap::undefined_value();
}
// Assign the value (or undefined) to the property.
Object* value = (assign) ? args[1] : Heap::undefined_value();
return global->SetProperty(&lookup, *name, value, attributes);
}
static Object* Runtime_InitializeConstGlobal(Arguments args) {
// All constants are declared with an initial value. The name
// of the constant is the first argument and the initial value
// is the second.
RUNTIME_ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, name, 0);
Handle<Object> value = args.at<Object>(1);
// Get the current global object from top.
GlobalObject* global = Top::context()->global();
// According to ECMA-262, section 12.2, page 62, the property must
// not be deletable. Since it's a const, it must be READ_ONLY too.
PropertyAttributes attributes =
static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
// Lookup the property locally in the global object. If it isn't
// there, we add the property and take special precautions to always
// add it as a local property even in case of callbacks in the
// prototype chain (this rules out using SetProperty).
// We use IgnoreAttributesAndSetLocalProperty instead
LookupResult lookup;
global->LocalLookup(*name, &lookup);
if (!lookup.IsProperty()) {
return global->IgnoreAttributesAndSetLocalProperty(*name,
*value,
attributes);
}
// Determine if this is a redeclaration of something not
// read-only. In case the result is hidden behind an interceptor we
// need to ask it for the property attributes.
if (!lookup.IsReadOnly()) {
if (lookup.type() != INTERCEPTOR) {
return ThrowRedeclarationError("var", name);
}
PropertyAttributes intercepted = global->GetPropertyAttribute(*name);
// Throw re-declaration error if the intercepted property is present
// but not read-only.
if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) {
return ThrowRedeclarationError("var", name);
}
// Restore global object from context (in case of GC) and continue
// with setting the value because the property is either absent or
// read-only. We also have to do redo the lookup.
global = Top::context()->global();
// BUG 1213579: Handle the case where we have to set a read-only
// property through an interceptor and only do it if it's
// uninitialized, e.g. the hole. Nirk...
global->SetProperty(*name, *value, attributes);
return *value;
}
// Set the value, but only we're assigning the initial value to a
// constant. For now, we determine this by checking if the
// current value is the hole.
PropertyType type = lookup.type();
if (type == FIELD) {
FixedArray* properties = global->properties();
int index = lookup.GetFieldIndex();
if (properties->get(index)->IsTheHole()) {
properties->set(index, *value);
}
} else if (type == NORMAL) {
Dictionary* dictionary = global->property_dictionary();
int entry = lookup.GetDictionaryEntry();
if (dictionary->ValueAt(entry)->IsTheHole()) {
dictionary->ValueAtPut(entry, *value);
}
} else {
// Ignore re-initialization of constants that have already been
// assigned a function value.
ASSERT(lookup.IsReadOnly() && type == CONSTANT_FUNCTION);
}
// Use the set value as the result of the operation.
return *value;
}
static Object* Runtime_InitializeConstContextSlot(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
Handle<Object> value(args[0]);
ASSERT(!value->IsTheHole());
CONVERT_ARG_CHECKED(Context, context, 1);
Handle<String> name(String::cast(args[2]));
// Initializations are always done in the function context.
context = Handle<Context>(context->fcontext());
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
// The property should always be present. It is always declared
// before being initialized through DeclareContextSlot.
ASSERT(attributes != ABSENT && (attributes & READ_ONLY) != 0);
// If the slot is in the context, we set it but only if it hasn't
// been set before.
if (index >= 0) {
// The constant context slot should always be in the function
// context; not in any outer context nor in the arguments object.
ASSERT(holder.is_identical_to(context));
if (context->get(index)->IsTheHole()) {
context->set(index, *value);
}
return *value;
}
// Otherwise, the slot must be in a JS object extension.
Handle<JSObject> context_ext(JSObject::cast(*holder));
// We must initialize the value only if it wasn't initialized
// before, e.g. for const declarations in a loop. The property has
// the hole value if it wasn't initialized yet. NOTE: We cannot use
// GetProperty() to get the current value as it 'unholes' the value.
LookupResult lookup;
context_ext->LocalLookupRealNamedProperty(*name, &lookup);
ASSERT(lookup.IsProperty()); // the property was declared
ASSERT(lookup.IsReadOnly()); // and it was declared as read-only
PropertyType type = lookup.type();
if (type == FIELD) {
FixedArray* properties = context_ext->properties();
int index = lookup.GetFieldIndex();
if (properties->get(index)->IsTheHole()) {
properties->set(index, *value);
}
} else if (type == NORMAL) {
Dictionary* dictionary = context_ext->property_dictionary();
int entry = lookup.GetDictionaryEntry();
if (dictionary->ValueAt(entry)->IsTheHole()) {
dictionary->ValueAtPut(entry, *value);
}
} else {
// We should not reach here. Any real, named property should be
// either a field or a dictionary slot.
UNREACHABLE();
}
return *value;
}
static Object* Runtime_RegExpExec(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_CHECKED(JSRegExp, raw_regexp, args[0]);
Handle<JSRegExp> regexp(raw_regexp);
CONVERT_CHECKED(String, raw_subject, args[1]);
Handle<String> subject(raw_subject);
Handle<Object> index(args[2]);
ASSERT(index->IsNumber());
Handle<Object> result = RegExpImpl::Exec(regexp, subject, index);
if (result.is_null()) return Failure::Exception();
return *result;
}
static Object* Runtime_RegExpExecGlobal(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSRegExp, raw_regexp, args[0]);
Handle<JSRegExp> regexp(raw_regexp);
CONVERT_CHECKED(String, raw_subject, args[1]);
Handle<String> subject(raw_subject);
Handle<Object> result = RegExpImpl::ExecGlobal(regexp, subject);
if (result.is_null()) return Failure::Exception();
return *result;
}
static Object* Runtime_MaterializeRegExpLiteral(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 4);
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
int index = Smi::cast(args[1])->value();
Handle<String> pattern = args.at<String>(2);
Handle<String> flags = args.at<String>(3);
// Get the RegExp function from the context in the literals array.
// This is the RegExp function from the context in which the
// function was created. We do not use the RegExp function from the
// current global context because this might be the RegExp function
// from another context which we should not have access to.
Handle<JSFunction> constructor =
Handle<JSFunction>(
JSFunction::GlobalContextFromLiterals(*literals)->regexp_function());
// Compute the regular expression literal.
bool has_pending_exception;
Handle<Object> regexp =
RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags,
&has_pending_exception);
if (has_pending_exception) {
ASSERT(Top::has_pending_exception());
return Failure::Exception();
}
literals->set(index, *regexp);
return *regexp;
}
static Object* Runtime_FunctionGetName(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, f, args[0]);
return f->shared()->name();
}
static Object* Runtime_FunctionSetName(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, f, args[0]);
CONVERT_CHECKED(String, name, args[1]);
f->shared()->set_name(name);
return Heap::undefined_value();
}
static Object* Runtime_FunctionGetScript(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, fun, args[0]);
Handle<Object> script = Handle<Object>(fun->shared()->script());
if (!script->IsScript()) return Heap::undefined_value();
return *GetScriptWrapper(Handle<Script>::cast(script));
}
static Object* Runtime_FunctionGetSourceCode(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, f, args[0]);
return f->shared()->GetSourceCode();
}
static Object* Runtime_FunctionGetScriptSourcePosition(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, fun, args[0]);
int pos = fun->shared()->start_position();
return Smi::FromInt(pos);
}
static Object* Runtime_FunctionSetInstanceClassName(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, fun, args[0]);
CONVERT_CHECKED(String, name, args[1]);
fun->SetInstanceClassName(name);
return Heap::undefined_value();
}
static Object* Runtime_FunctionSetLength(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, fun, args[0]);
CONVERT_CHECKED(Smi, length, args[1]);
fun->shared()->set_length(length->value());
return length;
}
static Object* Runtime_FunctionSetPrototype(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, fun, args[0]);
Object* obj = Accessors::FunctionSetPrototype(fun, args[1], NULL);
if (obj->IsFailure()) return obj;
return args[0]; // return TOS
}
static Object* Runtime_SetCode(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, raw_target, args[0]);
Handle<JSFunction> target(raw_target);
Handle<Object> code = args.at<Object>(1);
Handle<Context> context(target->context());
if (!code->IsNull()) {
RUNTIME_ASSERT(code->IsJSFunction());
Handle<JSFunction> fun = Handle<JSFunction>::cast(code);
SetExpectedNofProperties(target, fun->shared()->expected_nof_properties());
if (!fun->is_compiled() && !CompileLazy(fun, KEEP_EXCEPTION)) {
return Failure::Exception();
}
// Set the code, formal parameter count, and the length of the target
// function.
target->set_code(fun->code());
target->shared()->set_length(fun->shared()->length());
target->shared()->set_formal_parameter_count(
fun->shared()->formal_parameter_count());
// Set the source code of the target function to undefined.
// SetCode is only used for built-in constructors like String,
// Array, and Object, and some web code
// doesn't like seeing source code for constructors.
target->shared()->set_script(Heap::undefined_value());
context = Handle<Context>(fun->context());
// Make sure we get a fresh copy of the literal vector to avoid
// cross context contamination.
int number_of_literals = fun->NumberOfLiterals();
Handle<FixedArray> literals =
Factory::NewFixedArray(number_of_literals, TENURED);
if (number_of_literals > 0) {
// Insert the object, regexp and array functions in the literals
// array prefix. These are the functions that will be used when
// creating object, regexp and array literals.
literals->set(JSFunction::kLiteralGlobalContextIndex,
context->global_context());
}
target->set_literals(*literals, SKIP_WRITE_BARRIER);
}
target->set_context(*context);
return *target;
}
static Object* CharCodeAt(String* subject, Object* index) {
uint32_t i = 0;
if (!Array::IndexFromObject(index, &i)) return Heap::nan_value();
// Flatten the string. If someone wants to get a char at an index
// in a cons string, it is likely that more indices will be
// accessed.
subject->TryFlatten(StringShape(subject));
StringShape shape(subject);
if (i >= static_cast<uint32_t>(subject->length(shape))) {
return Heap::nan_value();
}
return Smi::FromInt(subject->Get(shape, i));
}
static Object* Runtime_StringCharCodeAt(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, subject, args[0]);
Object* index = args[1];
return CharCodeAt(subject, index);
}
static Object* Runtime_CharFromCode(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
uint32_t code;
if (Array::IndexFromObject(args[0], &code)) {
if (code <= 0xffff) {
return Heap::LookupSingleCharacterStringFromCode(code);
}
}
return Heap::empty_string();
}
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables.
static const int kBMMaxShift = 0xff;
// Reduce alphabet to this size.
static const int kBMAlphabetSize = 0x100;
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 5;
// Holds the two buffers used by Boyer-Moore string search's Good Suffix
// shift. Only allows the last kBMMaxShift characters of the needle
// to be indexed.
class BMGoodSuffixBuffers {
public:
BMGoodSuffixBuffers() {}
inline void init(int needle_length) {
ASSERT(needle_length > 1);
int start = needle_length < kBMMaxShift ? 0 : needle_length - kBMMaxShift;
int len = needle_length - start;
biased_suffixes_ = suffixes_ - start;
biased_good_suffix_shift_ = good_suffix_shift_ - start;
for (int i = 0; i <= len; i++) {
good_suffix_shift_[i] = len;
}
}
inline int& suffix(int index) {
ASSERT(biased_suffixes_ + index >= suffixes_);
return biased_suffixes_[index];
}
inline int& shift(int index) {
ASSERT(biased_good_suffix_shift_ + index >= good_suffix_shift_);
return biased_good_suffix_shift_[index];
}
private:
int suffixes_[kBMMaxShift + 1];
int good_suffix_shift_[kBMMaxShift + 1];
int* biased_suffixes_;
int* biased_good_suffix_shift_;
DISALLOW_COPY_AND_ASSIGN(BMGoodSuffixBuffers);
};
// buffers reused by BoyerMoore
static int bad_char_occurence[kBMAlphabetSize];
static BMGoodSuffixBuffers bmgs_buffers;
// Compute the bad-char table for Boyer-Moore in the static buffer.
template <typename pchar>
static void BoyerMoorePopulateBadCharTable(Vector<const pchar> pattern,
int start) {
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
int table_size = (sizeof(pchar) == 1) ? String::kMaxAsciiCharCode + 1
: kBMAlphabetSize;
if (start == 0) { // All patterns less than kBMMaxShift in length.
memset(bad_char_occurence, -1, table_size * sizeof(*bad_char_occurence));
} else {
for (int i = 0; i < table_size; i++) {
bad_char_occurence[i] = start - 1;
}
}
for (int i = start; i < pattern.length() - 1; i++) {
pchar c = pattern[i];
int bucket = (sizeof(pchar) ==1) ? c : c % kBMAlphabetSize;
bad_char_occurence[bucket] = i;
}
}
template <typename pchar>
static void BoyerMoorePopulateGoodSuffixTable(Vector<const pchar> pattern,
int start) {
int m = pattern.length();
int len = m - start;
// Compute Good Suffix tables.
bmgs_buffers.init(m);
bmgs_buffers.shift(m-1) = 1;
bmgs_buffers.suffix(m) = m + 1;
pchar last_char = pattern[m - 1];
int suffix = m + 1;
for (int i = m; i > start;) {
for (pchar c = pattern[i - 1]; suffix <= m && c != pattern[suffix - 1];) {
if (bmgs_buffers.shift(suffix) == len) {
bmgs_buffers.shift(suffix) = suffix - i;
}
suffix = bmgs_buffers.suffix(suffix);
}
i--;
suffix--;
bmgs_buffers.suffix(i) = suffix;
if (suffix == m) {
// No suffix to extend, so we check against last_char only.
while (i > start && pattern[i - 1] != last_char) {
if (bmgs_buffers.shift(m) == len) {
bmgs_buffers.shift(m) = m - i;
}
i--;
bmgs_buffers.suffix(i) = m;
}
if (i > start) {
i--;
suffix--;
bmgs_buffers.suffix(i) = suffix;
}
}
}
if (suffix < m) {
for (int i = start; i <= m; i++) {
if (bmgs_buffers.shift(i) == len) {
bmgs_buffers.shift(i) = suffix - start;
}
if (i == suffix) {
suffix = bmgs_buffers.suffix(suffix);
}
}
}
}
template <typename schar, typename pchar>
static inline int CharOccurence(int char_code) {
if (sizeof(schar) == 1) {
return bad_char_occurence[char_code];
}
if (sizeof(pchar) == 1) {
if (char_code > String::kMaxAsciiCharCode) {
return -1;
}
return bad_char_occurence[char_code];
}
return bad_char_occurence[char_code % kBMAlphabetSize];
}
// Restricted simplified Boyer-Moore string matching. Restricts tables to a
// suffix of long pattern strings and handles only equivalence classes
// of the full alphabet. This allows us to ensure that tables take only
// a fixed amount of space.
template <typename schar, typename pchar>
static int BoyerMooreSimplified(Vector<const schar> subject,
Vector<const pchar> pattern,
int start_index,
bool* complete) {
int n = subject.length();
int m = pattern.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
BoyerMoorePopulateBadCharTable(pattern, start);
int badness = -m; // How bad we are doing without a good-suffix table.
int idx; // No matches found prior to this index.
pchar last_char = pattern[m - 1];
// Perform search
for (idx = start_index; idx <= n - m;) {
int j = m - 1;
int c;
while (last_char != (c = subject[idx + j])) {
int bc_occ = CharOccurence<schar, pchar>(c);
int shift = j - bc_occ;
idx += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (idx > n - m) {
*complete = true;
return -1;
}
}
j--;
while (j >= 0 && pattern[j] == (c = subject[idx + j])) j--;
if (j < 0) {
*complete = true;
return idx;
} else {
int bc_occ = CharOccurence<schar, pchar>(c);
int shift = bc_occ < j ? j - bc_occ : 1;
idx += shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (m - j) - shift;
if (badness > 0) {
*complete = false;
return idx;
}
}
}
*complete = true;
return -1;
}
template <typename schar, typename pchar>
static int BoyerMooreIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx) {
int n = subject.length();
int m = pattern.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
// Build the Good Suffix table and continue searching.
BoyerMoorePopulateGoodSuffixTable(pattern, start);
pchar last_char = pattern[m - 1];
// Continue search from i.
do {
int j = m - 1;
schar c;
while (last_char != (c = subject[idx + j])) {
int shift = j - CharOccurence<schar, pchar>(c);
idx += shift;
if (idx > n - m) {
return -1;
}
}
while (j >= 0 && pattern[j] == (c = subject[idx + j])) j--;
if (j < 0) {
return idx;
} else if (j < start) {
// we have matched more than our tables allow us to be smart about.
idx += 1;
} else {
int gs_shift = bmgs_buffers.shift(j + 1); // Good suffix shift.
int bc_occ = CharOccurence<schar, pchar>(c);
int shift = j - bc_occ; // Bad-char shift.
shift = (gs_shift > shift) ? gs_shift : shift;
idx += shift;
}
} while (idx <= n - m);
return -1;
}
template <typename schar>
static int SingleCharIndexOf(Vector<const schar> string,
schar pattern_char,
int start_index) {
for (int i = start_index, n = string.length(); i < n; i++) {
if (pattern_char == string[i]) {
return i;
}
}
return -1;
}
// Trivial string search for shorter strings.
// On return, if "complete" is set to true, the return value is the
// final result of searching for the patter in the subject.
// If "complete" is set to false, the return value is the index where
// further checking should start, i.e., it's guaranteed that the pattern
// does not occur at a position prior to the returned index.
template <typename pchar, typename schar>
static int SimpleIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx,
bool* complete) {
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int badness = -10 - (pattern.length() << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
pchar pattern_first_char = pattern[0];
for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) {
badness++;
if (badness > 0) {
*complete = false;
return (i);
}
if (subject[i] != pattern_first_char) continue;
int j = 1;
do {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
} while (j < pattern.length());
if (j == pattern.length()) {
*complete = true;
return i;
}
badness += j;
}
*complete = true;
return -1;
}
// Simple indexOf that never bails out. For short patterns only.
template <typename pchar, typename schar>
static int SimpleIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx) {
pchar pattern_first_char = pattern[0];
for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) {
if (subject[i] != pattern_first_char) continue;
int j = 1;
do {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
} while (j < pattern.length());
if (j == pattern.length()) {
return i;
}
}
return -1;
}
// Dispatch to different algorithms.
template <typename schar, typename pchar>
static int StringMatchStrategy(Vector<const schar> sub,
Vector<const pchar> pat,
int start_index) {
ASSERT(pat.length() > 1);
// We have an ASCII haystack and a non-ASCII needle. Check if there
// really is a non-ASCII character in the needle and bail out if there
// is.
if (sizeof(pchar) > 1 && sizeof(schar) == 1) {
for (int i = 0; i < pat.length(); i++) {
uc16 c = pat[i];
if (c > String::kMaxAsciiCharCode) {
return -1;
}
}
}
if (pat.length() < kBMMinPatternLength) {
// We don't believe fancy searching can ever be more efficient.
// The max shift of Boyer-Moore on a pattern of this length does
// not compensate for the overhead.
return SimpleIndexOf(sub, pat, start_index);
}
// Try algorithms in order of increasing setup cost and expected performance.
bool complete;
int idx = SimpleIndexOf(sub, pat, start_index, &complete);
if (complete) return idx;
idx = BoyerMooreSimplified(sub, pat, idx, &complete);
if (complete) return idx;
return BoyerMooreIndexOf(sub, pat, idx);
}
// Perform string match of pattern on subject, starting at start index.
// Caller must ensure that 0 <= start_index <= sub->length(),
// and should check that pat->length() + start_index <= sub->length()
int Runtime::StringMatch(Handle<String> sub,
Handle<String> pat,
int start_index) {
ASSERT(0 <= start_index);
StringShape sub_shape(*sub);
ASSERT(start_index <= sub->length(sub_shape));
int pattern_length = pat->length();
if (pattern_length == 0) return start_index;
int subject_length = sub->length(sub_shape);
if (start_index + pattern_length > subject_length) return -1;
if (!sub->IsFlat(sub_shape)) {
FlattenString(sub);
sub_shape = StringShape(*sub);
}
StringShape pat_shape(*pat);
// Searching for one specific character is common. For one
// character patterns linear search is necessary, so any smart
// algorithm is unnecessary overhead.
if (pattern_length == 1) {
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
if (sub_shape.IsAsciiRepresentation()) {
uc16 pchar = pat->Get(pat_shape, 0);
if (pchar > String::kMaxAsciiCharCode) {
return -1;
}
Vector<const char> ascii_vector =
sub->ToAsciiVector().SubVector(start_index, subject_length);
const void* pos = memchr(ascii_vector.start(),
static_cast<const char>(pchar),
static_cast<size_t>(ascii_vector.length()));
if (pos == NULL) {
return -1;
}
return reinterpret_cast<const char*>(pos) - ascii_vector.start()
+ start_index;
}
return SingleCharIndexOf(sub->ToUC16Vector(),
pat->Get(pat_shape, 0),
start_index);
}
if (!pat->IsFlat(pat_shape)) {
FlattenString(pat);
pat_shape = StringShape(*pat);
sub_shape = StringShape(*sub);
}
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
// dispatch on type of strings
if (pat_shape.IsAsciiRepresentation()) {
Vector<const char> pat_vector = pat->ToAsciiVector();
if (sub_shape.IsAsciiRepresentation()) {
return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index);
}
return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index);
}
Vector<const uc16> pat_vector = pat->ToUC16Vector();
if (sub_shape.IsAsciiRepresentation()) {
return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index);
}
return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index);
}
static Object* Runtime_StringIndexOf(Arguments args) {
HandleScope scope; // create a new handle scope
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(String, sub, 0);
CONVERT_ARG_CHECKED(String, pat, 1);
Object* index = args[2];
uint32_t start_index;
if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1);
RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
int position = Runtime::StringMatch(sub, pat, start_index);
return Smi::FromInt(position);
}
static Object* Runtime_StringLastIndexOf(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
CONVERT_CHECKED(String, sub, args[0]);
CONVERT_CHECKED(String, pat, args[1]);
Object* index = args[2];
sub->TryFlatten(StringShape(sub));
pat->TryFlatten(StringShape(pat));
StringShape sub_shape(sub);
StringShape pat_shape(pat);
uint32_t start_index;
if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1);
uint32_t pattern_length = pat->length(pat_shape);
uint32_t sub_length = sub->length(sub_shape);
if (start_index + pattern_length > sub_length) {
start_index = sub_length - pattern_length;
}
for (int i = start_index; i >= 0; i--) {
bool found = true;
for (uint32_t j = 0; j < pattern_length; j++) {
if (sub->Get(sub_shape, i + j) != pat->Get(pat_shape, j)) {
found = false;
break;
}
}
if (found) return Smi::FromInt(i);
}
return Smi::FromInt(-1);
}
static Object* Runtime_StringLocaleCompare(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, str1, args[0]);
CONVERT_CHECKED(String, str2, args[1]);
if (str1 == str2) return Smi::FromInt(0); // Equal.
StringShape shape1(str1);
StringShape shape2(str2);
int str1_length = str1->length(shape1);
int str2_length = str2->length(shape2);
// Decide trivial cases without flattening.
if (str1_length == 0) {
if (str2_length == 0) return Smi::FromInt(0); // Equal.
return Smi::FromInt(-str2_length);
} else {
if (str2_length == 0) return Smi::FromInt(str1_length);
}
int end = str1_length < str2_length ? str1_length : str2_length;
// No need to flatten if we are going to find the answer on the first
// character. At this point we know there is at least one character
// in each string, due to the trivial case handling above.
int d = str1->Get(shape1, 0) - str2->Get(shape2, 0);
if (d != 0) return Smi::FromInt(d);
str1->TryFlatten(shape1); // Shapes are no longer valid now!
str2->TryFlatten(shape2);
static StringInputBuffer buf1;
static StringInputBuffer buf2;
buf1.Reset(str1);
buf2.Reset(str2);
for (int i = 0; i < end; i++) {
uint16_t char1 = buf1.GetNext();
uint16_t char2 = buf2.GetNext();
if (char1 != char2) return Smi::FromInt(char1 - char2);
}
return Smi::FromInt(str1_length - str2_length);
}
static Object* Runtime_StringSlice(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
CONVERT_CHECKED(String, value, args[0]);
CONVERT_DOUBLE_CHECKED(from_number, args[1]);
CONVERT_DOUBLE_CHECKED(to_number, args[2]);
int start = FastD2I(from_number);
int end = FastD2I(to_number);
RUNTIME_ASSERT(end >= start);
RUNTIME_ASSERT(start >= 0);
RUNTIME_ASSERT(end <= value->length());
return value->Slice(start, end);
}
static Object* Runtime_NumberToRadixString(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(value, args[0]);
if (isnan(value)) {
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
}
if (isinf(value)) {
if (value < 0) {
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
}
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
}
CONVERT_DOUBLE_CHECKED(radix_number, args[1]);
int radix = FastD2I(radix_number);
RUNTIME_ASSERT(2 <= radix && radix <= 36);
char* str = DoubleToRadixCString(value, radix);
Object* result = Heap::AllocateStringFromAscii(CStrVector(str));
DeleteArray(str);
return result;
}
static Object* Runtime_NumberToFixed(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(value, args[0]);
if (isnan(value)) {
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
}
if (isinf(value)) {
if (value < 0) {
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
}
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
}
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
int f = FastD2I(f_number);
RUNTIME_ASSERT(f >= 0);
char* str = DoubleToFixedCString(value, f);
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
DeleteArray(str);
return res;
}
static Object* Runtime_NumberToExponential(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(value, args[0]);
if (isnan(value)) {
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
}
if (isinf(value)) {
if (value < 0) {
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
}
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
}
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
int f = FastD2I(f_number);
RUNTIME_ASSERT(f >= -1 && f <= 20);
char* str = DoubleToExponentialCString(value, f);
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
DeleteArray(str);
return res;
}
static Object* Runtime_NumberToPrecision(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(value, args[0]);
if (isnan(value)) {
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
}
if (isinf(value)) {
if (value < 0) {
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
}
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
}
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
int f = FastD2I(f_number);
RUNTIME_ASSERT(f >= 1 && f <= 21);
char* str = DoubleToPrecisionCString(value, f);
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
DeleteArray(str);
return res;
}
// Returns a single character string where first character equals
// string->Get(index).
static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
StringShape shape(*string);
if (index < static_cast<uint32_t>(string->length(shape))) {
string->TryFlatten(shape); // Invalidates shape!
return LookupSingleCharacterStringFromCode(
string->Get(StringShape(*string), index));
}
return Execution::CharAt(string, index);
}
Object* Runtime::GetElementOrCharAt(Handle<Object> object, uint32_t index) {
// Handle [] indexing on Strings
if (object->IsString()) {
Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
if (!result->IsUndefined()) return *result;
}
// Handle [] indexing on String objects
if (object->IsStringObjectWithCharacterAt(index)) {
Handle<JSValue> js_value = Handle<JSValue>::cast(object);
Handle<Object> result =
GetCharAt(Handle<String>(String::cast(js_value->value())), index);
if (!result->IsUndefined()) return *result;
}
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
Handle<Object> prototype = GetPrototype(object);
return prototype->GetElement(index);
}
return object->GetElement(index);
}
Object* Runtime::GetObjectProperty(Handle<Object> object, Handle<Object> key) {
HandleScope scope;
if (object->IsUndefined() || object->IsNull()) {
Handle<Object> args[2] = { key, object };
Handle<Object> error =
Factory::NewTypeError("non_object_property_load",
HandleVector(args, 2));
return Top::Throw(*error);
}
// Check if the given key is an array index.
uint32_t index;
if (Array::IndexFromObject(*key, &index)) {
return GetElementOrCharAt(object, index);
}
// Convert the key to a string - possibly by calling back into JavaScript.
Handle<String> name;
if (key->IsString()) {
name = Handle<String>::cast(key);
} else {
bool has_pending_exception = false;
Handle<Object> converted =
Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
name = Handle<String>::cast(converted);
}
// Check if the name is trivially convertable to an index and get
// the element if so.
if (name->AsArrayIndex(&index)) {
return GetElementOrCharAt(object, index);
} else {
PropertyAttributes attr;
return object->GetProperty(*name, &attr);
}
}
static Object* Runtime_GetProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
return Runtime::GetObjectProperty(object, key);
}
// KeyedStringGetProperty is called from KeyedLoadIC::GenerateGeneric.
static Object* Runtime_KeyedGetProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
// Fast cases for getting named properties of the receiver JSObject
// itself. The global proxy objects has to be excluded since
// LocalLookup on the global proxy object can return a valid result
// eventhough the global proxy object never has properties. This is
// the case because the global proxy object forwards everything to
// its hidden prototype including local lookups.
if (args[0]->IsJSObject() &&
!args[0]->IsJSGlobalProxy() &&
args[1]->IsString()) {
JSObject* receiver = JSObject::cast(args[0]);
String* key = String::cast(args[1]);
if (receiver->HasFastProperties()) {
// Attempt to use lookup cache.
Object* obj = Heap::GetKeyedLookupCache();
if (obj->IsFailure()) return obj;
LookupCache* cache = LookupCache::cast(obj);
Map* receiver_map = receiver->map();
int offset = cache->Lookup(receiver_map, key);
if (offset != LookupCache::kNotFound) {
Object* value = receiver->FastPropertyAt(offset);
return value->IsTheHole() ? Heap::undefined_value() : value;
}
// Lookup cache miss. Perform lookup and update the cache if
// appropriate.
LookupResult result;
receiver->LocalLookup(key, &result);
if (result.IsProperty() && result.IsLoaded() && result.type() == FIELD) {
int offset = result.GetFieldIndex();
Object* obj = cache->Put(receiver_map, key, offset);
if (obj->IsFailure()) return obj;
Heap::SetKeyedLookupCache(LookupCache::cast(obj));
Object* value = receiver->FastPropertyAt(offset);
return value->IsTheHole() ? Heap::undefined_value() : value;
}
} else {
// Attempt dictionary lookup.
Dictionary* dictionary = receiver->property_dictionary();
int entry = dictionary->FindStringEntry(key);
if ((entry != DescriptorArray::kNotFound) &&
(dictionary->DetailsAt(entry).type() == NORMAL)) {
return dictionary->ValueAt(entry);
}
}
}
// Fall back to GetObjectProperty.
return Runtime::GetObjectProperty(args.at<Object>(0),
args.at<Object>(1));
}
Object* Runtime::SetObjectProperty(Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attr) {
HandleScope scope;
if (object->IsUndefined() || object->IsNull()) {
Handle<Object> args[2] = { key, object };
Handle<Object> error =
Factory::NewTypeError("non_object_property_store",
HandleVector(args, 2));
return Top::Throw(*error);
}
// If the object isn't a JavaScript object, we ignore the store.
if (!object->IsJSObject()) return *value;
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
// Check if the given key is an array index.
uint32_t index;
if (Array::IndexFromObject(*key, &index)) {
ASSERT(attr == NONE);
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
// of a string using [] notation. We need to support this too in
// JavaScript.
// In the case of a String object we just need to redirect the assignment to
// the underlying string if the index is in range. Since the underlying
// string does nothing with the assignment then we can ignore such
// assignments.
if (js_object->IsStringObjectWithCharacterAt(index)) {
return *value;
}
Handle<Object> result = SetElement(js_object, index, value);
if (result.is_null()) return Failure::Exception();
return *value;
}
if (key->IsString()) {
Handle<Object> result;
if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
ASSERT(attr == NONE);
result = SetElement(js_object, index, value);
} else {
Handle<String> key_string = Handle<String>::cast(key);
key_string->TryFlatten(StringShape(*key_string));
result = SetProperty(js_object, key_string, value, attr);
}
if (result.is_null()) return Failure::Exception();
return *value;
}
// Call-back into JavaScript to convert the key to a string.
bool has_pending_exception = false;
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
Handle<String> name = Handle<String>::cast(converted);
if (name->AsArrayIndex(&index)) {
ASSERT(attr == NONE);
return js_object->SetElement(index, *value);
} else {
return js_object->SetProperty(*name, *value, attr);
}
}
static Object* Runtime_SetProperty(Arguments args) {
NoHandleAllocation ha;
RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
// Compute attributes.
PropertyAttributes attributes = NONE;
if (args.length() == 4) {
CONVERT_CHECKED(Smi, value_obj, args[3]);
int unchecked_value = value_obj->value();
// Only attribute bits should be set.
RUNTIME_ASSERT(
(unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
attributes = static_cast<PropertyAttributes>(unchecked_value);
}
return Runtime::SetObjectProperty(object, key, value, attributes);
}
// Set a local property, even if it is READ_ONLY. If the property does not
// exist, it will be added with attributes NONE.
static Object* Runtime_IgnoreAttributesAndSetProperty(Arguments args) {
NoHandleAllocation ha;
RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
CONVERT_CHECKED(JSObject, object, args[0]);
CONVERT_CHECKED(String, name, args[1]);
// Compute attributes.
PropertyAttributes attributes = NONE;
if (args.length() == 4) {
CONVERT_CHECKED(Smi, value_obj, args[3]);
int unchecked_value = value_obj->value();
// Only attribute bits should be set.
RUNTIME_ASSERT(
(unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
attributes = static_cast<PropertyAttributes>(unchecked_value);
}
return object->
IgnoreAttributesAndSetLocalProperty(name, args[2], attributes);
}
static Object* Runtime_DeleteProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSObject, object, args[0]);
CONVERT_CHECKED(String, key, args[1]);
return object->DeleteProperty(key);
}
static Object* Runtime_HasLocalProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, key, args[1]);
// Only JS objects can have properties.
if (args[0]->IsJSObject()) {
JSObject* object = JSObject::cast(args[0]);
if (object->HasLocalProperty(key)) return Heap::true_value();
} else if (args[0]->IsString()) {
// Well, there is one exception: Handle [] on strings.
uint32_t index;
if (key->AsArrayIndex(&index)) {
String* string = String::cast(args[0]);
if (index < static_cast<uint32_t>(string->length()))
return Heap::true_value();
}
}
return Heap::false_value();
}
static Object* Runtime_HasProperty(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 2);
// Only JS objects can have properties.
if (args[0]->IsJSObject()) {
JSObject* object = JSObject::cast(args[0]);
CONVERT_CHECKED(String, key, args[1]);
if (object->HasProperty(key)) return Heap::true_value();
}
return Heap::false_value();
}
static Object* Runtime_HasElement(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 2);
// Only JS objects can have elements.
if (args[0]->IsJSObject()) {
JSObject* object = JSObject::cast(args[0]);
CONVERT_CHECKED(Smi, index_obj, args[1]);
uint32_t index = index_obj->value();
if (object->HasElement(index)) return Heap::true_value();
}
return Heap::false_value();
}
static Object* Runtime_IsPropertyEnumerable(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSObject, object, args[0]);
CONVERT_CHECKED(String, key, args[1]);
uint32_t index;
if (key->AsArrayIndex(&index)) {
return Heap::ToBoolean(object->HasElement(index));
}
PropertyAttributes att = object->GetLocalPropertyAttribute(key);
return Heap::ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0);
}
static Object* Runtime_GetPropertyNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSObject, raw_object, args[0]);
Handle<JSObject> object(raw_object);
return *GetKeysFor(object);
}
// Returns either a FixedArray as Runtime_GetPropertyNames,
// or, if the given object has an enum cache that contains
// all enumerable properties of the object and its prototypes
// have none, the map of the object. This is used to speed up
// the check for deletions during a for-in.
static Object* Runtime_GetPropertyNamesFast(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSObject, raw_object, args[0]);
if (raw_object->IsSimpleEnum()) return raw_object->map();
HandleScope scope;
Handle<JSObject> object(raw_object);
Handle<FixedArray> content = GetKeysInFixedArrayFor(object);
// Test again, since cache may have been built by preceding call.
if (object->IsSimpleEnum()) return object->map();
return *content;
}
static Object* Runtime_GetArgumentsProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
// Compute the frame holding the arguments.
JavaScriptFrameIterator it;
it.AdvanceToArgumentsFrame();
JavaScriptFrame* frame = it.frame();
// Get the actual number of provided arguments.
const uint32_t n = frame->GetProvidedParametersCount();
// Try to convert the key to an index. If successful and within
// index return the the argument from the frame.
uint32_t index;
if (Array::IndexFromObject(args[0], &index) && index < n) {
return frame->GetParameter(index);
}
// Convert the key to a string.
HandleScope scope;
bool exception = false;
Handle<Object> converted =
Execution::ToString(args.at<Object>(0), &exception);
if (exception) return Failure::Exception();
Handle<String> key = Handle<String>::cast(converted);
// Try to convert the string key into an array index.
if (key->AsArrayIndex(&index)) {
if (index < n) {
return frame->GetParameter(index);
} else {
return Top::initial_object_prototype()->GetElement(index);
}
}
// Handle special arguments properties.
if (key->Equals(Heap::length_symbol())) return Smi::FromInt(n);
if (key->Equals(Heap::callee_symbol())) return frame->function();
// Lookup in the initial Object.prototype object.
return Top::initial_object_prototype()->GetProperty(*key);
}
static Object* Runtime_ToBool(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
return args[0]->ToBoolean();
}
// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
// Possible optimizations: put the type string into the oddballs.
static Object* Runtime_Typeof(Arguments args) {
NoHandleAllocation ha;
Object* obj = args[0];
if (obj->IsNumber()) return Heap::number_symbol();
HeapObject* heap_obj = HeapObject::cast(obj);
// typeof an undetectable object is 'undefined'
if (heap_obj->map()->is_undetectable()) return Heap::undefined_symbol();
InstanceType instance_type = heap_obj->map()->instance_type();
if (instance_type < FIRST_NONSTRING_TYPE) {
return Heap::string_symbol();
}
switch (instance_type) {
case ODDBALL_TYPE:
if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
return Heap::boolean_symbol();
}
if (heap_obj->IsNull()) {
return Heap::object_symbol();
}
ASSERT(heap_obj->IsUndefined());
return Heap::undefined_symbol();
case JS_FUNCTION_TYPE:
return Heap::function_symbol();
default:
// For any kind of object not handled above, the spec rule for
// host objects gives that it is okay to return "object"
return Heap::object_symbol();
}
}
static Object* Runtime_StringToNumber(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, subject, args[0]);
subject->TryFlatten(StringShape(subject));
return Heap::NumberFromDouble(StringToDouble(subject, ALLOW_HEX));
}
static Object* Runtime_StringFromCharCodeArray(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSArray, codes, args[0]);
int length = Smi::cast(codes->length())->value();
// Check if the string can be ASCII.
int i;
for (i = 0; i < length; i++) {
Object* element = codes->GetElement(i);
CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
if ((chr & 0xffff) > String::kMaxAsciiCharCode)
break;
}
Object* object = NULL;
if (i == length) { // The string is ASCII.
object = Heap::AllocateRawAsciiString(length);
} else { // The string is not ASCII.
object = Heap::AllocateRawTwoByteString(length);
}
if (object->IsFailure()) return object;
String* result = String::cast(object);
StringShape result_shape(result);
for (int i = 0; i < length; i++) {
Object* element = codes->GetElement(i);
CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
result->Set(result_shape, i, chr & 0xffff);
}
return result;
}
// kNotEscaped is generated by the following:
//
// #!/bin/perl
// for (my $i = 0; $i < 256; $i++) {
// print "\n" if $i % 16 == 0;
// my $c = chr($i);
// my $escaped = 1;
// $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#;
// print $escaped ? "0, " : "1, ";
// }
static bool IsNotEscaped(uint16_t character) {
// Only for 8 bit characters, the rest are always escaped (in a different way)
ASSERT(character < 256);
static const char kNotEscaped[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
return kNotEscaped[character] != 0;
}
static Object* Runtime_URIEscape(Arguments args) {
const char hex_chars[] = "0123456789ABCDEF";
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, source, args[0]);
source->TryFlatten(StringShape(source));
int escaped_length = 0;
int length = source->length();
{
Access<StringInputBuffer> buffer(&string_input_buffer);
buffer->Reset(source);
while (buffer->has_more()) {
uint16_t character = buffer->GetNext();
if (character >= 256) {
escaped_length += 6;
} else if (IsNotEscaped(character)) {
escaped_length++;
} else {
escaped_length += 3;
}
// We don't allow strings that are longer than Smi range.
if (!Smi::IsValid(escaped_length)) {
Top::context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
}
}
// No length change implies no change. Return original string if no change.
if (escaped_length == length) {
return source;
}
Object* o = Heap::AllocateRawAsciiString(escaped_length);
if (o->IsFailure()) return o;
String* destination = String::cast(o);
StringShape dshape(destination);
int dest_position = 0;
Access<StringInputBuffer> buffer(&string_input_buffer);
buffer->Rewind();
while (buffer->has_more()) {
uint16_t chr = buffer->GetNext();
if (chr >= 256) {
destination->Set(dshape, dest_position, '%');
destination->Set(dshape, dest_position+1, 'u');
destination->Set(dshape, dest_position+2, hex_chars[chr >> 12]);
destination->Set(dshape, dest_position+3, hex_chars[(chr >> 8) & 0xf]);
destination->Set(dshape, dest_position+4, hex_chars[(chr >> 4) & 0xf]);
destination->Set(dshape, dest_position+5, hex_chars[chr & 0xf]);
dest_position += 6;
} else if (IsNotEscaped(chr)) {
destination->Set(dshape, dest_position, chr);
dest_position++;
} else {
destination->Set(dshape, dest_position, '%');
destination->Set(dshape, dest_position+1, hex_chars[chr >> 4]);
destination->Set(dshape, dest_position+2, hex_chars[chr & 0xf]);
dest_position += 3;
}
}
return destination;
}
static inline int TwoDigitHex(uint16_t character1, uint16_t character2) {
static const signed char kHexValue['g'] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15 };
if (character1 > 'f') return -1;
int hi = kHexValue[character1];
if (hi == -1) return -1;
if (character2 > 'f') return -1;
int lo = kHexValue[character2];
if (lo == -1) return -1;
return (hi << 4) + lo;
}
static inline int Unescape(String* source,
StringShape shape,
int i,
int length,
int* step) {
uint16_t character = source->Get(shape, i);
int32_t hi = 0;
int32_t lo = 0;
if (character == '%' &&
i <= length - 6 &&
source->Get(shape, i + 1) == 'u' &&
(hi = TwoDigitHex(source->Get(shape, i + 2),
source->Get(shape, i + 3))) != -1 &&
(lo = TwoDigitHex(source->Get(shape, i + 4),
source->Get(shape, i + 5))) != -1) {
*step = 6;
return (hi << 8) + lo;
} else if (character == '%' &&
i <= length - 3 &&
(lo = TwoDigitHex(source->Get(shape, i + 1),
source->Get(shape, i + 2))) != -1) {
*step = 3;
return lo;
} else {
*step = 1;
return character;
}
}
static Object* Runtime_URIUnescape(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, source, args[0]);
source->TryFlatten(StringShape(source));
StringShape source_shape(source);
bool ascii = true;
int length = source->length(source_shape);
int unescaped_length = 0;
for (int i = 0; i < length; unescaped_length++) {
int step;
if (Unescape(source,
source_shape,
i,
length,
&step) >
String::kMaxAsciiCharCode)
ascii = false;
i += step;
}
// No length change implies no change. Return original string if no change.
if (unescaped_length == length)
return source;
Object* o = ascii ?
Heap::AllocateRawAsciiString(unescaped_length) :
Heap::AllocateRawTwoByteString(unescaped_length);
if (o->IsFailure()) return o;
String* destination = String::cast(o);
StringShape destination_shape(destination);
int dest_position = 0;
for (int i = 0; i < length; dest_position++) {
int step;
destination->Set(destination_shape,
dest_position,
Unescape(source, source_shape, i, length, &step));
i += step;
}
return destination;
}
static Object* Runtime_StringParseInt(Arguments args) {
NoHandleAllocation ha;
CONVERT_CHECKED(String, s, args[0]);
CONVERT_DOUBLE_CHECKED(n, args[1]);
int radix = FastD2I(n);
s->TryFlatten(StringShape(s));
StringShape shape(s);
int len = s->length(shape);
int i;
// Skip leading white space.
for (i = 0; i < len && Scanner::kIsWhiteSpace.get(s->Get(shape, i)); i++) ;
if (i == len) return Heap::nan_value();
// Compute the sign (default to +).
int sign = 1;
if (s->Get(shape, i) == '-') {
sign = -1;
i++;
} else if (s->Get(shape, i) == '+') {
i++;
}
// Compute the radix if 0.
if (radix == 0) {
radix = 10;
if (i < len && s->Get(shape, i) == '0') {
radix = 8;
if (i + 1 < len) {
int c = s->Get(shape, i + 1);
if (c == 'x' || c == 'X') {
radix = 16;
i += 2;
}
}
}
} else if (radix == 16) {
// Allow 0x or 0X prefix if radix is 16.
if (i + 1 < len && s->Get(shape, i) == '0') {
int c = s->Get(shape, i + 1);
if (c == 'x' || c == 'X') i += 2;
}
}
RUNTIME_ASSERT(2 <= radix && radix <= 36);
double value;
int end_index = StringToInt(s, i, radix, &value);
if (end_index != i) {
return Heap::NumberFromDouble(sign * value);
}
return Heap::nan_value();
}
static Object* Runtime_StringParseFloat(Arguments args) {
NoHandleAllocation ha;
CONVERT_CHECKED(String, str, args[0]);
// ECMA-262 section 15.1.2.3, empty string is NaN
double value = StringToDouble(str, ALLOW_TRAILING_JUNK, OS::nan_value());
// Create a number object from the value.
return Heap::NumberFromDouble(value);
}
static unibrow::Mapping<unibrow::ToUppercase, 128> to_upper_mapping;
static unibrow::Mapping<unibrow::ToLowercase, 128> to_lower_mapping;
template <class Converter>
static Object* ConvertCase(Arguments args,
unibrow::Mapping<Converter, 128>* mapping) {
NoHandleAllocation ha;
CONVERT_CHECKED(String, s, args[0]);
s->TryFlatten(StringShape(s));
StringShape shape(s);
int raw_string_length = s->length(shape);
// Assume that the string is not empty; we need this assumption later
if (raw_string_length == 0) return s;
int length = raw_string_length;
// We try this twice, once with the assumption that the result is
// no longer than the input and, if that assumption breaks, again
// with the exact length. This is implemented using a goto back
// to this label if we discover that the assumption doesn't hold.
// I apologize sincerely for this and will give a vaffel-is to
// the first person who can implement it in a nicer way.
try_convert:
// Allocate the resulting string.
//
// NOTE: This assumes that the upper/lower case of an ascii
// character is also ascii. This is currently the case, but it
// might break in the future if we implement more context and locale
// dependent upper/lower conversions.
Object* o = shape.IsAsciiRepresentation()
? Heap::AllocateRawAsciiString(length)
: Heap::AllocateRawTwoByteString(length);
if (o->IsFailure()) return o;
String* result = String::cast(o);
StringShape result_shape(result);
bool has_changed_character = false;
// Convert all characters to upper case, assuming that they will fit
// in the buffer
Access<StringInputBuffer> buffer(&string_input_buffer);
buffer->Reset(s);
unibrow::uchar chars[Converter::kMaxWidth];
int i = 0;
// We can assume that the string is not empty
uc32 current = buffer->GetNext();
while (i < length) {
bool has_next = buffer->has_more();
uc32 next = has_next ? buffer->GetNext() : 0;
int char_length = mapping->get(current, next, chars);
if (char_length == 0) {
// The case conversion of this character is the character itself.
result->Set(result_shape, i, current);
i++;
} else if (char_length == 1) {
// Common case: converting the letter resulted in one character.
ASSERT(static_cast<uc32>(chars[0]) != current);
result->Set(result_shape, i, chars[0]);
has_changed_character = true;
i++;
} else if (length == raw_string_length) {
// We've assumed that the result would be as long as the
// input but here is a character that converts to several
// characters. No matter, we calculate the exact length
// of the result and try the whole thing again.
//
// Note that this leaves room for optimization. We could just
// memcpy what we already have to the result string. Also,
// the result string is the last object allocated we could
// "realloc" it and probably, in the vast majority of cases,
// extend the existing string to be able to hold the full
// result.
int next_length = 0;
if (has_next) {
next_length = mapping->get(next, 0, chars);
if (next_length == 0) next_length = 1;
}
int current_length = i + char_length + next_length;
while (buffer->has_more()) {
current = buffer->GetNext();
// NOTE: we use 0 as the next character here because, while
// the next character may affect what a character converts to,
// it does not in any case affect the length of what it convert
// to.
int char_length = mapping->get(current, 0, chars);
if (char_length == 0) char_length = 1;
current_length += char_length;
}
length = current_length;
goto try_convert;
} else {
for (int j = 0; j < char_length; j++) {
result->Set(result_shape, i, chars[j]);
i++;
}
has_changed_character = true;
}
current = next;
}
if (has_changed_character) {
return result;
} else {
// If we didn't actually change anything in doing the conversion
// we simple return the result and let the converted string
// become garbage; there is no reason to keep two identical strings
// alive.
return s;
}
}
static Object* Runtime_StringToLowerCase(Arguments args) {
return ConvertCase<unibrow::ToLowercase>(args, &to_lower_mapping);
}
static Object* Runtime_StringToUpperCase(Arguments args) {
return ConvertCase<unibrow::ToUppercase>(args, &to_upper_mapping);
}
static Object* Runtime_NumberToString(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* number = args[0];
RUNTIME_ASSERT(number->IsNumber());
Object* cached = Heap::GetNumberStringCache(number);
if (cached != Heap::undefined_value()) {
return cached;
}
char arr[100];
Vector<char> buffer(arr, ARRAY_SIZE(arr));
const char* str;
if (number->IsSmi()) {
int num = Smi::cast(number)->value();
str = IntToCString(num, buffer);
} else {
double num = HeapNumber::cast(number)->value();
str = DoubleToCString(num, buffer);
}
Object* result = Heap::AllocateStringFromAscii(CStrVector(str));
if (!result->IsFailure()) {
Heap::SetNumberStringCache(number, String::cast(result));
}
return result;
}
static Object* Runtime_NumberToInteger(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi()) return obj;
CONVERT_DOUBLE_CHECKED(number, obj);
return Heap::NumberFromDouble(DoubleToInteger(number));
}
static Object* Runtime_NumberToJSUint32(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi() && Smi::cast(obj)->value() >= 0) return obj;
CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, obj);
return Heap::NumberFromUint32(number);
}
static Object* Runtime_NumberToJSInt32(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi()) return obj;
CONVERT_DOUBLE_CHECKED(number, obj);
return Heap::NumberFromInt32(DoubleToInt32(number));
}
// Converts a Number to a Smi, if possible. Returns NaN if the number is not
// a small integer.
static Object* Runtime_NumberToSmi(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi()) {
return obj;
}
if (obj->IsHeapNumber()) {
double value = HeapNumber::cast(obj)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
}
return Heap::nan_value();
}
static Object* Runtime_NumberAdd(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
return Heap::AllocateHeapNumber(x + y);
}
static Object* Runtime_NumberSub(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
return Heap::AllocateHeapNumber(x - y);
}
static Object* Runtime_NumberMul(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
return Heap::AllocateHeapNumber(x * y);
}
static Object* Runtime_NumberUnaryMinus(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(-x);
}
static Object* Runtime_NumberDiv(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
return Heap::NewNumberFromDouble(x / y);
}
static Object* Runtime_NumberMod(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
#ifdef WIN32
// Workaround MS fmod bugs. ECMA-262 says:
// dividend is finite and divisor is an infinity => result equals dividend
// dividend is a zero and divisor is nonzero finite => result equals dividend
if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
!(x == 0 && (y != 0 && isfinite(y))))
#endif
x = fmod(x, y);
// NewNumberFromDouble may return a Smi instead of a Number object
return Heap::NewNumberFromDouble(x);
}
static Object* Runtime_StringAdd(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, str1, args[0]);
CONVERT_CHECKED(String, str2, args[1]);
int len1 = str1->length();
int len2 = str2->length();
if (len1 == 0) return str2;
if (len2 == 0) return str1;
int length_sum = len1 + len2;
// Make sure that an out of memory exception is thrown if the length
// of the new cons string is too large to fit in a Smi.
if (length_sum > Smi::kMaxValue || length_sum < 0) {
Top::context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
return Heap::AllocateConsString(str1, str2);
}
template<typename sinkchar>
static inline void StringBuilderConcatHelper(String* special,
StringShape special_shape,
sinkchar* sink,
FixedArray* fixed_array,
int array_length) {
int position = 0;
for (int i = 0; i < array_length; i++) {
Object* element = fixed_array->get(i);
if (element->IsSmi()) {
int len = Smi::cast(element)->value();
int pos = len >> 11;
len &= 0x7ff;
String::WriteToFlat(special,
special_shape,
sink + position,
pos,
pos + len);
position += len;
} else {
String* string = String::cast(element);
StringShape shape(string);
int element_length = string->length(shape);
String::WriteToFlat(string, shape, sink + position, 0, element_length);
position += element_length;
}
}
}
static Object* Runtime_StringBuilderConcat(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSArray, array, args[0]);
CONVERT_CHECKED(String, special, args[1]);
StringShape special_shape(special);
int special_length = special->length(special_shape);
Object* smi_array_length = array->length();
if (!smi_array_length->IsSmi()) {
Top::context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
int array_length = Smi::cast(smi_array_length)->value();
if (!array->HasFastElements()) {
return Top::Throw(Heap::illegal_argument_symbol());
}
FixedArray* fixed_array = FixedArray::cast(array->elements());
if (fixed_array->length() < array_length) {
array_length = fixed_array->length();
}
if (array_length == 0) {
return Heap::empty_string();
} else if (array_length == 1) {
Object* first = fixed_array->get(0);
if (first->IsString()) return first;
}
bool ascii = special_shape.IsAsciiRepresentation();
int position = 0;
for (int i = 0; i < array_length; i++) {
Object* elt = fixed_array->get(i);
if (elt->IsSmi()) {
int len = Smi::cast(elt)->value();
int pos = len >> 11;
len &= 0x7ff;
if (pos + len > special_length) {
return Top::Throw(Heap::illegal_argument_symbol());
}
position += len;
} else if (elt->IsString()) {
String* element = String::cast(elt);
StringShape element_shape(element);
int element_length = element->length(element_shape);
if (!Smi::IsValid(element_length + position)) {
Top::context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
position += element_length;
if (ascii && !element_shape.IsAsciiRepresentation()) {
ascii = false;
}
} else {
return Top::Throw(Heap::illegal_argument_symbol());
}
}
int length = position;
Object* object;
if (ascii) {
object = Heap::AllocateRawAsciiString(length);
if (object->IsFailure()) return object;
SeqAsciiString* answer = SeqAsciiString::cast(object);
StringBuilderConcatHelper(special,
special_shape,
answer->GetChars(),
fixed_array,
array_length);
return answer;
} else {
object = Heap::AllocateRawTwoByteString(length);
if (object->IsFailure()) return object;
SeqTwoByteString* answer = SeqTwoByteString::cast(object);
StringBuilderConcatHelper(special,
special_shape,
answer->GetChars(),
fixed_array,
array_length);
return answer;
}
}
static Object* Runtime_NumberOr(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(x | y);
}
static Object* Runtime_NumberAnd(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(x & y);
}
static Object* Runtime_NumberXor(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(x ^ y);
}
static Object* Runtime_NumberNot(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
return Heap::NumberFromInt32(~x);
}
static Object* Runtime_NumberShl(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(x << (y & 0x1f));
}
static Object* Runtime_NumberShr(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromUint32(x >> (y & 0x1f));
}
static Object* Runtime_NumberSar(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f));
}
static Object* Runtime_NumberEquals(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
if (isnan(x)) return Smi::FromInt(NOT_EQUAL);
if (isnan(y)) return Smi::FromInt(NOT_EQUAL);
if (x == y) return Smi::FromInt(EQUAL);
Object* result;
if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
result = Smi::FromInt(EQUAL);
} else {
result = Smi::FromInt(NOT_EQUAL);
}
return result;
}
static Object* Runtime_StringEquals(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, x, args[0]);
CONVERT_CHECKED(String, y, args[1]);
bool not_equal = !x->Equals(y);
// This is slightly convoluted because the value that signifies
// equality is 0 and inequality is 1 so we have to negate the result
// from String::Equals.
ASSERT(not_equal == 0 || not_equal == 1);
STATIC_CHECK(EQUAL == 0);
STATIC_CHECK(NOT_EQUAL == 1);
return Smi::FromInt(not_equal);
}
static Object* Runtime_NumberCompare(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
if (isnan(x) || isnan(y)) return args[2];
if (x == y) return Smi::FromInt(EQUAL);
if (isless(x, y)) return Smi::FromInt(LESS);
return Smi::FromInt(GREATER);
}
// Compare two Smis as if they were converted to strings and then
// compared lexicographically.
static Object* Runtime_SmiLexicographicCompare(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
// Arrays for the individual characters of the two Smis. Smis are
// 31 bit integers and 10 decimal digits are therefore enough.
static int x_elms[10];
static int y_elms[10];
// Extract the integer values from the Smis.
CONVERT_CHECKED(Smi, x, args[0]);
CONVERT_CHECKED(Smi, y, args[1]);
int x_value = x->value();
int y_value = y->value();
// If the integers are equal so are the string representations.
if (x_value == y_value) return Smi::FromInt(EQUAL);
// If one of the integers are zero the normal integer order is the
// same as the lexicographic order of the string representations.
if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value - y_value);
// If only one of the intergers is negative the negative number is
// smallest because the char code of '-' is less than the char code
// of any digit. Otherwise, we make both values positive.
if (x_value < 0 || y_value < 0) {
if (y_value >= 0) return Smi::FromInt(LESS);
if (x_value >= 0) return Smi::FromInt(GREATER);
x_value = -x_value;
y_value = -y_value;
}
// Convert the integers to arrays of their decimal digits.
int x_index = 0;
int y_index = 0;
while (x_value > 0) {
x_elms[x_index++] = x_value % 10;
x_value /= 10;
}
while (y_value > 0) {
y_elms[y_index++] = y_value % 10;
y_value /= 10;
}
// Loop through the arrays of decimal digits finding the first place
// where they differ.
while (--x_index >= 0 && --y_index >= 0) {
int diff = x_elms[x_index] - y_elms[y_index];
if (diff != 0) return Smi::FromInt(diff);
}
// If one array is a suffix of the other array, the longest array is
// the representation of the largest of the Smis in the
// lexicographic ordering.
return Smi::FromInt(x_index - y_index);
}
static Object* Runtime_StringCompare(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, x, args[0]);
CONVERT_CHECKED(String, y, args[1]);
StringShape x_shape(x);
StringShape y_shape(y);
// A few fast case tests before we flatten.
if (x == y) return Smi::FromInt(EQUAL);
if (y->length(y_shape) == 0) {
if (x->length(x_shape) == 0) return Smi::FromInt(EQUAL);
return Smi::FromInt(GREATER);
} else if (x->length(x_shape) == 0) {
return Smi::FromInt(LESS);
}
int d = x->Get(x_shape, 0) - y->Get(y_shape, 0);
if (d < 0) return Smi::FromInt(LESS);
else if (d > 0) return Smi::FromInt(GREATER);
x->TryFlatten(x_shape); // Shapes are no longer valid!
y->TryFlatten(y_shape);
static StringInputBuffer bufx;
static StringInputBuffer bufy;
bufx.Reset(x);
bufy.Reset(y);
while (bufx.has_more() && bufy.has_more()) {
int d = bufx.GetNext() - bufy.GetNext();
if (d < 0) return Smi::FromInt(LESS);
else if (d > 0) return Smi::FromInt(GREATER);
}
// x is (non-trivial) prefix of y:
if (bufy.has_more()) return Smi::FromInt(LESS);
// y is prefix of x:
return Smi::FromInt(bufx.has_more() ? GREATER : EQUAL);
}
static Object* Runtime_Math_abs(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(fabs(x));
}
static Object* Runtime_Math_acos(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(acos(x));
}
static Object* Runtime_Math_asin(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(asin(x));
}
static Object* Runtime_Math_atan(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(atan(x));
}
static Object* Runtime_Math_atan2(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
double result;
if (isinf(x) && isinf(y)) {
// Make sure that the result in case of two infinite arguments
// is a multiple of Pi / 4. The sign of the result is determined
// by the first argument (x) and the sign of the second argument
// determines the multiplier: one or three.
static double kPiDividedBy4 = 0.78539816339744830962;
int multiplier = (x < 0) ? -1 : 1;
if (y < 0) multiplier *= 3;
result = multiplier * kPiDividedBy4;
} else {
result = atan2(x, y);
}
return Heap::AllocateHeapNumber(result);
}
static Object* Runtime_Math_ceil(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::NumberFromDouble(ceiling(x));
}
static Object* Runtime_Math_cos(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(cos(x));
}
static Object* Runtime_Math_exp(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(exp(x));
}
static Object* Runtime_Math_floor(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::NumberFromDouble(floor(x));
}
static Object* Runtime_Math_log(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(log(x));
}
static Object* Runtime_Math_pow(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) {
return Heap::nan_value();
} else if (y == 0) {
return Smi::FromInt(1);
} else {
return Heap::AllocateHeapNumber(pow(x, y));
}
}
// Returns a number value with positive sign, greater than or equal to
// 0 but less than 1, chosen randomly.
static Object* Runtime_Math_random(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 0);
// To get much better precision, we combine the results of two
// invocations of random(). The result is computed by normalizing a
// double in the range [0, RAND_MAX + 1) obtained by adding the
// high-order bits in the range [0, RAND_MAX] with the low-order
// bits in the range [0, 1).
double lo = static_cast<double>(random()) * (1.0 / (RAND_MAX + 1.0));
double hi = static_cast<double>(random());
double result = (hi + lo) * (1.0 / (RAND_MAX + 1.0));
ASSERT(result >= 0 && result < 1);
return Heap::AllocateHeapNumber(result);
}
static Object* Runtime_Math_round(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
if (signbit(x) && x >= -0.5) return Heap::minus_zero_value();
return Heap::NumberFromDouble(floor(x + 0.5));
}
static Object* Runtime_Math_sin(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(sin(x));
}
static Object* Runtime_Math_sqrt(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(sqrt(x));
}
static Object* Runtime_Math_tan(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(tan(x));
}
// The NewArguments function is only used when constructing the
// arguments array when calling non-functions from JavaScript in
// runtime.js:CALL_NON_FUNCTION.
static Object* Runtime_NewArguments(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
// ECMA-262, 3rd., 10.1.8, p.39
CONVERT_CHECKED(JSFunction, callee, args[0]);
// Compute the frame holding the arguments.
JavaScriptFrameIterator it;
it.AdvanceToArgumentsFrame();
JavaScriptFrame* frame = it.frame();
const int length = frame->GetProvidedParametersCount();
Object* result = Heap::AllocateArgumentsObject(callee, length);
if (result->IsFailure()) return result;
if (length > 0) {
Object* obj = Heap::AllocateFixedArray(length);
if (obj->IsFailure()) return obj;
FixedArray* array = FixedArray::cast(obj);
ASSERT(array->length() == length);
WriteBarrierMode mode = array->GetWriteBarrierMode();
for (int i = 0; i < length; i++) {
array->set(i, frame->GetParameter(i), mode);
}
JSObject::cast(result)->set_elements(array);
}
return result;
}
static Object* Runtime_NewArgumentsFast(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
JSFunction* callee = JSFunction::cast(args[0]);
Object** parameters = reinterpret_cast<Object**>(args[1]);
const int length = Smi::cast(args[2])->value();
Object* result = Heap::AllocateArgumentsObject(callee, length);
if (result->IsFailure()) return result;
ASSERT(Heap::InNewSpace(result));
// Allocate the elements if needed.
if (length > 0) {
// Allocate the fixed array.
Object* obj = Heap::AllocateRawFixedArray(length);
if (obj->IsFailure()) return obj;
reinterpret_cast<Array*>(obj)->set_map(Heap::fixed_array_map());
FixedArray* array = FixedArray::cast(obj);
array->set_length(length);
WriteBarrierMode mode = array->GetWriteBarrierMode();
for (int i = 0; i < length; i++) {
array->set(i, *--parameters, mode);
}
JSObject::cast(result)->set_elements(FixedArray::cast(obj),
SKIP_WRITE_BARRIER);
}
return result;
}
static Object* Runtime_NewClosure(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSFunction, boilerplate, 0);
CONVERT_ARG_CHECKED(Context, context, 1);
Handle<JSFunction> result =
Factory::NewFunctionFromBoilerplate(boilerplate, context);
return *result;
}
static Object* Runtime_NewObject(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* constructor = args[0];
if (constructor->IsJSFunction()) {
JSFunction* function = JSFunction::cast(constructor);
// Handle steping into constructors.
if (Debug::StepInActive()) {
StackFrameIterator it;
it.Advance();
ASSERT(it.frame()->is_construct());
it.Advance();
if (it.frame()->fp() == Debug::step_in_fp()) {
HandleScope scope;
Debug::FloodWithOneShot(Handle<SharedFunctionInfo>(function->shared()));
}
}
if (function->has_initial_map() &&
function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
// The 'Function' function ignores the receiver object when
// called using 'new' and creates a new JSFunction object that
// is returned. The receiver object is only used for error
// reporting if an error occurs when constructing the new
// JSFunction. AllocateJSObject should not be used to allocate
// JSFunctions since it does not properly initialize the shared
// part of the function. Since the receiver is ignored anyway,
// we use the global object as the receiver instead of a new
// JSFunction object. This way, errors are reported the same
// way whether or not 'Function' is called using 'new'.
return Top::context()->global();
}
return Heap::AllocateJSObject(function);
}
HandleScope scope;
Handle<Object> cons(constructor);
// The constructor is not a function; throw a type error.
Handle<Object> type_error =
Factory::NewTypeError("not_constructor", HandleVector(&cons, 1));
return Top::Throw(*type_error);
}
static Object* Runtime_LazyCompile(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<JSFunction> function = args.at<JSFunction>(0);
#ifdef DEBUG
if (FLAG_trace_lazy) {
PrintF("[lazy: ");
function->shared()->name()->Print();
PrintF("]\n");
}
#endif
// Compile the target function.
ASSERT(!function->is_compiled());
if (!CompileLazy(function, KEEP_EXCEPTION)) {
return Failure::Exception();
}
return function->code();
}
static Object* Runtime_GetCalledFunction(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 0);
StackFrameIterator it;
// Get past the JS-to-C exit frame.
ASSERT(it.frame()->is_exit());
it.Advance();
// Get past the CALL_NON_FUNCTION activation frame.
ASSERT(it.frame()->is_java_script());
it.Advance();
// Argument adaptor frames do not copy the function; we have to skip
// past them to get to the real calling frame.
if (it.frame()->is_arguments_adaptor()) it.Advance();
// Get the function from the top of the expression stack of the
// calling frame.
StandardFrame* frame = StandardFrame::cast(it.frame());
int index = frame->ComputeExpressionsCount() - 1;
Object* result = frame->GetExpression(index);
return result;
}
static Object* Runtime_GetFunctionDelegate(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
RUNTIME_ASSERT(!args[0]->IsJSFunction());
return *Execution::GetFunctionDelegate(args.at<Object>(0));
}
static Object* Runtime_NewContext(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, function, args[0]);
int length = ScopeInfo<>::NumberOfContextSlots(function->code());
Object* result = Heap::AllocateFunctionContext(length, function);
if (result->IsFailure()) return result;
Top::set_context(Context::cast(result));
return result; // non-failure
}
static Object* Runtime_PushContext(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
// Convert the object to a proper JavaScript object.
Object* object = args[0];
if (!object->IsJSObject()) {
object = object->ToObject();
if (object->IsFailure()) {
if (!Failure::cast(object)->IsInternalError()) return object;
HandleScope scope;
Handle<Object> handle(args[0]);
Handle<Object> result =
Factory::NewTypeError("with_expression", HandleVector(&handle, 1));
return Top::Throw(*result);
}
}
Object* result =
Heap::AllocateWithContext(Top::context(), JSObject::cast(object));
if (result->IsFailure()) return result;
Top::set_context(Context::cast(result));
return result;
}
static Object* Runtime_LookupContext(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(Context, context, 0);
CONVERT_ARG_CHECKED(String, name, 1);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
if (index < 0 && !holder.is_null()) {
ASSERT(holder->IsJSObject());
return *holder;
}
// No intermediate context found. Use global object by default.
return Top::context()->global();
}
// A mechanism to return pairs of Object*'s. This is somewhat
// compiler-dependent as it assumes that a 64-bit value (a long long)
// is returned via two registers (edx:eax on ia32). Both the ia32 and
// arm platform support this; it is mostly an issue of "coaxing" the
// compiler to do the right thing.
//
// TODO(1236026): This is a non-portable hack that should be removed.
typedef uint64_t ObjectPair;
static inline ObjectPair MakePair(Object* x, Object* y) {
return reinterpret_cast<uint32_t>(x) |
(reinterpret_cast<ObjectPair>(y) << 32);
}
static inline Object* Unhole(Object* x, PropertyAttributes attributes) {
ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0);
USE(attributes);
return x->IsTheHole() ? Heap::undefined_value() : x;
}
static JSObject* ComputeReceiverForNonGlobal(JSObject* holder) {
ASSERT(!holder->IsGlobalObject());
Context* top = Top::context();
// Get the context extension function.
JSFunction* context_extension_function =
top->global_context()->context_extension_function();
// If the holder isn't a context extension object, we just return it
// as the receiver. This allows arguments objects to be used as
// receivers, but only if they are put in the context scope chain
// explicitly via a with-statement.
Object* constructor = holder->map()->constructor();
if (constructor != context_extension_function) return holder;
// Fall back to using the global object as the receiver if the
// property turns out to be a local variable allocated in a context
// extension object - introduced via eval.
return top->global()->global_receiver();
}
static ObjectPair LoadContextSlotHelper(Arguments args, bool throw_error) {
HandleScope scope;
ASSERT(args.length() == 2);
if (!args[0]->IsContext() || !args[1]->IsString()) {
return MakePair(IllegalOperation(), NULL);
}
Handle<Context> context = args.at<Context>(0);
Handle<String> name = args.at<String>(1);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
// If the index is non-negative, the slot has been found in a local
// variable or a parameter. Read it from the context object or the
// arguments object.
if (index >= 0) {
// If the "property" we were looking for is a local variable or an
// argument in a context, the receiver is the global object; see
// ECMA-262, 3rd., 10.1.6 and 10.2.3.
JSObject* receiver = Top::context()->global()->global_receiver();
Object* value = (holder->IsContext())
? Context::cast(*holder)->get(index)
: JSObject::cast(*holder)->GetElement(index);
return MakePair(Unhole(value, attributes), receiver);
}
// If the holder is found, we read the property from it.
if (!holder.is_null() && holder->IsJSObject()) {
ASSERT(Handle<JSObject>::cast(holder)->HasProperty(*name));
JSObject* object = JSObject::cast(*holder);
JSObject* receiver = (object->IsGlobalObject())
? GlobalObject::cast(object)->global_receiver()
: ComputeReceiverForNonGlobal(object);
// No need to unhole the value here. This is taken care of by the
// GetProperty function.
Object* value = object->GetProperty(*name);
return MakePair(value, receiver);
}
if (throw_error) {
// The property doesn't exist - throw exception.
Handle<Object> reference_error =
Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
return MakePair(Top::Throw(*reference_error), NULL);
} else {
// The property doesn't exist - return undefined
return MakePair(Heap::undefined_value(), Heap::undefined_value());
}
}
static ObjectPair Runtime_LoadContextSlot(Arguments args) {
return LoadContextSlotHelper(args, true);
}
static ObjectPair Runtime_LoadContextSlotNoReferenceError(Arguments args) {
return LoadContextSlotHelper(args, false);
}
static Object* Runtime_StoreContextSlot(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
Handle<Object> value(args[0]);
CONVERT_ARG_CHECKED(Context, context, 1);
CONVERT_ARG_CHECKED(String, name, 2);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
if (index >= 0) {
if (holder->IsContext()) {
// Ignore if read_only variable.
if ((attributes & READ_ONLY) == 0) {
Handle<Context>::cast(holder)->set(index, *value);
}
} else {
ASSERT((attributes & READ_ONLY) == 0);
Object* result =
Handle<JSObject>::cast(holder)->SetElement(index, *value);
USE(result);
ASSERT(!result->IsFailure());
}
return *value;
}
// Slow case: The property is not in a FixedArray context.
// It is either in an JSObject extension context or it was not found.
Handle<JSObject> context_ext;
if (!holder.is_null()) {
// The property exists in the extension context.
context_ext = Handle<JSObject>::cast(holder);
} else {
// The property was not found. It needs to be stored in the global context.
ASSERT(attributes == ABSENT);
attributes = NONE;
context_ext = Handle<JSObject>(Top::context()->global());
}
// Set the property, but ignore if read_only variable.
if ((attributes & READ_ONLY) == 0) {
Handle<Object> set = SetProperty(context_ext, name, value, attributes);
if (set.is_null()) {
// Failure::Exception is converted to a null handle in the
// handle-based methods such as SetProperty. We therefore need
// to convert null handles back to exceptions.
ASSERT(Top::has_pending_exception());
return Failure::Exception();
}
}
return *value;
}
static Object* Runtime_Throw(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
return Top::Throw(args[0]);
}
static Object* Runtime_ReThrow(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
return Top::ReThrow(args[0]);
}
static Object* Runtime_ThrowReferenceError(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<Object> name(args[0]);
Handle<Object> reference_error =
Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
return Top::Throw(*reference_error);
}
static Object* Runtime_StackOverflow(Arguments args) {
NoHandleAllocation na;
return Top::StackOverflow();
}
static Object* RuntimePreempt(Arguments args) {
// Clear the preempt request flag.
StackGuard::Continue(PREEMPT);
ContextSwitcher::PreemptionReceived();
{
v8::Unlocker unlocker;
Thread::YieldCPU();
}
return Heap::undefined_value();
}
static Object* DebugBreakHelper() {
// Just continue if breaks are disabled.
if (Debug::disable_break()) {
return Heap::undefined_value();
}
// Don't break in system functions. If the current function is
// either in the builtins object of some context or is in the debug
// context just return with the debug break stack guard active.
JavaScriptFrameIterator it;
JavaScriptFrame* frame = it.frame();
Object* fun = frame->function();
if (fun->IsJSFunction()) {
GlobalObject* global = JSFunction::cast(fun)->context()->global();
if (global->IsJSBuiltinsObject() || Debug::IsDebugGlobal(global)) {
return Heap::undefined_value();
}
}
// Clear the debug request flag.
StackGuard::Continue(DEBUGBREAK);
HandleScope scope;
// Enter the debugger. Just continue if we fail to enter the debugger.
EnterDebugger debugger;
if (debugger.FailedToEnter()) {
return Heap::undefined_value();
}
// Notify the debug event listeners.
Debugger::OnDebugBreak(Factory::undefined_value());
// Return to continue execution.
return Heap::undefined_value();
}
static Object* Runtime_DebugBreak(Arguments args) {
ASSERT(args.length() == 0);
return DebugBreakHelper();
}
static Object* Runtime_StackGuard(Arguments args) {
ASSERT(args.length() == 1);
// First check if this is a real stack overflow.
if (StackGuard::IsStackOverflow()) return Runtime_StackOverflow(args);
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
if (StackGuard::IsDebugBreak()) DebugBreakHelper();
if (StackGuard::IsPreempted()) RuntimePreempt(args);
if (StackGuard::IsInterrupted()) {
// interrupt
StackGuard::Continue(INTERRUPT);
return Top::StackOverflow();
}
return Heap::undefined_value();
}
// NOTE: These PrintXXX functions are defined for all builds (not just
// DEBUG builds) because we may want to be able to trace function
// calls in all modes.
static void PrintString(String* str) {
// not uncommon to have empty strings
if (str->length() > 0) {
SmartPointer<char> s =
str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
PrintF("%s", *s);
}
}
static void PrintObject(Object* obj) {
if (obj->IsSmi()) {
PrintF("%d", Smi::cast(obj)->value());
} else if (obj->IsString() || obj->IsSymbol()) {
PrintString(String::cast(obj));
} else if (obj->IsNumber()) {
PrintF("%g", obj->Number());
} else if (obj->IsFailure()) {
PrintF("<failure>");
} else if (obj->IsUndefined()) {
PrintF("<undefined>");
} else if (obj->IsNull()) {
PrintF("<null>");
} else if (obj->IsTrue()) {
PrintF("<true>");
} else if (obj->IsFalse()) {
PrintF("<false>");
} else {
PrintF("%p", obj);
}
}
static int StackSize() {
int n = 0;
for (JavaScriptFrameIterator it; !it.done(); it.Advance()) n++;
return n;
}
static void PrintTransition(Object* result) {
// indentation
{ const int nmax = 80;
int n = StackSize();
if (n <= nmax)
PrintF("%4d:%*s", n, n, "");
else
PrintF("%4d:%*s", n, nmax, "...");
}
if (result == NULL) {
// constructor calls
JavaScriptFrameIterator it;
JavaScriptFrame* frame = it.frame();
if (frame->IsConstructor()) PrintF("new ");
// function name
Object* fun = frame->function();
if (fun->IsJSFunction()) {
PrintObject(JSFunction::cast(fun)->shared()->name());
} else {
PrintObject(fun);
}
// function arguments
// (we are intentionally only printing the actually
// supplied parameters, not all parameters required)
PrintF("(this=");
PrintObject(frame->receiver());
const int length = frame->GetProvidedParametersCount();
for (int i = 0; i < length; i++) {
PrintF(", ");
PrintObject(frame->GetParameter(i));
}
PrintF(") {\n");
} else {
// function result
PrintF("} -> ");
PrintObject(result);
PrintF("\n");
}
}
static Object* Runtime_TraceEnter(Arguments args) {
ASSERT(args.length() == 0);
NoHandleAllocation ha;
PrintTransition(NULL);
return Heap::undefined_value();
}
static Object* Runtime_TraceExit(Arguments args) {
NoHandleAllocation ha;
PrintTransition(args[0]);
return args[0]; // return TOS
}
static Object* Runtime_DebugPrint(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
#ifdef DEBUG
if (args[0]->IsString()) {
// If we have a string, assume it's a code "marker"
// and print some interesting cpu debugging info.
JavaScriptFrameIterator it;
JavaScriptFrame* frame = it.frame();
PrintF("fp = %p, sp = %p, pp = %p: ",
frame->fp(), frame->sp(), frame->pp());
} else {
PrintF("DebugPrint: ");
}
args[0]->Print();
#else
// ShortPrint is available in release mode. Print is not.
args[0]->ShortPrint();
#endif
PrintF("\n");
Flush();
return args[0]; // return TOS
}
static Object* Runtime_DebugTrace(Arguments args) {
ASSERT(args.length() == 0);
NoHandleAllocation ha;
Top::PrintStack();
return Heap::undefined_value();
}
static Object* Runtime_DateCurrentTime(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 0);
// According to ECMA-262, section 15.9.1, page 117, the precision of
// the number in a Date object representing a particular instant in
// time is milliseconds. Therefore, we floor the result of getting
// the OS time.
double millis = floor(OS::TimeCurrentMillis());
return Heap::NumberFromDouble(millis);
}
static Object* Runtime_DateParseString(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, string_object, args[0]);
Handle<String> str(string_object);
Handle<FixedArray> output = Factory::NewFixedArray(DateParser::OUTPUT_SIZE);
if (DateParser::Parse(*str, *output)) {
return *Factory::NewJSArrayWithElements(output);
} else {
return *Factory::null_value();
}
}
static Object* Runtime_DateLocalTimezone(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
char* zone = OS::LocalTimezone(x);
return Heap::AllocateStringFromUtf8(CStrVector(zone));
}
static Object* Runtime_DateLocalTimeOffset(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 0);
return Heap::NumberFromDouble(OS::LocalTimeOffset());
}
static Object* Runtime_DateDaylightSavingsOffset(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::NumberFromDouble(OS::DaylightSavingsOffset(x));
}
static Object* Runtime_NumberIsFinite(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(value, args[0]);
Object* result;
if (isnan(value) || (fpclassify(value) == FP_INFINITE)) {
result = Heap::false_value();
} else {
result = Heap::true_value();
}
return result;
}
static Object* Runtime_GlobalReceiver(Arguments args) {
ASSERT(args.length() == 1);
Object* global = args[0];
if (!global->IsJSGlobalObject()) return Heap::null_value();
return JSGlobalObject::cast(global)->global_receiver();
}
static Object* Runtime_CompileString(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, source, 0);
CONVERT_ARG_CHECKED(Smi, line_offset, 1);
// Compile source string.
Handle<JSFunction> boilerplate =
Compiler::CompileEval(source, line_offset->value(), true);
if (boilerplate.is_null()) return Failure::Exception();
Handle<Context> context(Top::context()->global_context());
Handle<JSFunction> fun =
Factory::NewFunctionFromBoilerplate(boilerplate, context);
return *fun;
}
static Handle<JSFunction> GetBuiltinFunction(String* name) {
LookupResult result;
Top::global_context()->builtins()->LocalLookup(name, &result);
return Handle<JSFunction>(JSFunction::cast(result.GetValue()));
}
static Object* CompileDirectEval(Handle<String> source) {
// Compute the eval context.
HandleScope scope;
StackFrameLocator locator;
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
Handle<Context> context(Context::cast(frame->context()));
bool is_global = context->IsGlobalContext();
// Compile source string.
Handle<JSFunction> boilerplate = Compiler::CompileEval(source, 0, is_global);
if (boilerplate.is_null()) return Failure::Exception();
Handle<JSFunction> fun =
Factory::NewFunctionFromBoilerplate(boilerplate, context);
return *fun;
}
static Object* Runtime_ResolvePossiblyDirectEval(Arguments args) {
ASSERT(args.length() == 2);
HandleScope scope;
CONVERT_ARG_CHECKED(JSFunction, callee, 0);
Handle<Object> receiver;
// Find where the 'eval' symbol is bound. It is unaliased only if
// it is bound in the global context.
StackFrameLocator locator;
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
Handle<Context> context(Context::cast(frame->context()));
int index;
PropertyAttributes attributes;
while (!context.is_null()) {
receiver = context->Lookup(Factory::eval_symbol(), FOLLOW_PROTOTYPE_CHAIN,
&index, &attributes);
if (attributes != ABSENT) break;
if (context->is_function_context()) {
context = Handle<Context>(Context::cast(context->closure()->context()));
} else {
context = Handle<Context>(context->previous());
}
}
if (context->IsGlobalContext()) {
// 'eval' is bound in the global context, but it may have been overwritten.
// Compare it to the builtin 'GlobalEval' function to make sure.
Handle<JSFunction> global_eval =
GetBuiltinFunction(Heap::global_eval_symbol());
if (global_eval.is_identical_to(callee)) {
// A direct eval call.
if (args[1]->IsString()) {
CONVERT_ARG_CHECKED(String, source, 1);
// A normal eval call on a string. Compile it and return the
// compiled function bound in the local context.
Object* compiled_source = CompileDirectEval(source);
if (compiled_source->IsFailure()) return compiled_source;
receiver = Handle<Object>(frame->receiver());
callee = Handle<JSFunction>(JSFunction::cast(compiled_source));
} else {
// An eval call that is not called on a string. Global eval
// deals better with this.
receiver = Handle<Object>(Top::global_context()->global());
}
} else {
// 'eval' is overwritten. Just call the function with the given arguments.
receiver = Handle<Object>(Top::global_context()->global());
}
} else {
// 'eval' is not bound in the global context. Just call the function
// with the given arguments. This is not necessarily the global eval.
if (receiver->IsContext()) {
context = Handle<Context>::cast(receiver);
receiver = Handle<Object>(context->get(index));
}
}
Handle<FixedArray> call = Factory::NewFixedArray(2);
call->set(0, *callee);
call->set(1, *receiver);
return *call;
}
static Object* Runtime_CompileScript(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 4);
CONVERT_ARG_CHECKED(String, source, 0);
CONVERT_ARG_CHECKED(String, script, 1);
CONVERT_CHECKED(Smi, line_attrs, args[2]);
int line = line_attrs->value();
CONVERT_CHECKED(Smi, col_attrs, args[3]);
int col = col_attrs->value();
Handle<JSFunction> boilerplate =
Compiler::Compile(source, script, line, col, NULL, NULL);
if (boilerplate.is_null()) return Failure::Exception();
Handle<JSFunction> fun =
Factory::NewFunctionFromBoilerplate(boilerplate,
Handle<Context>(Top::context()));
return *fun;
}
static Object* Runtime_SetNewFunctionAttributes(Arguments args) {
// This utility adjusts the property attributes for newly created Function
// object ("new Function(...)") by changing the map.
// All it does is changing the prototype property to enumerable
// as specified in ECMA262, 15.3.5.2.
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, func, 0);
ASSERT(func->map()->instance_type() ==
Top::function_instance_map()->instance_type());
ASSERT(func->map()->instance_size() ==
Top::function_instance_map()->instance_size());
func->set_map(*Top::function_instance_map());
return *func;
}
// Push an array unto an array of arrays if it is not already in the
// array. Returns true if the element was pushed on the stack and
// false otherwise.
static Object* Runtime_PushIfAbsent(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSArray, array, args[0]);
CONVERT_CHECKED(JSArray, element, args[1]);
RUNTIME_ASSERT(array->HasFastElements());
int length = Smi::cast(array->length())->value();
FixedArray* elements = FixedArray::cast(array->elements());
for (int i = 0; i < length; i++) {
if (elements->get(i) == element) return Heap::false_value();
}
Object* obj = array->SetFastElement(length, element);
if (obj->IsFailure()) return obj;
return Heap::true_value();
}
/**
* A simple visitor visits every element of Array's.
* The backend storage can be a fixed array for fast elements case,
* or a dictionary for sparse array. Since Dictionary is a subtype
* of FixedArray, the class can be used by both fast and slow cases.
* The second parameter of the constructor, fast_elements, specifies
* whether the storage is a FixedArray or Dictionary.
*
* An index limit is used to deal with the situation that a result array
* length overflows 32-bit non-negative integer.
*/
class ArrayConcatVisitor {
public:
ArrayConcatVisitor(Handle<FixedArray> storage,
uint32_t index_limit,
bool fast_elements) :
storage_(storage), index_limit_(index_limit),
fast_elements_(fast_elements), index_offset_(0) { }
void visit(uint32_t i, Handle<Object> elm) {
uint32_t index = i + index_offset_;
if (index >= index_limit_) return;
if (fast_elements_) {
ASSERT(index < static_cast<uint32_t>(storage_->length()));
storage_->set(index, *elm);
} else {
Handle<Dictionary> dict = Handle<Dictionary>::cast(storage_);
Handle<Dictionary> result =
Factory::DictionaryAtNumberPut(dict, index, elm);
if (!result.is_identical_to(dict))
storage_ = result;
}
}
void increase_index_offset(uint32_t delta) {
index_offset_ += delta;
}
private:
Handle<FixedArray> storage_;
uint32_t index_limit_;
bool fast_elements_;
uint32_t index_offset_;
};
/**
* A helper function that visits elements of a JSObject. Only elements
* whose index between 0 and range (exclusive) are visited.
*
* If the third parameter, visitor, is not NULL, the visitor is called
* with parameters, 'visitor_index_offset + element index' and the element.
*
* It returns the number of visisted elements.
*/
static uint32_t IterateElements(Handle<JSObject> receiver,
uint32_t range,
ArrayConcatVisitor* visitor) {
uint32_t num_of_elements = 0;
if (receiver->HasFastElements()) {
Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
uint32_t len = elements->length();
if (range < len) len = range;
for (uint32_t j = 0; j < len; j++) {
Handle<Object> e(elements->get(j));
if (!e->IsTheHole()) {
num_of_elements++;
if (visitor)
visitor->visit(j, e);
}
}
} else {
Handle<Dictionary> dict(receiver->element_dictionary());
uint32_t capacity = dict->Capacity();
for (uint32_t j = 0; j < capacity; j++) {
Handle<Object> k(dict->KeyAt(j));
if (dict->IsKey(*k)) {
ASSERT(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number());
if (index < range) {
num_of_elements++;
if (visitor) {
visitor->visit(index,
Handle<Object>(dict->ValueAt(j)));
}
}
}
}
}
return num_of_elements;
}
/**
* A helper function that visits elements of an Array object, and elements
* on its prototypes.
*
* Elements on prototypes are visited first, and only elements whose indices
* less than Array length are visited.
*
* If a ArrayConcatVisitor object is given, the visitor is called with
* parameters, element's index + visitor_index_offset and the element.
*/
static uint32_t IterateArrayAndPrototypeElements(Handle<JSArray> array,
ArrayConcatVisitor* visitor) {
uint32_t range = static_cast<uint32_t>(array->length()->Number());
Handle<Object> obj = array;
static const int kEstimatedPrototypes = 3;
List< Handle<JSObject> > objects(kEstimatedPrototypes);
// Visit prototype first. If an element on the prototype is shadowed by
// the inheritor using the same index, the ArrayConcatVisitor visits
// the prototype element before the shadowing element.
// The visitor can simply overwrite the old value by new value using
// the same index. This follows Array::concat semantics.
while (!obj->IsNull()) {
objects.Add(Handle<JSObject>::cast(obj));
obj = Handle<Object>(obj->GetPrototype());
}
uint32_t nof_elements = 0;
for (int i = objects.length() - 1; i >= 0; i--) {
Handle<JSObject> obj = objects[i];
nof_elements +=
IterateElements(Handle<JSObject>::cast(obj), range, visitor);
}
return nof_elements;
}
/**
* A helper function of Runtime_ArrayConcat.
*
* The first argument is an Array of arrays and objects. It is the
* same as the arguments array of Array::concat JS function.
*
* If an argument is an Array object, the function visits array
* elements. If an argument is not an Array object, the function
* visits the object as if it is an one-element array.
*
* If the result array index overflows 32-bit integer, the rounded
* non-negative number is used as new length. For example, if one
* array length is 2^32 - 1, second array length is 1, the
* concatenated array length is 0.
*/
static uint32_t IterateArguments(Handle<JSArray> arguments,
ArrayConcatVisitor* visitor) {
uint32_t visited_elements = 0;
uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());
for (uint32_t i = 0; i < num_of_args; i++) {
Handle<Object> obj(arguments->GetElement(i));
if (obj->IsJSArray()) {
Handle<JSArray> array = Handle<JSArray>::cast(obj);
uint32_t len = static_cast<uint32_t>(array->length()->Number());
uint32_t nof_elements =
IterateArrayAndPrototypeElements(array, visitor);
// Total elements of array and its prototype chain can be more than
// the array length, but ArrayConcat can only concatenate at most
// the array length number of elements.
visited_elements += (nof_elements > len) ? len : nof_elements;
if (visitor) visitor->increase_index_offset(len);
} else {
if (visitor) {
visitor->visit(0, obj);
visitor->increase_index_offset(1);
}
visited_elements++;
}
}
return visited_elements;
}
/**
* Array::concat implementation.
* See ECMAScript 262, 15.4.4.4.
*/
static Object* Runtime_ArrayConcat(Arguments args) {
ASSERT(args.length() == 1);
HandleScope handle_scope;
CONVERT_CHECKED(JSArray, arg_arrays, args[0]);
Handle<JSArray> arguments(arg_arrays);
// Pass 1: estimate the number of elements of the result
// (it could be more than real numbers if prototype has elements).
uint32_t result_length = 0;
uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());
{ AssertNoAllocation nogc;
for (uint32_t i = 0; i < num_of_args; i++) {
Object* obj = arguments->GetElement(i);
if (obj->IsJSArray()) {
result_length +=
static_cast<uint32_t>(JSArray::cast(obj)->length()->Number());
} else {
result_length++;
}
}
}
// Allocate an empty array, will set length and content later.
Handle<JSArray> result = Factory::NewJSArray(0);
uint32_t estimate_nof_elements = IterateArguments(arguments, NULL);
// If estimated number of elements is more than half of length, a
// fixed array (fast case) is more time and space-efficient than a
// dictionary.
bool fast_case = (estimate_nof_elements * 2) >= result_length;
Handle<FixedArray> storage;
if (fast_case) {
// The backing storage array must have non-existing elements to
// preserve holes across concat operations.
storage = Factory::NewFixedArrayWithHoles(result_length);
} else {
// TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
uint32_t at_least_space_for = estimate_nof_elements +
(estimate_nof_elements >> 2);
storage = Handle<FixedArray>::cast(
Factory::NewDictionary(at_least_space_for));
}
Handle<Object> len = Factory::NewNumber(static_cast<double>(result_length));
ArrayConcatVisitor visitor(storage, result_length, fast_case);
IterateArguments(arguments, &visitor);
result->set_length(*len);
result->set_elements(*storage);
return *result;
}
// This will not allocate (flatten the string), but it may run
// very slowly for very deeply nested ConsStrings. For debugging use only.
static Object* Runtime_GlobalPrint(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, string, args[0]);
StringInputBuffer buffer(string);
while (buffer.has_more()) {
uint16_t character = buffer.GetNext();
PrintF("%c", character);
}
return string;
}
static Object* Runtime_RemoveArrayHoles(Arguments args) {
ASSERT(args.length() == 1);
// Ignore the case if this is not a JSArray.
if (!args[0]->IsJSArray()) return args[0];
return JSArray::cast(args[0])->RemoveHoles();
}
// Move contents of argument 0 (an array) to argument 1 (an array)
static Object* Runtime_MoveArrayContents(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSArray, from, args[0]);
CONVERT_CHECKED(JSArray, to, args[1]);
to->SetContent(FixedArray::cast(from->elements()));
to->set_length(from->length());
from->SetContent(Heap::empty_fixed_array());
from->set_length(0);
return to;
}
// How many elements does this array have?
static Object* Runtime_EstimateNumberOfElements(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSArray, array, args[0]);
HeapObject* elements = array->elements();
if (elements->IsDictionary()) {
return Smi::FromInt(Dictionary::cast(elements)->NumberOfElements());
} else {
return array->length();
}
}
// Returns an array that tells you where in the [0, length) interval an array
// might have elements. Can either return keys or intervals. Keys can have
// gaps in (undefined). Intervals can also span over some undefined keys.
static Object* Runtime_GetArrayKeys(Arguments args) {
ASSERT(args.length() == 2);
HandleScope scope;
CONVERT_CHECKED(JSArray, raw_array, args[0]);
Handle<JSArray> array(raw_array);
CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
if (array->elements()->IsDictionary()) {
// Create an array and get all the keys into it, then remove all the
// keys that are not integers in the range 0 to length-1.
Handle<FixedArray> keys = GetKeysInFixedArrayFor(array);
int keys_length = keys->length();
for (int i = 0; i < keys_length; i++) {
Object* key = keys->get(i);
uint32_t index;
if (!Array::IndexFromObject(key, &index) || index >= length) {
// Zap invalid keys.
keys->set_undefined(i);
}
}
return *Factory::NewJSArrayWithElements(keys);
} else {
Handle<FixedArray> single_interval = Factory::NewFixedArray(2);
// -1 means start of array.
single_interval->set(0,
Smi::FromInt(-1),
SKIP_WRITE_BARRIER);
Handle<Object> length_object =
Factory::NewNumber(static_cast<double>(length));
single_interval->set(1, *length_object);
return *Factory::NewJSArrayWithElements(single_interval);
}
}
// DefineAccessor takes an optional final argument which is the
// property attributes (eg, DONT_ENUM, DONT_DELETE). IMPORTANT: due
// to the way accessors are implemented, it is set for both the getter
// and setter on the first call to DefineAccessor and ignored on
// subsequent calls.
static Object* Runtime_DefineAccessor(Arguments args) {
RUNTIME_ASSERT(args.length() == 4 || args.length() == 5);
// Compute attributes.
PropertyAttributes attributes = NONE;
if (args.length() == 5) {
CONVERT_CHECKED(Smi, attrs, args[4]);
int value = attrs->value();
// Only attribute bits should be set.
ASSERT((value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
attributes = static_cast<PropertyAttributes>(value);
}
CONVERT_CHECKED(JSObject, obj, args[0]);
CONVERT_CHECKED(String, name, args[1]);
CONVERT_CHECKED(Smi, flag, args[2]);
CONVERT_CHECKED(JSFunction, fun, args[3]);
return obj->DefineAccessor(name, flag->value() == 0, fun, attributes);
}
static Object* Runtime_LookupAccessor(Arguments args) {
ASSERT(args.length() == 3);
CONVERT_CHECKED(JSObject, obj, args[0]);
CONVERT_CHECKED(String, name, args[1]);
CONVERT_CHECKED(Smi, flag, args[2]);
return obj->LookupAccessor(name, flag->value() == 0);
}
// Helper functions for wrapping and unwrapping stack frame ids.
static Smi* WrapFrameId(StackFrame::Id id) {
ASSERT(IsAligned(OffsetFrom(id), 4));
return Smi::FromInt(id >> 2);
}
static StackFrame::Id UnwrapFrameId(Smi* wrapped) {
return static_cast<StackFrame::Id>(wrapped->value() << 2);
}
// Adds a JavaScript function as a debug event listener.
// args[0]: debug event listener function
// args[1]: object supplied during callback
static Object* Runtime_AddDebugEventListener(Arguments args) {
ASSERT(args.length() == 2);
// Convert the parameters to API objects to call the API function for adding
// a JavaScript function as debug event listener.
CONVERT_ARG_CHECKED(JSFunction, raw_fun, 0);
v8::Handle<v8::Function> fun(ToApi<v8::Function>(raw_fun));
v8::Handle<v8::Value> data(ToApi<v8::Value>(args.at<Object>(0)));
v8::Debug::AddDebugEventListener(fun, data);
return Heap::undefined_value();
}
// Removes a JavaScript function debug event listener.
// args[0]: debug event listener function
static Object* Runtime_RemoveDebugEventListener(Arguments args) {
ASSERT(args.length() == 1);
// Convert the parameter to an API object to call the API function for
// removing a JavaScript function debug event listener.
CONVERT_ARG_CHECKED(JSFunction, raw_fun, 0);
v8::Handle<v8::Function> fun(ToApi<v8::Function>(raw_fun));
v8::Debug::RemoveDebugEventListener(fun);
return Heap::undefined_value();
}
static Object* Runtime_Break(Arguments args) {
ASSERT(args.length() == 0);
StackGuard::DebugBreak();
return Heap::undefined_value();
}
static Object* DebugLookupResultValue(LookupResult* result) {
Object* value;
switch (result->type()) {
case NORMAL: {
Dictionary* dict =
JSObject::cast(result->holder())->property_dictionary();
value = dict->ValueAt(result->GetDictionaryEntry());
if (value->IsTheHole()) {
return Heap::undefined_value();
}
return value;
}
case FIELD:
value =
JSObject::cast(
result->holder())->FastPropertyAt(result->GetFieldIndex());
if (value->IsTheHole()) {
return Heap::undefined_value();
}
return value;
case CONSTANT_FUNCTION:
return result->GetConstantFunction();
case CALLBACKS:
case INTERCEPTOR:
case MAP_TRANSITION:
case CONSTANT_TRANSITION:
case NULL_DESCRIPTOR:
return Heap::undefined_value();
default:
UNREACHABLE();
}
UNREACHABLE();
return Heap::undefined_value();
}
static Object* Runtime_DebugGetPropertyDetails(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
CONVERT_ARG_CHECKED(String, name, 1);
// Check if the name is trivially convertible to an index and get the element
// if so.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Handle<FixedArray> details = Factory::NewFixedArray(2);
details->set(0, Runtime::GetElementOrCharAt(obj, index));
details->set(1, PropertyDetails(NONE, NORMAL).AsSmi());
return *Factory::NewJSArrayWithElements(details);
}
// Perform standard local lookup on the object.
LookupResult result;
obj->Lookup(*name, &result);
if (result.IsProperty()) {
Handle<Object> value(DebugLookupResultValue(&result));
Handle<FixedArray> details = Factory::NewFixedArray(2);
details->set(0, *value);
details->set(1, result.GetPropertyDetails().AsSmi());
return *Factory::NewJSArrayWithElements(details);
}
return Heap::undefined_value();
}
static Object* Runtime_DebugGetProperty(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
CONVERT_ARG_CHECKED(String, name, 1);
LookupResult result;
obj->Lookup(*name, &result);
if (result.IsProperty()) {
return DebugLookupResultValue(&result);
}
return Heap::undefined_value();
}
// Return the names of the local named properties.
// args[0]: object
static Object* Runtime_DebugLocalPropertyNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
if (!args[0]->IsJSObject()) {
return Heap::undefined_value();
}
CONVERT_ARG_CHECKED(JSObject, obj, 0);
int n = obj->NumberOfLocalProperties(static_cast<PropertyAttributes>(NONE));
Handle<FixedArray> names = Factory::NewFixedArray(n);
obj->GetLocalPropertyNames(*names);
return *Factory::NewJSArrayWithElements(names);
}
// Return the names of the local indexed properties.
// args[0]: object
static Object* Runtime_DebugLocalElementNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
if (!args[0]->IsJSObject()) {
return Heap::undefined_value();
}
CONVERT_ARG_CHECKED(JSObject, obj, 0);
int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE));
Handle<FixedArray> names = Factory::NewFixedArray(n);
obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE));
return *Factory::NewJSArrayWithElements(names);
}
// Return the property type calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyTypeFromDetails(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(Smi, details, args[0]);
PropertyType type = PropertyDetails(details).type();
return Smi::FromInt(static_cast<int>(type));
}
// Return the property attribute calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyAttributesFromDetails(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(Smi, details, args[0]);
PropertyAttributes attributes = PropertyDetails(details).attributes();
return Smi::FromInt(static_cast<int>(attributes));
}
// Return the property insertion index calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyIndexFromDetails(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(Smi, details, args[0]);
int index = PropertyDetails(details).index();
return Smi::FromInt(index);
}
// Return information on whether an object has a named or indexed interceptor.
// args[0]: object
static Object* Runtime_DebugInterceptorInfo(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
if (!args[0]->IsJSObject()) {
return Smi::FromInt(0);
}
CONVERT_ARG_CHECKED(JSObject, obj, 0);
int result = 0;
if (obj->HasNamedInterceptor()) result |= 2;
if (obj->HasIndexedInterceptor()) result |= 1;
return Smi::FromInt(result);
}
// Return property names from named interceptor.
// args[0]: object
static Object* Runtime_DebugNamedInterceptorPropertyNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(obj->HasNamedInterceptor());
v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj);
if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
return Heap::undefined_value();
}
// Return element names from indexed interceptor.
// args[0]: object
static Object* Runtime_DebugIndexedInterceptorElementNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(obj->HasIndexedInterceptor());
v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj);
if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
return Heap::undefined_value();
}
// Return property value from named interceptor.
// args[0]: object
// args[1]: property name
static Object* Runtime_DebugNamedInterceptorPropertyValue(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(obj->HasNamedInterceptor());
CONVERT_ARG_CHECKED(String, name, 1);
PropertyAttributes attributes;
return obj->GetPropertyWithInterceptor(*obj, *name, &attributes);
}
// Return element value from indexed interceptor.
// args[0]: object
// args[1]: index
static Object* Runtime_DebugIndexedInterceptorElementValue(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(obj->HasIndexedInterceptor());
CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
return obj->GetElementWithInterceptor(*obj, index);
}
static Object* Runtime_CheckExecutionState(Arguments args) {
ASSERT(args.length() >= 1);
CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
// Check that the break id is valid and that there is a valid frame
// where execution is broken.
if (break_id != Top::break_id() ||
Top::break_frame_id() == StackFrame::NO_ID) {
return Top::Throw(Heap::illegal_execution_state_symbol());
}
return Heap::true_value();
}
static Object* Runtime_GetFrameCount(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
// Check arguments.
Object* result = Runtime_CheckExecutionState(args);
if (result->IsFailure()) return result;
// Count all frames which are relevant to debugging stack trace.
int n = 0;
StackFrame::Id id = Top::break_frame_id();
for (JavaScriptFrameIterator it(id); !it.done(); it.Advance()) n++;
return Smi::FromInt(n);
}
static const int kFrameDetailsFrameIdIndex = 0;
static const int kFrameDetailsReceiverIndex = 1;
static const int kFrameDetailsFunctionIndex = 2;
static const int kFrameDetailsArgumentCountIndex = 3;
static const int kFrameDetailsLocalCountIndex = 4;
static const int kFrameDetailsSourcePositionIndex = 5;
static const int kFrameDetailsConstructCallIndex = 6;
static const int kFrameDetailsDebuggerFrameIndex = 7;
static const int kFrameDetailsFirstDynamicIndex = 8;
// Return an array with frame details
// args[0]: number: break id
// args[1]: number: frame index
//
// The array returned contains the following information:
// 0: Frame id
// 1: Receiver
// 2: Function
// 3: Argument count
// 4: Local count
// 5: Source position
// 6: Constructor call
// 7: Debugger frame
// Arguments name, value
// Locals name, value
static Object* Runtime_GetFrameDetails(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
// Check arguments.
Object* check = Runtime_CheckExecutionState(args);
if (check->IsFailure()) return check;
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
// Find the relevant frame with the requested index.
StackFrame::Id id = Top::break_frame_id();
int count = 0;
JavaScriptFrameIterator it(id);
for (; !it.done(); it.Advance()) {
if (count == index) break;
count++;
}
if (it.done()) return Heap::undefined_value();
// Traverse the saved contexts chain to find the active context for the
// selected frame.
SaveContext* save = Top::save_context();
while (save != NULL && !save->below(it.frame())) {
save = save->prev();
}
ASSERT(save != NULL);
// Get the frame id.
Handle<Object> frame_id(WrapFrameId(it.frame()->id()));
// Find source position.
int position = it.frame()->FindCode()->SourcePosition(it.frame()->pc());
// Check for constructor frame.
bool constructor = it.frame()->IsConstructor();
// Get code and read scope info from it for local variable information.
Handle<Code> code(it.frame()->FindCode());
ScopeInfo<> info(*code);
// Get the context.
Handle<Context> context(Context::cast(it.frame()->context()));
// Get the locals names and values into a temporary array.
//
// TODO(1240907): Hide compiler-introduced stack variables
// (e.g. .result)? For users of the debugger, they will probably be
// confusing.
Handle<FixedArray> locals = Factory::NewFixedArray(info.NumberOfLocals() * 2);
for (int i = 0; i < info.NumberOfLocals(); i++) {
// Name of the local.
locals->set(i * 2, *info.LocalName(i));
// Fetch the value of the local - either from the stack or from a
// heap-allocated context.
if (i < info.number_of_stack_slots()) {
locals->set(i * 2 + 1, it.frame()->GetExpression(i));
} else {
Handle<String> name = info.LocalName(i);
// Traverse the context chain to the function context as all local
// variables stored in the context will be on the function context.
while (!context->is_function_context()) {
context = Handle<Context>(context->previous());
}
ASSERT(context->is_function_context());
locals->set(i * 2 + 1,
context->get(ScopeInfo<>::ContextSlotIndex(*code, *name,
NULL)));
}
}
// Now advance to the arguments adapter frame (if any). If contains all
// the provided parameters and
// Now advance to the arguments adapter frame (if any). It contains all
// the provided parameters whereas the function frame always have the number
// of arguments matching the functions parameters. The rest of the
// information (except for what is collected above) is the same.
it.AdvanceToArgumentsFrame();
// Find the number of arguments to fill. At least fill the number of
// parameters for the function and fill more if more parameters are provided.
int argument_count = info.number_of_parameters();
if (argument_count < it.frame()->GetProvidedParametersCount()) {
argument_count = it.frame()->GetProvidedParametersCount();
}
// Calculate the size of the result.
int details_size = kFrameDetailsFirstDynamicIndex +
2 * (argument_count + info.NumberOfLocals());
Handle<FixedArray> details = Factory::NewFixedArray(details_size);
// Add the frame id.
details->set(kFrameDetailsFrameIdIndex, *frame_id);
// Add the function (same as in function frame).
details->set(kFrameDetailsFunctionIndex, it.frame()->function());
// Add the arguments count.
details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
// Add the locals count
details->set(kFrameDetailsLocalCountIndex,
Smi::FromInt(info.NumberOfLocals()));
// Add the source position.
if (position != RelocInfo::kNoPosition) {
details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
} else {
details->set(kFrameDetailsSourcePositionIndex, Heap::undefined_value());
}
// Add the constructor information.
details->set(kFrameDetailsConstructCallIndex, Heap::ToBoolean(constructor));
// Add information on whether this frame is invoked in the debugger context.
details->set(kFrameDetailsDebuggerFrameIndex,
Heap::ToBoolean(*save->context() == *Debug::debug_context()));
// Fill the dynamic part.
int details_index = kFrameDetailsFirstDynamicIndex;
// Add arguments name and value.
for (int i = 0; i < argument_count; i++) {
// Name of the argument.
if (i < info.number_of_parameters()) {
details->set(details_index++, *info.parameter_name(i));
} else {
details->set(details_index++, Heap::undefined_value());
}
// Parameter value.
if (i < it.frame()->GetProvidedParametersCount()) {
details->set(details_index++, it.frame()->GetParameter(i));
} else {
details->set(details_index++, Heap::undefined_value());
}
}
// Add locals name and value from the temporary copy from the function frame.
for (int i = 0; i < info.NumberOfLocals() * 2; i++) {
details->set(details_index++, locals->get(i));
}
// Add the receiver (same as in function frame).
// THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
// THE FRAME ITERATOR TO WRAP THE RECEIVER.
Handle<Object> receiver(it.frame()->receiver());
if (!receiver->IsJSObject()) {
// If the receiver is NOT a JSObject we have hit an optimization
// where a value object is not converted into a wrapped JS objects.
// To hide this optimization from the debugger, we wrap the receiver
// by creating correct wrapper object based on the calling frame's
// global context.
it.Advance();
Handle<Context> calling_frames_global_context(
Context::cast(Context::cast(it.frame()->context())->global_context()));
receiver = Factory::ToObject(receiver, calling_frames_global_context);
}
details->set(kFrameDetailsReceiverIndex, *receiver);
ASSERT_EQ(details_size, details_index);
return *Factory::NewJSArrayWithElements(details);
}
static Object* Runtime_GetCFrames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Object* result = Runtime_CheckExecutionState(args);
if (result->IsFailure()) return result;
static const int kMaxCFramesSize = 200;
OS::StackFrame frames[kMaxCFramesSize];
int frames_count = OS::StackWalk(frames, kMaxCFramesSize);
if (frames_count == OS::kStackWalkError) {
return Heap::undefined_value();
}
Handle<String> address_str = Factory::LookupAsciiSymbol("address");
Handle<String> text_str = Factory::LookupAsciiSymbol("text");
Handle<FixedArray> frames_array = Factory::NewFixedArray(frames_count);
for (int i = 0; i < frames_count; i++) {
Handle<JSObject> frame_value = Factory::NewJSObject(Top::object_function());
frame_value->SetProperty(
*address_str,
*Factory::NewNumberFromInt(reinterpret_cast<int>(frames[i].address)),
NONE);
// Get the stack walk text for this frame.
Handle<String> frame_text;
if (strlen(frames[i].text) > 0) {
Vector<const char> str(frames[i].text, strlen(frames[i].text));
frame_text = Factory::NewStringFromAscii(str);
}
if (!frame_text.is_null()) {
frame_value->SetProperty(*text_str, *frame_text, NONE);
}
frames_array->set(i, *frame_value);
}
return *Factory::NewJSArrayWithElements(frames_array);
}
static Object* Runtime_GetBreakLocations(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, raw_fun, 0);
Handle<SharedFunctionInfo> shared(raw_fun->shared());
// Find the number of break points
Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared);
if (break_locations->IsUndefined()) return Heap::undefined_value();
// Return array as JS array
return *Factory::NewJSArrayWithElements(
Handle<FixedArray>::cast(break_locations));
}
// Set a break point in a function
// args[0]: function
// args[1]: number: break source position (within the function source)
// args[2]: number: break point object
static Object* Runtime_SetFunctionBreakPoint(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSFunction, raw_fun, 0);
Handle<SharedFunctionInfo> shared(raw_fun->shared());
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
RUNTIME_ASSERT(source_position >= 0);
Handle<Object> break_point_object_arg = args.at<Object>(2);
// Set break point.
Debug::SetBreakPoint(shared, source_position, break_point_object_arg);
return Heap::undefined_value();
}
static Object* FindSharedFunctionInfoInScript(Handle<Script> script,
int position) {
// Iterate the heap looking for SharedFunctionInfo generated from the
// script. The inner most SharedFunctionInfo containing the source position
// for the requested break point is found.
// NOTE: This might reqire several heap iterations. If the SharedFunctionInfo
// which is found is not compiled it is compiled and the heap is iterated
// again as the compilation might create inner functions from the newly
// compiled function and the actual requested break point might be in one of
// these functions.
bool done = false;
// The current candidate for the source position:
int target_start_position = RelocInfo::kNoPosition;
Handle<SharedFunctionInfo> target;
// The current candidate for the last function in script:
Handle<SharedFunctionInfo> last;
while (!done) {
HeapIterator iterator;
while (iterator.has_next()) {
HeapObject* obj = iterator.next();
ASSERT(obj != NULL);
if (obj->IsSharedFunctionInfo()) {
Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(obj));
if (shared->script() == *script) {
// If the SharedFunctionInfo found has the requested script data and
// contains the source position it is a candidate.
int start_position = shared->function_token_position();
if (start_position == RelocInfo::kNoPosition) {
start_position = shared->start_position();
}
if (start_position <= position &&
position <= shared->end_position()) {
// If there is no candidate or this function is within the currrent
// candidate this is the new candidate.
if (target.is_null()) {
target_start_position = start_position;
target = shared;
} else {
if (target_start_position < start_position &&
shared->end_position() < target->end_position()) {
target_start_position = start_position;
target = shared;
}
}
}
// Keep track of the last function in the script.
if (last.is_null() ||
shared->end_position() > last->start_position()) {
last = shared;
}
}
}
}
// Make sure some candidate is selected.
if (target.is_null()) {
if (!last.is_null()) {
// Position after the last function - use last.
target = last;
} else {
// Unable to find function - possibly script without any function.
return Heap::undefined_value();
}
}
// If the candidate found is compiled we are done. NOTE: when lazy
// compilation of inner functions is introduced some additional checking
// needs to be done here to compile inner functions.
done = target->is_compiled();
if (!done) {
// If the candidate is not compiled compile it to reveal any inner
// functions which might contain the requested source position.
CompileLazyShared(target, KEEP_EXCEPTION, 0);
}
}
return *target;
}
// Change the state of a break point in a script. NOTE: Regarding performance
// see the NOTE for GetScriptFromScriptData.
// args[0]: script to set break point in
// args[1]: number: break source position (within the script source)
// args[2]: number: break point object
static Object* Runtime_SetScriptBreakPoint(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSValue, wrapper, 0);
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
RUNTIME_ASSERT(source_position >= 0);
Handle<Object> break_point_object_arg = args.at<Object>(2);
// Get the script from the script wrapper.
RUNTIME_ASSERT(wrapper->value()->IsScript());
Handle<Script> script(Script::cast(wrapper->value()));
Object* result = FindSharedFunctionInfoInScript(script, source_position);
if (!result->IsUndefined()) {
Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result));
// Find position within function. The script position might be before the
// source position of the first function.
int position;
if (shared->start_position() > source_position) {
position = 0;
} else {
position = source_position - shared->start_position();
}
Debug::SetBreakPoint(shared, position, break_point_object_arg);
}
return Heap::undefined_value();
}
// Clear a break point
// args[0]: number: break point object
static Object* Runtime_ClearBreakPoint(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<Object> break_point_object_arg = args.at<Object>(0);
// Clear break point.
Debug::ClearBreakPoint(break_point_object_arg);
return Heap::undefined_value();
}
// Change the state of break on exceptions
// args[0]: boolean indicating uncaught exceptions
// args[1]: boolean indicating on/off
static Object* Runtime_ChangeBreakOnException(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
ASSERT(args[0]->IsNumber());
ASSERT(args[1]->IsBoolean());
// Update break point state
ExceptionBreakType type =
static_cast<ExceptionBreakType>(NumberToUint32(args[0]));
bool enable = args[1]->ToBoolean()->IsTrue();
Debug::ChangeBreakOnException(type, enable);
return Heap::undefined_value();
}
// Prepare for stepping
// args[0]: break id for checking execution state
// args[1]: step action from the enumeration StepAction
// args[2]: number of times to perform the step
static Object* Runtime_PrepareStep(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
// Check arguments.
Object* check = Runtime_CheckExecutionState(args);
if (check->IsFailure()) return check;
if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
return Top::Throw(Heap::illegal_argument_symbol());
}
// Get the step action and check validity.
StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
if (step_action != StepIn &&
step_action != StepNext &&
step_action != StepOut &&
step_action != StepInMin &&
step_action != StepMin) {
return Top::Throw(Heap::illegal_argument_symbol());
}
// Get the number of steps.
int step_count = NumberToInt32(args[2]);
if (step_count < 1) {
return Top::Throw(Heap::illegal_argument_symbol());
}
// Prepare step.
Debug::PrepareStep(static_cast<StepAction>(step_action), step_count);
return Heap::undefined_value();
}
// Clear all stepping set by PrepareStep.
static Object* Runtime_ClearStepping(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 0);
Debug::ClearStepping();
return Heap::undefined_value();
}
// Creates a copy of the with context chain. The copy of the context chain is
// is linked to the function context supplied.
static Handle<Context> CopyWithContextChain(Handle<Context> context_chain,
Handle<Context> function_context) {
// At the bottom of the chain. Return the function context to link to.
if (context_chain->is_function_context()) {
return function_context;
}
// Recursively copy the with contexts.
Handle<Context> previous(context_chain->previous());
Handle<JSObject> extension(JSObject::cast(context_chain->extension()));
return Factory::NewWithContext(
CopyWithContextChain(function_context, previous), extension);
}
// Helper function to find or create the arguments object for
// Runtime_DebugEvaluate.
static Handle<Object> GetArgumentsObject(JavaScriptFrame* frame,
Handle<JSFunction> function,
Handle<Code> code,
const ScopeInfo<>* sinfo,
Handle<Context> function_context) {
// Try to find the value of 'arguments' to pass as parameter. If it is not
// found (that is the debugged function does not reference 'arguments' and
// does not support eval) then create an 'arguments' object.
int index;
if (sinfo->number_of_stack_slots() > 0) {
index = ScopeInfo<>::StackSlotIndex(*code, Heap::arguments_symbol());
if (index != -1) {
return Handle<Object>(frame->GetExpression(index));
}
}
if (sinfo->number_of_context_slots() > Context::MIN_CONTEXT_SLOTS) {
index = ScopeInfo<>::ContextSlotIndex(*code, Heap::arguments_symbol(),
NULL);
if (index != -1) {
return Handle<Object>(function_context->get(index));
}
}
const int length = frame->GetProvidedParametersCount();
Handle<JSObject> arguments = Factory::NewArgumentsObject(function, length);
Handle<FixedArray> array = Factory::NewFixedArray(length);
WriteBarrierMode mode = array->GetWriteBarrierMode();
for (int i = 0; i < length; i++) {
array->set(i, frame->GetParameter(i), mode);
}
arguments->set_elements(*array);
return arguments;
}
// Evaluate a piece of JavaScript in the context of a stack frame for
// debugging. This is acomplished by creating a new context which in its
// extension part has all the parameters and locals of the function on the
// stack frame. A function which calls eval with the code to evaluate is then
// compiled in this context and called in this context. As this context
// replaces the context of the function on the stack frame a new (empty)
// function is created as well to be used as the closure for the context.
// This function and the context acts as replacements for the function on the
// stack frame presenting the same view of the values of parameters and
// local variables as if the piece of JavaScript was evaluated at the point
// where the function on the stack frame is currently stopped.
static Object* Runtime_DebugEvaluate(Arguments args) {
HandleScope scope;
// Check the execution state and decode arguments frame and source to be
// evaluated.
ASSERT(args.length() == 4);
Object* check_result = Runtime_CheckExecutionState(args);
if (check_result->IsFailure()) return check_result;
CONVERT_CHECKED(Smi, wrapped_id, args[1]);
CONVERT_ARG_CHECKED(String, source, 2);
CONVERT_BOOLEAN_CHECKED(disable_break, args[3]);
// Handle the processing of break.
DisableBreak disable_break_save(disable_break);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator it(id);
JavaScriptFrame* frame = it.frame();
Handle<JSFunction> function(JSFunction::cast(frame->function()));
Handle<Code> code(function->code());
ScopeInfo<> sinfo(*code);
// Traverse the saved contexts chain to find the active context for the
// selected frame.
SaveContext* save = Top::save_context();
while (save != NULL && !save->below(frame)) {
save = save->prev();
}
ASSERT(save != NULL);
SaveContext savex;
Top::set_context(*(save->context()));
// Create the (empty) function replacing the function on the stack frame for
// the purpose of evaluating in the context created below. It is important
// that this function does not describe any parameters and local variables
// in the context. If it does then this will cause problems with the lookup
// in Context::Lookup, where context slots for parameters and local variables
// are looked at before the extension object.
Handle<JSFunction> go_between =
Factory::NewFunction(Factory::empty_string(), Factory::undefined_value());
go_between->set_context(function->context());
#ifdef DEBUG
ScopeInfo<> go_between_sinfo(go_between->shared()->code());
ASSERT(go_between_sinfo.number_of_parameters() == 0);
ASSERT(go_between_sinfo.number_of_context_slots() == 0);
#endif
// Allocate and initialize a context extension object with all the
// arguments, stack locals heap locals and extension properties of the
// debugged function.
Handle<JSObject> context_ext = Factory::NewJSObject(Top::object_function());
// First fill all parameters to the context extension.
for (int i = 0; i < sinfo.number_of_parameters(); ++i) {
SetProperty(context_ext,
sinfo.parameter_name(i),
Handle<Object>(frame->GetParameter(i)), NONE);
}
// Second fill all stack locals to the context extension.
for (int i = 0; i < sinfo.number_of_stack_slots(); i++) {
SetProperty(context_ext,
sinfo.stack_slot_name(i),
Handle<Object>(frame->GetExpression(i)), NONE);
}
// Third fill all context locals to the context extension.
Handle<Context> frame_context(Context::cast(frame->context()));
Handle<Context> function_context(frame_context->fcontext());
for (int i = Context::MIN_CONTEXT_SLOTS;
i < sinfo.number_of_context_slots();
++i) {
int context_index =
ScopeInfo<>::ContextSlotIndex(*code, *sinfo.context_slot_name(i), NULL);
SetProperty(context_ext,
sinfo.context_slot_name(i),
Handle<Object>(function_context->get(context_index)), NONE);
}
// Finally copy any properties from the function context extension. This will
// be variables introduced by eval.
if (function_context->has_extension() &&
!function_context->IsGlobalContext()) {
Handle<JSObject> ext(JSObject::cast(function_context->extension()));
Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext);
for (int i = 0; i < keys->length(); i++) {
// Names of variables introduced by eval are strings.
ASSERT(keys->get(i)->IsString());
Handle<String> key(String::cast(keys->get(i)));
SetProperty(context_ext, key, GetProperty(ext, key), NONE);
}
}
// Allocate a new context for the debug evaluation and set the extension
// object build.
Handle<Context> context =
Factory::NewFunctionContext(Context::MIN_CONTEXT_SLOTS, go_between);
context->set_extension(*context_ext);
// Copy any with contexts present and chain them in front of this context.
context = CopyWithContextChain(frame_context, context);
// Wrap the evaluation statement in a new function compiled in the newly
// created context. The function has one parameter which has to be called
// 'arguments'. This it to have access to what would have been 'arguments' in
// the function beeing debugged.
// function(arguments,__source__) {return eval(__source__);}
static const char* source_str =
"function(arguments,__source__){return eval(__source__);}";
static const int source_str_length = strlen(source_str);
Handle<String> function_source =
Factory::NewStringFromAscii(Vector<const char>(source_str,
source_str_length));
Handle<JSFunction> boilerplate =
Compiler::CompileEval(function_source, 0, context->IsGlobalContext());
if (boilerplate.is_null()) return Failure::Exception();
Handle<JSFunction> compiled_function =
Factory::NewFunctionFromBoilerplate(boilerplate, context);
// Invoke the result of the compilation to get the evaluation function.
bool has_pending_exception;
Handle<Object> receiver(frame->receiver());
Handle<Object> evaluation_function =
Execution::Call(compiled_function, receiver, 0, NULL,
&has_pending_exception);
if (has_pending_exception) return Failure::Exception();
Handle<Object> arguments = GetArgumentsObject(frame, function, code, &sinfo,
function_context);
// Invoke the evaluation function and return the result.
const int argc = 2;
Object** argv[argc] = { arguments.location(),
Handle<Object>::cast(source).location() };
Handle<Object> result =
Execution::Call(Handle<JSFunction>::cast(evaluation_function), receiver,
argc, argv, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
return *result;
}
static Object* Runtime_DebugEvaluateGlobal(Arguments args) {
HandleScope scope;
// Check the execution state and decode arguments frame and source to be
// evaluated.
ASSERT(args.length() == 3);
Object* check_result = Runtime_CheckExecutionState(args);
if (check_result->IsFailure()) return check_result;
CONVERT_ARG_CHECKED(String, source, 1);
CONVERT_BOOLEAN_CHECKED(disable_break, args[2]);
// Handle the processing of break.
DisableBreak disable_break_save(disable_break);
// Enter the top context from before the debugger was invoked.
SaveContext save;
SaveContext* top = &save;
while (top != NULL && *top->context() == *Debug::debug_context()) {
top = top->prev();
}
if (top != NULL) {
Top::set_context(*top->context());
}
// Get the global context now set to the top context from before the
// debugger was invoked.
Handle<Context> context = Top::global_context();
// Compile the source to be evaluated.
Handle<JSFunction> boilerplate(Compiler::CompileEval(source, 0, true));
if (boilerplate.is_null()) return Failure::Exception();
Handle<JSFunction> compiled_function =
Handle<JSFunction>(Factory::NewFunctionFromBoilerplate(boilerplate,
context));
// Invoke the result of the compilation to get the evaluation function.
bool has_pending_exception;
Handle<Object> receiver = Top::global();
Handle<Object> result =
Execution::Call(compiled_function, receiver, 0, NULL,
&has_pending_exception);
if (has_pending_exception) return Failure::Exception();
return *result;
}
// Helper function used by Runtime_DebugGetLoadedScripts below.
static int DebugGetLoadedScripts(FixedArray* instances, int instances_size) {
NoHandleAllocation ha;
AssertNoAllocation no_alloc;
// Get hold of the current empty script.
Context* context = Top::context()->global_context();
Script* empty = context->empty_script();
// Scan heap for Script objects.
int count = 0;
HeapIterator iterator;
while (iterator.has_next()) {
HeapObject* obj = iterator.next();
ASSERT(obj != NULL);
if (obj->IsScript() && obj != empty) {
if (instances != NULL && count < instances_size) {
instances->set(count, obj);
}
count++;
}
}
return count;
}
static Object* Runtime_DebugGetLoadedScripts(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 0);
// Perform two GCs to get rid of all unreferenced scripts. The first GC gets
// rid of all the cached script wrappes and the second gets rid of the
// scripts which is no longer referenced.
Heap::CollectAllGarbage();
Heap::CollectAllGarbage();
// Get the number of scripts.
int count;
count = DebugGetLoadedScripts(NULL, 0);
// Allocate an array to hold the result.
Handle<FixedArray> instances = Factory::NewFixedArray(count);
// Fill the script objects.
count = DebugGetLoadedScripts(*instances, count);
// Convert the script objects to proper JS objects.
for (int i = 0; i < count; i++) {
Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
// Get the script wrapper in a local handle before calling GetScriptWrapper,
// because using
// instances->set(i, *GetScriptWrapper(script))
// is unsafe as GetScriptWrapper might call GC and the C++ compiler might
// already have deferenced the instances handle.
Handle<JSValue> wrapper = GetScriptWrapper(script);
instances->set(i, *wrapper);
}
// Return result as a JS array.
Handle<JSObject> result = Factory::NewJSObject(Top::array_function());
Handle<JSArray>::cast(result)->SetContent(*instances);
return *result;
}
// Helper function used by Runtime_DebugReferencedBy below.
static int DebugReferencedBy(JSObject* target,
Object* instance_filter, int max_references,
FixedArray* instances, int instances_size,
JSFunction* context_extension_function,
JSFunction* arguments_function) {
NoHandleAllocation ha;
AssertNoAllocation no_alloc;
// Iterate the heap.
int count = 0;
JSObject* last = NULL;
HeapIterator iterator;
while (iterator.has_next() &&
(max_references == 0 || count < max_references)) {
// Only look at all JSObjects.
HeapObject* heap_obj = iterator.next();
if (heap_obj->IsJSObject()) {
// Skip context extension objects and argument arrays as these are
// checked in the context of functions using them.
JSObject* obj = JSObject::cast(heap_obj);
if (obj->map()->constructor() == context_extension_function ||
obj->map()->constructor() == arguments_function) {
continue;
}
// Check if the JS object has a reference to the object looked for.
if (obj->ReferencesObject(target)) {
// Check instance filter if supplied. This is normally used to avoid
// references from mirror objects (see Runtime_IsInPrototypeChain).
if (!instance_filter->IsUndefined()) {
Object* V = obj;
while (true) {
Object* prototype = V->GetPrototype();
if (prototype->IsNull()) {
break;
}
if (instance_filter == prototype) {
obj = NULL; // Don't add this object.
break;
}
V = prototype;
}
}
if (obj != NULL) {
// Valid reference found add to instance array if supplied an update
// count.
if (instances != NULL && count < instances_size) {
instances->set(count, obj);
}
last = obj;
count++;
}
}
}
}
// Check for circular reference only. This can happen when the object is only
// referenced from mirrors and has a circular reference in which case the
// object is not really alive and would have been garbage collected if not
// referenced from the mirror.
if (count == 1 && last == target) {
count = 0;
}
// Return the number of referencing objects found.
return count;
}
// Scan the heap for objects with direct references to an object
// args[0]: the object to find references to
// args[1]: constructor function for instances to exclude (Mirror)
// args[2]: the the maximum number of objects to return
static Object* Runtime_DebugReferencedBy(Arguments args) {
ASSERT(args.length() == 3);
// First perform a full GC in order to avoid references from dead objects.
Heap::CollectAllGarbage();
// Check parameters.
CONVERT_CHECKED(JSObject, target, args[0]);
Object* instance_filter = args[1];
RUNTIME_ASSERT(instance_filter->IsUndefined() ||
instance_filter->IsJSObject());
CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
RUNTIME_ASSERT(max_references >= 0);
// Get the constructor function for context extension and arguments array.
JSFunction* context_extension_function =
Top::context()->global_context()->context_extension_function();
JSObject* arguments_boilerplate =
Top::context()->global_context()->arguments_boilerplate();
JSFunction* arguments_function =
JSFunction::cast(arguments_boilerplate->map()->constructor());
// Get the number of referencing objects.
int count;
count = DebugReferencedBy(target, instance_filter, max_references,
NULL, 0,
context_extension_function, arguments_function);
// Allocate an array to hold the result.
Object* object = Heap::AllocateFixedArray(count);
if (object->IsFailure()) return object;
FixedArray* instances = FixedArray::cast(object);
// Fill the referencing objects.
count = DebugReferencedBy(target, instance_filter, max_references,
instances, count,
context_extension_function, arguments_function);
// Return result as JS array.
Object* result =
Heap::AllocateJSObject(
Top::context()->global_context()->array_function());
if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances);
return result;
}
// Helper function used by Runtime_DebugConstructedBy below.
static int DebugConstructedBy(JSFunction* constructor, int max_references,
FixedArray* instances, int instances_size) {
AssertNoAllocation no_alloc;
// Iterate the heap.
int count = 0;
HeapIterator iterator;
while (iterator.has_next() &&
(max_references == 0 || count < max_references)) {
// Only look at all JSObjects.
HeapObject* heap_obj = iterator.next();
if (heap_obj->IsJSObject()) {
JSObject* obj = JSObject::cast(heap_obj);
if (obj->map()->constructor() == constructor) {
// Valid reference found add to instance array if supplied an update
// count.
if (instances != NULL && count < instances_size) {
instances->set(count, obj);
}
count++;
}
}
}
// Return the number of referencing objects found.
return count;
}
// Scan the heap for objects constructed by a specific function.
// args[0]: the constructor to find instances of
// args[1]: the the maximum number of objects to return
static Object* Runtime_DebugConstructedBy(Arguments args) {
ASSERT(args.length() == 2);
// First perform a full GC in order to avoid dead objects.
Heap::CollectAllGarbage();
// Check parameters.
CONVERT_CHECKED(JSFunction, constructor, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
RUNTIME_ASSERT(max_references >= 0);
// Get the number of referencing objects.
int count;
count = DebugConstructedBy(constructor, max_references, NULL, 0);
// Allocate an array to hold the result.
Object* object = Heap::AllocateFixedArray(count);
if (object->IsFailure()) return object;
FixedArray* instances = FixedArray::cast(object);
// Fill the referencing objects.
count = DebugConstructedBy(constructor, max_references, instances, count);
// Return result as JS array.
Object* result =
Heap::AllocateJSObject(
Top::context()->global_context()->array_function());
if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances);
return result;
}
static Object* Runtime_GetPrototype(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSObject, obj, args[0]);
return obj->GetPrototype();
}
static Object* Runtime_SystemBreak(Arguments args) {
ASSERT(args.length() == 0);
CPU::DebugBreak();
return Heap::undefined_value();
}
// Finds the script object from the script data. NOTE: This operation uses
// heap traversal to find the function generated for the source position
// for the requested break point. For lazily compiled functions several heap
// traversals might be required rendering this operation as a rather slow
// operation. However for setting break points which is normally done through
// some kind of user interaction the performance is not crucial.
static Handle<Object> Runtime_GetScriptFromScriptName(
Handle<String> script_name) {
// Scan the heap for Script objects to find the script with the requested
// script data.
Handle<Script> script;
HeapIterator iterator;
while (script.is_null() && iterator.has_next()) {
HeapObject* obj = iterator.next();
// If a script is found check if it has the script data requested.
if (obj->IsScript()) {
if (Script::cast(obj)->name()->IsString()) {
if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
script = Handle<Script>(Script::cast(obj));
}
}
}
}
// If no script with the requested script data is found return undefined.
if (script.is_null()) return Factory::undefined_value();
// Return the script found.
return GetScriptWrapper(script);
}
// Get the script object from script data. NOTE: Regarding performance
// see the NOTE for GetScriptFromScriptData.
// args[0]: script data for the script to find the source for
static Object* Runtime_GetScript(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, script_name, args[0]);
// Find the requested script.
Handle<Object> result =
Runtime_GetScriptFromScriptName(Handle<String>(script_name));
return *result;
}
static Object* Runtime_FunctionGetAssemblerCode(Arguments args) {
#ifdef DEBUG
HandleScope scope;
ASSERT(args.length() == 1);
// Get the function and make sure it is compiled.
CONVERT_ARG_CHECKED(JSFunction, func, 0);
if (!func->is_compiled() && !CompileLazy(func, KEEP_EXCEPTION)) {
return Failure::Exception();
}
func->code()->PrintLn();
#endif // DEBUG
return Heap::undefined_value();
}
static Object* Runtime_Abort(Arguments args) {
ASSERT(args.length() == 2);
OS::PrintError("abort: %s\n", reinterpret_cast<char*>(args[0]) +
Smi::cast(args[1])->value());
Top::PrintStack();
OS::Abort();
UNREACHABLE();
return NULL;
}
#ifdef DEBUG
// ListNatives is ONLY used by the fuzz-natives.js in debug mode
// Exclude the code in release mode.
static Object* Runtime_ListNatives(Arguments args) {
ASSERT(args.length() == 0);
HandleScope scope;
Handle<JSArray> result = Factory::NewJSArray(0);
int index = 0;
#define ADD_ENTRY(Name, argc) \
{ \
HandleScope inner; \
Handle<String> name = \
Factory::NewStringFromAscii(Vector<const char>(#Name, strlen(#Name))); \
Handle<JSArray> pair = Factory::NewJSArray(0); \
SetElement(pair, 0, name); \
SetElement(pair, 1, Handle<Smi>(Smi::FromInt(argc))); \
SetElement(result, index++, pair); \
}
RUNTIME_FUNCTION_LIST(ADD_ENTRY)
#undef ADD_ENTRY
return *result;
}
#endif
static Object* Runtime_IS_VAR(Arguments args) {
UNREACHABLE(); // implemented as macro in the parser
return NULL;
}
// ----------------------------------------------------------------------------
// Implementation of Runtime
#define F(name, nargs) \
{ #name, "RuntimeStub_" #name, FUNCTION_ADDR(Runtime_##name), nargs, \
static_cast<int>(Runtime::k##name) },
static Runtime::Function Runtime_functions[] = {
RUNTIME_FUNCTION_LIST(F)
{ NULL, NULL, NULL, 0, -1 }
};
#undef F
Runtime::Function* Runtime::FunctionForId(FunctionId fid) {
ASSERT(0 <= fid && fid < kNofFunctions);
return &Runtime_functions[fid];
}
Runtime::Function* Runtime::FunctionForName(const char* name) {
for (Function* f = Runtime_functions; f->name != NULL; f++) {
if (strcmp(f->name, name) == 0) {
return f;
}
}
return NULL;
}
void Runtime::PerformGC(Object* result) {
Failure* failure = Failure::cast(result);
if (failure->IsRetryAfterGC()) {
// Try to do a garbage collection; ignore it if it fails. The C
// entry stub will throw an out-of-memory exception in that case.
Heap::CollectGarbage(failure->requested(), failure->allocation_space());
} else {
// Handle last resort GC and make sure to allow future allocations
// to grow the heap without causing GCs (if possible).
Counters::gc_last_resort_from_js.Increment();
Heap::CollectAllGarbage();
}
}
} } // namespace v8::internal