blob: 595a5501e2b6f3e9fe8252c90050fb3a10886082 [file] [log] [blame]
// Copyright 2006-2008 Google Inc. All Rights Reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_OBJECTS_H_
#define V8_OBJECTS_H_
#include "builtins.h"
#include "code-stubs.h"
#include "smart-pointer.h"
#include "unicode-inl.h"
//
// All object types in the V8 JavaScript are described in this file.
//
// Inheritance hierarchy:
// - Object
// - Smi (immediate small integer)
// - Failure (immediate for marking failed operation)
// - HeapObject (superclass for everything allocated in the heap)
// - JSObject
// - JSArray
// - JSFunction
// - GlobalObject
// - JSGlobalObject
// - JSBuiltinsObject
// - JSValue
// - Script
// - Array
// - ByteArray
// - FixedArray
// - HashTable
// - Dictionary
// - SymbolTable
// - Context
// - GlobalContext
// - String
// - SeqString
// - AsciiString
// - TwoByteString
// - ConsString
// - SlicedString
// - ExternalString
// - ExternalAsciiString
// - ExternalTwoByteString
// - HeapNumber
// - Code
// - Map
// - Oddball
// - Proxy
// - SharedFunctionInfo
// - Struct
// - AccessorInfo
// - AccessCheckInfo
// - InterceptorInfo
// - CallHandlerInfo
// - FunctionTemplateInfo
// - ObjectTemplateInfo
// - SignatureInfo
// - TypeSwitchInfo
// - DebugInfo
// - BreakPointInfo
//
// Formats of Object*:
// Smi: [31 bit signed int] 0
// HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
// Failure: [30 bit signed int] 11
// Ecma-262 3rd 8.6.1
enum PropertyAttributes {
NONE = v8::None,
READ_ONLY = v8::ReadOnly,
DONT_ENUM = v8::DontEnum,
DONT_DELETE = v8::DontDelete,
INTERCEPTED = 1 << 3,
ABSENT = 16 // Used in runtime to indicate a property is absent.
};
namespace v8 { namespace internal {
// PropertyDetails captures type and attributes for a property.
// They are used both in property dictionaries and instance descriptors.
class PropertyDetails BASE_EMBEDDED {
public:
PropertyDetails(PropertyAttributes attributes,
PropertyType type,
int index = 0) {
ASSERT(TypeField::is_valid(type));
ASSERT(AttributesField::is_valid(attributes));
ASSERT(IndexField::is_valid(index));
value_ = TypeField::encode(type)
| AttributesField::encode(attributes)
| IndexField::encode(index);
ASSERT(type == this->type());
ASSERT(attributes == this->attributes());
ASSERT(index == this->index());
}
// Conversion for storing details as Object*.
inline PropertyDetails(Smi* smi);
inline Smi* AsSmi();
PropertyType type() { return TypeField::decode(value_); }
bool IsTransition() {
PropertyType t = type();
ASSERT(t != INTERCEPTOR);
if (t == MAP_TRANSITION || t == CONSTANT_TRANSITION) return true;
return false;
}
PropertyAttributes attributes() { return AttributesField::decode(value_); }
int index() { return IndexField::decode(value_); }
static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
// Bit fields in value_ (type, shift, size). Must be public so the
// constants can be embedded in generated code.
class TypeField: public BitField<PropertyType, 0, 3> {};
class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
class IndexField: public BitField<uint32_t, 6, 32-6> {};
static const int kInitialIndex = 1;
private:
uint32_t value_;
};
// All Maps have a field instance_type containing a InstanceType.
// It describes the type of the instances.
//
// As an example, a JavaScript object is a heap object and its map
// instance_type is JS_OBJECT_TYPE.
//
// The names of the string instance types are intended to systematically
// mirror their encoding in the instance_type field of the map. The length
// (SHORT, MEDIUM, or LONG) is always mentioned. The default encoding is
// considered TWO_BYTE. It is not mentioned in the name. ASCII encoding is
// mentioned explicitly in the name. Likewise, the default representation is
// considered sequential. It is not mentioned in the name. The other
// representations (eg, CONS, SLICED, EXTERNAL) are explicitly mentioned.
// Finally, the string is either a SYMBOL_TYPE (if it is a symbol) or a
// STRING_TYPE (if it is not a symbol).
//
// NOTE: The following things are some that depend on the string types having
// instance_types that are less than those of all other types:
// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
// Object::IsString.
//
// NOTE: Everything following JS_OBJECT_TYPE is considered a
// JSObject for GC purposes. The first four entries here have typeof
// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
#define INSTANCE_TYPE_LIST(V) \
V(SHORT_SYMBOL_TYPE) \
V(MEDIUM_SYMBOL_TYPE) \
V(LONG_SYMBOL_TYPE) \
V(SHORT_ASCII_SYMBOL_TYPE) \
V(MEDIUM_ASCII_SYMBOL_TYPE) \
V(LONG_ASCII_SYMBOL_TYPE) \
V(SHORT_CONS_SYMBOL_TYPE) \
V(MEDIUM_CONS_SYMBOL_TYPE) \
V(LONG_CONS_SYMBOL_TYPE) \
V(SHORT_CONS_ASCII_SYMBOL_TYPE) \
V(MEDIUM_CONS_ASCII_SYMBOL_TYPE) \
V(LONG_CONS_ASCII_SYMBOL_TYPE) \
V(SHORT_SLICED_SYMBOL_TYPE) \
V(MEDIUM_SLICED_SYMBOL_TYPE) \
V(LONG_SLICED_SYMBOL_TYPE) \
V(SHORT_SLICED_ASCII_SYMBOL_TYPE) \
V(MEDIUM_SLICED_ASCII_SYMBOL_TYPE) \
V(LONG_SLICED_ASCII_SYMBOL_TYPE) \
V(SHORT_EXTERNAL_SYMBOL_TYPE) \
V(MEDIUM_EXTERNAL_SYMBOL_TYPE) \
V(LONG_EXTERNAL_SYMBOL_TYPE) \
V(SHORT_EXTERNAL_ASCII_SYMBOL_TYPE) \
V(MEDIUM_EXTERNAL_ASCII_SYMBOL_TYPE) \
V(LONG_EXTERNAL_ASCII_SYMBOL_TYPE) \
V(SHORT_STRING_TYPE) \
V(MEDIUM_STRING_TYPE) \
V(LONG_STRING_TYPE) \
V(SHORT_ASCII_STRING_TYPE) \
V(MEDIUM_ASCII_STRING_TYPE) \
V(LONG_ASCII_STRING_TYPE) \
V(SHORT_CONS_STRING_TYPE) \
V(MEDIUM_CONS_STRING_TYPE) \
V(LONG_CONS_STRING_TYPE) \
V(SHORT_CONS_ASCII_STRING_TYPE) \
V(MEDIUM_CONS_ASCII_STRING_TYPE) \
V(LONG_CONS_ASCII_STRING_TYPE) \
V(SHORT_SLICED_STRING_TYPE) \
V(MEDIUM_SLICED_STRING_TYPE) \
V(LONG_SLICED_STRING_TYPE) \
V(SHORT_SLICED_ASCII_STRING_TYPE) \
V(MEDIUM_SLICED_ASCII_STRING_TYPE) \
V(LONG_SLICED_ASCII_STRING_TYPE) \
V(SHORT_EXTERNAL_STRING_TYPE) \
V(MEDIUM_EXTERNAL_STRING_TYPE) \
V(LONG_EXTERNAL_STRING_TYPE) \
V(SHORT_EXTERNAL_ASCII_STRING_TYPE) \
V(MEDIUM_EXTERNAL_ASCII_STRING_TYPE) \
V(LONG_EXTERNAL_ASCII_STRING_TYPE) \
V(LONG_PRIVATE_EXTERNAL_ASCII_STRING_TYPE) \
\
V(MAP_TYPE) \
V(HEAP_NUMBER_TYPE) \
V(FIXED_ARRAY_TYPE) \
V(CODE_TYPE) \
V(ODDBALL_TYPE) \
V(PROXY_TYPE) \
V(BYTE_ARRAY_TYPE) \
V(FILLER_TYPE) \
\
V(ACCESSOR_INFO_TYPE) \
V(ACCESS_CHECK_INFO_TYPE) \
V(INTERCEPTOR_INFO_TYPE) \
V(SHARED_FUNCTION_INFO_TYPE) \
V(CALL_HANDLER_INFO_TYPE) \
V(FUNCTION_TEMPLATE_INFO_TYPE) \
V(OBJECT_TEMPLATE_INFO_TYPE) \
V(SIGNATURE_INFO_TYPE) \
V(TYPE_SWITCH_INFO_TYPE) \
V(DEBUG_INFO_TYPE) \
V(BREAK_POINT_INFO_TYPE) \
V(SCRIPT_TYPE) \
\
V(JS_OBJECT_TYPE) \
V(JS_GLOBAL_OBJECT_TYPE) \
V(JS_BUILTINS_OBJECT_TYPE) \
V(JS_VALUE_TYPE) \
V(JS_ARRAY_TYPE) \
\
V(JS_FUNCTION_TYPE) \
// Since string types are not consecutive, this macro is used to
// iterate over them.
#define STRING_TYPE_LIST(V) \
V(SHORT_SYMBOL_TYPE, TwoByteString::kHeaderSize, short_symbol) \
V(MEDIUM_SYMBOL_TYPE, TwoByteString::kHeaderSize, medium_symbol) \
V(LONG_SYMBOL_TYPE, TwoByteString::kHeaderSize, long_symbol) \
V(SHORT_ASCII_SYMBOL_TYPE, AsciiString::kHeaderSize, short_ascii_symbol) \
V(MEDIUM_ASCII_SYMBOL_TYPE, AsciiString::kHeaderSize, medium_ascii_symbol) \
V(LONG_ASCII_SYMBOL_TYPE, AsciiString::kHeaderSize, long_ascii_symbol) \
V(SHORT_CONS_SYMBOL_TYPE, ConsString::kSize, short_cons_symbol) \
V(MEDIUM_CONS_SYMBOL_TYPE, ConsString::kSize, medium_cons_symbol) \
V(LONG_CONS_SYMBOL_TYPE, ConsString::kSize, long_cons_symbol) \
V(SHORT_CONS_ASCII_SYMBOL_TYPE, ConsString::kSize, short_cons_ascii_symbol) \
V(MEDIUM_CONS_ASCII_SYMBOL_TYPE, ConsString::kSize, medium_cons_ascii_symbol)\
V(LONG_CONS_ASCII_SYMBOL_TYPE, ConsString::kSize, long_cons_ascii_symbol) \
V(SHORT_SLICED_SYMBOL_TYPE, SlicedString::kSize, short_sliced_symbol) \
V(MEDIUM_SLICED_SYMBOL_TYPE, SlicedString::kSize, medium_sliced_symbol) \
V(LONG_SLICED_SYMBOL_TYPE, SlicedString::kSize, long_sliced_symbol) \
V(SHORT_SLICED_ASCII_SYMBOL_TYPE, \
SlicedString::kSize, \
short_sliced_ascii_symbol) \
V(MEDIUM_SLICED_ASCII_SYMBOL_TYPE, \
SlicedString::kSize, \
medium_sliced_ascii_symbol) \
V(LONG_SLICED_ASCII_SYMBOL_TYPE, \
SlicedString::kSize, \
long_sliced_ascii_symbol) \
V(SHORT_EXTERNAL_SYMBOL_TYPE, \
ExternalTwoByteString::kSize, \
short_external_symbol) \
V(MEDIUM_EXTERNAL_SYMBOL_TYPE, \
ExternalTwoByteString::kSize, \
medium_external_symbol) \
V(LONG_EXTERNAL_SYMBOL_TYPE, \
ExternalTwoByteString::kSize, \
long_external_symbol) \
V(SHORT_EXTERNAL_ASCII_SYMBOL_TYPE, \
ExternalAsciiString::kSize, \
short_external_ascii_symbol) \
V(MEDIUM_EXTERNAL_ASCII_SYMBOL_TYPE, \
ExternalAsciiString::kSize, \
medium_external_ascii_symbol) \
V(LONG_EXTERNAL_ASCII_SYMBOL_TYPE, \
ExternalAsciiString::kSize, \
long_external_ascii_symbol) \
V(SHORT_STRING_TYPE, TwoByteString::kHeaderSize, short_string) \
V(MEDIUM_STRING_TYPE, TwoByteString::kHeaderSize, medium_string) \
V(LONG_STRING_TYPE, TwoByteString::kHeaderSize, long_string) \
V(SHORT_ASCII_STRING_TYPE, AsciiString::kHeaderSize, short_ascii_string) \
V(MEDIUM_ASCII_STRING_TYPE, AsciiString::kHeaderSize, medium_ascii_string) \
V(LONG_ASCII_STRING_TYPE, AsciiString::kHeaderSize, long_ascii_string) \
V(SHORT_CONS_STRING_TYPE, ConsString::kSize, short_cons_string) \
V(MEDIUM_CONS_STRING_TYPE, ConsString::kSize, medium_cons_string) \
V(LONG_CONS_STRING_TYPE, ConsString::kSize, long_cons_string) \
V(SHORT_CONS_ASCII_STRING_TYPE, ConsString::kSize, short_cons_ascii_string) \
V(MEDIUM_CONS_ASCII_STRING_TYPE, ConsString::kSize, medium_cons_ascii_string)\
V(LONG_CONS_ASCII_STRING_TYPE, ConsString::kSize, long_cons_ascii_string) \
V(SHORT_SLICED_STRING_TYPE, SlicedString::kSize, short_sliced_string) \
V(MEDIUM_SLICED_STRING_TYPE, SlicedString::kSize, medium_sliced_string) \
V(LONG_SLICED_STRING_TYPE, SlicedString::kSize, long_sliced_string) \
V(SHORT_SLICED_ASCII_STRING_TYPE, \
SlicedString::kSize, \
short_sliced_ascii_string) \
V(MEDIUM_SLICED_ASCII_STRING_TYPE, \
SlicedString::kSize, \
medium_sliced_ascii_string) \
V(LONG_SLICED_ASCII_STRING_TYPE, \
SlicedString::kSize, \
long_sliced_ascii_string) \
V(SHORT_EXTERNAL_STRING_TYPE, \
ExternalTwoByteString::kSize, \
short_external_string) \
V(MEDIUM_EXTERNAL_STRING_TYPE, \
ExternalTwoByteString::kSize, \
medium_external_string) \
V(LONG_EXTERNAL_STRING_TYPE, \
ExternalTwoByteString::kSize, \
long_external_string) \
V(SHORT_EXTERNAL_ASCII_STRING_TYPE, \
ExternalAsciiString::kSize, \
short_external_ascii_string) \
V(MEDIUM_EXTERNAL_ASCII_STRING_TYPE, \
ExternalAsciiString::kSize, \
medium_external_ascii_string) \
V(LONG_EXTERNAL_ASCII_STRING_TYPE, \
ExternalAsciiString::kSize, \
long_external_ascii_string)
// A struct is a simple object a set of object-valued fields. Including an
// object type in this causes the compiler to generate most of the boilerplate
// code for the class including allocation and garbage collection routines,
// casts and predicates. All you need to define is the class, methods and
// object verification routines. Easy, no?
//
// Note that for subtle reasons related to the ordering or numerical values of
// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
// manually.
#define STRUCT_LIST(V) \
V(ACCESSOR_INFO, AccessorInfo, accessor_info) \
V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
V(SIGNATURE_INFO, SignatureInfo, signature_info) \
V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
V(DEBUG_INFO, DebugInfo, debug_info) \
V(BREAK_POINT_INFO, BreakPointInfo, break_point_info) \
V(SCRIPT, Script, script)
// We use the full 8 bits of the instance_type field to encode heap object
// instance types. The high-order bit (bit 7) is set if the object is not a
// string, and cleared if it is a string.
const uint32_t kIsNotStringMask = 0x80;
const uint32_t kStringTag = 0x0;
const uint32_t kNotStringTag = 0x80;
// If bit 7 is clear, bits 5 and 6 are the string's size (short, medium, or
// long).
const uint32_t kStringSizeMask = 0x60;
const uint32_t kShortStringTag = 0x0;
const uint32_t kMediumStringTag = 0x20;
const uint32_t kLongStringTag = 0x40;
// If bit 7 is clear, bit 4 indicates that the string is a symbol (if set) or
// not (if cleared).
const uint32_t kIsSymbolMask = 0x10;
const uint32_t kNotSymbolTag = 0x0;
const uint32_t kSymbolTag = 0x10;
// If bit 7 is clear, and the string representation is a sequential string,
// then bit 3 indicates whether the string consists of two-byte characters or
// one-byte characters.
const uint32_t kStringEncodingMask = 0x8;
const uint32_t kTwoByteStringTag = 0x0;
const uint32_t kAsciiStringTag = 0x8;
// If bit 7 is clear, the low-order 3 bits indicate the representation
// of the string.
const uint32_t kStringRepresentationMask = 0x07;
enum StringRepresentationTag {
kSeqStringTag = 0x0,
kConsStringTag = 0x1,
kSlicedStringTag = 0x2,
kExternalStringTag = 0x3
};
enum InstanceType {
SHORT_SYMBOL_TYPE = kShortStringTag | kSymbolTag | kSeqStringTag,
MEDIUM_SYMBOL_TYPE = kMediumStringTag | kSymbolTag | kSeqStringTag,
LONG_SYMBOL_TYPE = kLongStringTag | kSymbolTag | kSeqStringTag,
SHORT_ASCII_SYMBOL_TYPE =
kShortStringTag | kAsciiStringTag | kSymbolTag | kSeqStringTag,
MEDIUM_ASCII_SYMBOL_TYPE =
kMediumStringTag | kAsciiStringTag | kSymbolTag | kSeqStringTag,
LONG_ASCII_SYMBOL_TYPE =
kLongStringTag | kAsciiStringTag | kSymbolTag | kSeqStringTag,
SHORT_CONS_SYMBOL_TYPE = kShortStringTag | kSymbolTag | kConsStringTag,
MEDIUM_CONS_SYMBOL_TYPE = kMediumStringTag | kSymbolTag | kConsStringTag,
LONG_CONS_SYMBOL_TYPE = kLongStringTag | kSymbolTag | kConsStringTag,
SHORT_CONS_ASCII_SYMBOL_TYPE =
kShortStringTag | kAsciiStringTag | kSymbolTag | kConsStringTag,
MEDIUM_CONS_ASCII_SYMBOL_TYPE =
kMediumStringTag | kAsciiStringTag | kSymbolTag | kConsStringTag,
LONG_CONS_ASCII_SYMBOL_TYPE =
kLongStringTag | kAsciiStringTag | kSymbolTag | kConsStringTag,
SHORT_SLICED_SYMBOL_TYPE = kShortStringTag | kSymbolTag | kSlicedStringTag,
MEDIUM_SLICED_SYMBOL_TYPE = kMediumStringTag | kSymbolTag | kSlicedStringTag,
LONG_SLICED_SYMBOL_TYPE = kLongStringTag | kSymbolTag | kSlicedStringTag,
SHORT_SLICED_ASCII_SYMBOL_TYPE =
kShortStringTag | kAsciiStringTag | kSymbolTag | kSlicedStringTag,
MEDIUM_SLICED_ASCII_SYMBOL_TYPE =
kMediumStringTag | kAsciiStringTag | kSymbolTag | kSlicedStringTag,
LONG_SLICED_ASCII_SYMBOL_TYPE =
kLongStringTag | kAsciiStringTag | kSymbolTag | kSlicedStringTag,
SHORT_EXTERNAL_SYMBOL_TYPE =
kShortStringTag | kSymbolTag | kExternalStringTag,
MEDIUM_EXTERNAL_SYMBOL_TYPE =
kMediumStringTag | kSymbolTag | kExternalStringTag,
LONG_EXTERNAL_SYMBOL_TYPE = kLongStringTag | kSymbolTag | kExternalStringTag,
SHORT_EXTERNAL_ASCII_SYMBOL_TYPE =
kShortStringTag | kAsciiStringTag | kSymbolTag | kExternalStringTag,
MEDIUM_EXTERNAL_ASCII_SYMBOL_TYPE =
kMediumStringTag | kAsciiStringTag | kSymbolTag | kExternalStringTag,
LONG_EXTERNAL_ASCII_SYMBOL_TYPE =
kLongStringTag | kAsciiStringTag | kSymbolTag | kExternalStringTag,
SHORT_STRING_TYPE = kShortStringTag | kSeqStringTag,
MEDIUM_STRING_TYPE = kMediumStringTag | kSeqStringTag,
LONG_STRING_TYPE = kLongStringTag | kSeqStringTag,
SHORT_ASCII_STRING_TYPE = kShortStringTag | kAsciiStringTag | kSeqStringTag,
MEDIUM_ASCII_STRING_TYPE = kMediumStringTag | kAsciiStringTag | kSeqStringTag,
LONG_ASCII_STRING_TYPE = kLongStringTag | kAsciiStringTag | kSeqStringTag,
SHORT_CONS_STRING_TYPE = kShortStringTag | kConsStringTag,
MEDIUM_CONS_STRING_TYPE = kMediumStringTag | kConsStringTag,
LONG_CONS_STRING_TYPE = kLongStringTag | kConsStringTag,
SHORT_CONS_ASCII_STRING_TYPE =
kShortStringTag | kAsciiStringTag | kConsStringTag,
MEDIUM_CONS_ASCII_STRING_TYPE =
kMediumStringTag | kAsciiStringTag | kConsStringTag,
LONG_CONS_ASCII_STRING_TYPE =
kLongStringTag | kAsciiStringTag | kConsStringTag,
SHORT_SLICED_STRING_TYPE = kShortStringTag | kSlicedStringTag,
MEDIUM_SLICED_STRING_TYPE = kMediumStringTag | kSlicedStringTag,
LONG_SLICED_STRING_TYPE = kLongStringTag | kSlicedStringTag,
SHORT_SLICED_ASCII_STRING_TYPE =
kShortStringTag | kAsciiStringTag | kSlicedStringTag,
MEDIUM_SLICED_ASCII_STRING_TYPE =
kMediumStringTag | kAsciiStringTag | kSlicedStringTag,
LONG_SLICED_ASCII_STRING_TYPE =
kLongStringTag | kAsciiStringTag | kSlicedStringTag,
SHORT_EXTERNAL_STRING_TYPE = kShortStringTag | kExternalStringTag,
MEDIUM_EXTERNAL_STRING_TYPE = kMediumStringTag | kExternalStringTag,
LONG_EXTERNAL_STRING_TYPE = kLongStringTag | kExternalStringTag,
SHORT_EXTERNAL_ASCII_STRING_TYPE =
kShortStringTag | kAsciiStringTag | kExternalStringTag,
MEDIUM_EXTERNAL_ASCII_STRING_TYPE =
kMediumStringTag | kAsciiStringTag | kExternalStringTag,
LONG_EXTERNAL_ASCII_STRING_TYPE =
kLongStringTag | kAsciiStringTag | kExternalStringTag,
LONG_PRIVATE_EXTERNAL_ASCII_STRING_TYPE = LONG_EXTERNAL_ASCII_STRING_TYPE,
MAP_TYPE = kNotStringTag,
HEAP_NUMBER_TYPE,
FIXED_ARRAY_TYPE,
CODE_TYPE,
ODDBALL_TYPE,
PROXY_TYPE,
BYTE_ARRAY_TYPE,
FILLER_TYPE,
SMI_TYPE,
ACCESSOR_INFO_TYPE,
ACCESS_CHECK_INFO_TYPE,
INTERCEPTOR_INFO_TYPE,
SHARED_FUNCTION_INFO_TYPE,
CALL_HANDLER_INFO_TYPE,
FUNCTION_TEMPLATE_INFO_TYPE,
OBJECT_TEMPLATE_INFO_TYPE,
SIGNATURE_INFO_TYPE,
TYPE_SWITCH_INFO_TYPE,
DEBUG_INFO_TYPE,
BREAK_POINT_INFO_TYPE,
SCRIPT_TYPE,
JS_OBJECT_TYPE,
JS_GLOBAL_OBJECT_TYPE,
JS_BUILTINS_OBJECT_TYPE,
JS_VALUE_TYPE,
JS_ARRAY_TYPE,
JS_FUNCTION_TYPE,
// Pseudo-types
FIRST_NONSTRING_TYPE = MAP_TYPE,
FIRST_TYPE = 0x0,
LAST_TYPE = JS_FUNCTION_TYPE,
// Boundaries for testing the type is a JavaScript "object". Note that
// function objects are not counted as objects, even though they are
// implemented as such; only values whose typeof is "object" are included.
FIRST_JS_OBJECT_TYPE = JS_OBJECT_TYPE,
LAST_JS_OBJECT_TYPE = JS_ARRAY_TYPE
};
enum CompareResult {
LESS = -1,
EQUAL = 0,
GREATER = 1,
NOT_EQUAL = GREATER
};
#define DECL_BOOLEAN_ACCESSORS(name) \
inline bool name(); \
inline void set_##name(bool value); \
#define DECL_ACCESSORS(name, type) \
inline type* name(); \
inline void set_##name(type* value);
class StringStream;
class ObjectVisitor;
struct ValueInfo : public Malloced {
ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
InstanceType type;
Object* ptr;
const char* str;
double number;
};
// A template-ized version of the IsXXX functions.
template <class C> static inline bool Is(Object* obj);
// Object is the abstract superclass for all classes in the
// object hierarchy.
// Object does not use any virtual functions to avoid the
// allocation of the C++ vtable.
// Since Smi and Failure are subclasses of Object no
// data members can be present in Object.
class Object BASE_EMBEDDED {
public:
// Type testing.
inline bool IsSmi();
inline bool IsHeapObject();
inline bool IsHeapNumber();
inline bool IsString();
inline bool IsSeqString();
inline bool IsAsciiString();
inline bool IsTwoByteString();
inline bool IsConsString();
inline bool IsSlicedString();
inline bool IsExternalString();
inline bool IsExternalAsciiString();
inline bool IsExternalTwoByteString();
inline bool IsShortString();
inline bool IsMediumString();
inline bool IsLongString();
inline bool IsSymbol();
inline bool IsNumber();
inline bool IsByteArray();
inline bool IsFailure();
inline bool IsRetryAfterGC();
inline bool IsException();
inline bool IsJSObject();
inline bool IsMap();
inline bool IsFixedArray();
inline bool IsDescriptorArray();
inline bool IsContext();
inline bool IsGlobalContext();
inline bool IsJSFunction();
inline bool IsCode();
inline bool IsOddball();
inline bool IsSharedFunctionInfo();
inline bool IsJSValue();
inline bool IsProxy();
inline bool IsBoolean();
inline bool IsJSArray();
inline bool IsHashTable();
inline bool IsDictionary();
inline bool IsSymbolTable();
inline bool IsPrimitive();
inline bool IsGlobalObject();
inline bool IsJSGlobalObject();
inline bool IsJSBuiltinsObject();
inline bool IsUndetectableObject();
inline bool IsAccessCheckNeeded();
// Returns true if this object is an instance of the specified
// function template.
bool IsInstanceOf(FunctionTemplateInfo* type);
inline bool IsStruct();
#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
#undef DECLARE_STRUCT_PREDICATE
// Oddball testing.
INLINE(bool IsUndefined());
INLINE(bool IsTheHole());
INLINE(bool IsNull());
INLINE(bool IsTrue());
INLINE(bool IsFalse());
// Extract the number.
inline double Number();
Object* ToObject(); // ECMA-262 9.9.
Object* ToBoolean(); // ECMA-262 9.2.
// Convert to a JSObject if needed.
// global_context is used when creating wrapper object.
Object* ToObject(Context* global_context);
// Converts this to a Smi if possible.
// Failure is returned otherwise.
inline Object* ToSmi();
void Lookup(String* name, LookupResult* result);
// Property access.
inline Object* GetProperty(String* key);
inline Object* GetProperty(String* key, PropertyAttributes* attributes);
Object* GetPropertyWithReceiver(Object* receiver,
String* key,
PropertyAttributes* attributes);
Object* GetProperty(Object* receiver,
LookupResult* result,
String* key,
PropertyAttributes* attributes);
Object* GetPropertyWithCallback(Object* receiver,
Object* structure,
String* name,
Object* holder);
inline Object* GetElement(uint32_t index);
Object* GetElementWithReceiver(Object* receiver, uint32_t index);
// Return the object's prototype (might be Heap::null_value()).
Object* GetPrototype();
// Returns true if this is a JSValue containing a string and the index is
// < the length of the string. Used to implement [] on strings.
inline bool IsStringObjectWithCharacterAt(uint32_t index);
#ifdef DEBUG
// Prints this object with details.
void Print();
void PrintLn();
// Verifies the object.
void Verify();
// Verify a pointer is a valid object pointer.
static void VerifyPointer(Object* p);
#endif
// Prints this object without details.
void ShortPrint();
// Prints this object without details to a message accumulator.
void ShortPrint(StringStream* accumulator);
// Casting: This cast is only needed to satisfy macros in objects-inl.h.
static Object* cast(Object* value) { return value; }
// Layout description.
static const int kSize = 0; // Object does not take up any space.
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
};
// Smi represents integer Numbers that can be stored in 31 bits.
// Smis are immediate which means they are NOT allocated in the heap.
// The this pointer has the following format: [31 bit signed int] 0
// Smi stands for small integer.
class Smi: public Object {
public:
// Returns the integer value.
inline int value();
// Convert a value to a Smi object.
static inline Smi* FromInt(int value);
// Returns whether value can be represented in a Smi.
static inline bool IsValid(int value);
// Casting.
static inline Smi* cast(Object* object);
// Dispatched behavior.
void SmiPrint();
void SmiPrint(StringStream* accumulator);
#ifdef DEBUG
void SmiVerify();
#endif
// Min and max limits for Smi values.
static const int kMinValue = -(1 << (kBitsPerPointer - (kSmiTagSize + 1)));
static const int kMaxValue = (1 << (kBitsPerPointer - (kSmiTagSize + 1))) - 1;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
};
// Failure is used for reporing out of memory situations and
// propagating exceptions through the runtime system. Failure objects
// are transient and cannot occur as part of the objects graph.
//
// Failures are a single word, encoded as follows:
// +-------------------------+---+--+--+
// |rrrrrrrrrrrrrrrrrrrrrrrrr|sss|tt|11|
// +-------------------------+---+--+--+
//
// The low two bits, 0-1, are the failure tag, 11. The next two bits,
// 2-3, are a failure type tag 'tt' with possible values:
// 00 RETRY_AFTER_GC
// 01 EXCEPTION
// 10 INTERNAL_ERROR
// 11 OUT_OF_MEMORY_EXCEPTION
//
// The next three bits, 4-6, are an allocation space tag 'sss'. The
// allocation space tag is 000 for all failure types except
// RETRY_AFTER_GC. For RETRY_AFTER_GC, the possible values are
// (the encoding is found in globals.h):
// 000 NEW_SPACE
// 001 OLD_SPACE
// 010 CODE_SPACE
// 011 MAP_SPACE
// 100 LO_SPACE
//
// The remaining bits is the number of words requested by the
// allocation request that failed, and is zeroed except for
// RETRY_AFTER_GC failures. The 25 bits (on a 32 bit platform) gives
// a representable range of 2^27 bytes (128MB).
// Failure type tag info.
const int kFailureTypeTagSize = 2;
const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
class Failure: public Object {
public:
// RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
enum Type {
RETRY_AFTER_GC = 0,
EXCEPTION = 1, // Returning this marker tells the real exception
// is in Top::pending_exception.
INTERNAL_ERROR = 2,
OUT_OF_MEMORY_EXCEPTION = 3
};
inline Type type() const;
// Returns the space that needs to be collected for RetryAfterGC failures.
inline AllocationSpace allocation_space() const;
// Returns the number of bytes requested (up to the representable maximum)
// for RetryAfterGC failures.
inline int requested() const;
inline bool IsInternalError() const;
inline bool IsOutOfMemoryException() const;
static Failure* RetryAfterGC(int requested_bytes, AllocationSpace space);
static inline Failure* Exception();
static inline Failure* InternalError();
static inline Failure* OutOfMemoryException();
// Casting.
static inline Failure* cast(Object* object);
// Dispatched behavior.
void FailurePrint();
void FailurePrint(StringStream* accumulator);
#ifdef DEBUG
void FailureVerify();
#endif
private:
inline int value() const;
static inline Failure* Construct(Type type, int value = 0);
DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
};
// HeapObject is the superclass for all classes describing heap allocated
// objects.
class HeapObject: public Object {
public:
// [map]: contains a Map which contains the objects reflective information.
inline Map* map();
inline void set_map(Map* value);
// Converts an address to a HeapObject pointer.
static inline HeapObject* FromAddress(Address address);
// Returns the address of this HeapObject.
inline Address address();
// Iterates over pointers contained in the object (including the Map)
void Iterate(ObjectVisitor* v);
// Iterates over all pointers contained in the object except the
// first map pointer. The object type is given in the first
// parameter. This function does not access the map pointer in the
// object, and so is safe to call while the map pointer is modified.
void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
// This method only applies to struct objects. Iterates over all the fields
// of this struct.
void IterateStructBody(int object_size, ObjectVisitor* v);
// Copy the body from the 'from' object to this.
// Please note the two object must have the same map prior to the call.
inline void CopyBody(JSObject* from);
// Returns the heap object's size in bytes
inline int Size();
// Given a heap object's map pointer, returns the heap size in bytes
// Useful when the map pointer field is used for other purposes.
// GC internal.
inline int SizeFromMap(Map* map);
static inline Object* GetHeapObjectField(HeapObject* obj, int index);
// Casting.
static inline HeapObject* cast(Object* obj);
// Dispatched behavior.
void HeapObjectShortPrint(StringStream* accumulator);
#ifdef DEBUG
void HeapObjectPrint();
void HeapObjectVerify();
inline void VerifyObjectField(int offset);
void PrintHeader(const char* id);
// Verify a pointer is a valid HeapObject pointer that points to object
// areas in the heap.
static void VerifyHeapPointer(Object* p);
#endif
// Layout description.
// First field in a heap object is map.
static const int kMapOffset = Object::kSize;
static const int kSize = kMapOffset + kPointerSize;
protected:
// helpers for calling an ObjectVisitor to iterate over pointers in the
// half-open range [start, end) specified as integer offsets
inline void IteratePointers(ObjectVisitor* v, int start, int end);
// as above, for the single element at "offset"
inline void IteratePointer(ObjectVisitor* v, int offset);
// Computes the object size from the map.
// Should only be used from SizeFromMap.
int SlowSizeFromMap(Map* map);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
};
// The HeapNumber class describes heap allocated numbers that cannot be
// represented in a Smi (small integer)
class HeapNumber: public HeapObject {
public:
// [value]: number value.
inline double value();
inline void set_value(double value);
// Casting.
static inline HeapNumber* cast(Object* obj);
// Dispatched behavior.
Object* HeapNumberToBoolean();
void HeapNumberPrint();
void HeapNumberPrint(StringStream* accumulator);
#ifdef DEBUG
void HeapNumberVerify();
#endif
// Layout description.
static const int kValueOffset = HeapObject::kSize;
static const int kSize = kValueOffset + kDoubleSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
};
// The JSObject describes real heap allocated JavaScript objects with
// properties.
// Note that the map of JSObject changes during execution to enable inline
// caching.
class JSObject: public HeapObject {
public:
// [properties]: Backing storage for properties.
DECL_ACCESSORS(properties, FixedArray)
inline void initialize_properties();
// [elements]: The elements in the fast case.
DECL_ACCESSORS(elements, HeapObject)
inline void initialize_elements();
// Accessors for properties.
inline bool HasFastProperties();
// Do we want to keep the elements in fast case when increasing the
// capacity?
bool KeepInFastCase(int new_capacity);
// Accessors for slow properties
inline Dictionary* property_dictionary(); // asserts !HasFastProperties
inline Dictionary* element_dictionary(); // asserts !HasFastElements
Object* SetProperty(String* key,
Object* value,
PropertyAttributes attributes);
Object* SetProperty(LookupResult* result,
String* key,
Object* value,
PropertyAttributes attributes);
Object* SetPropertyWithFailedAccessCheck(LookupResult* result,
String* name,
Object* value);
Object* SetPropertyWithCallback(Object* structure,
String* name,
Object* value,
JSObject* holder);
Object* SetPropertyWithInterceptor(String* name,
Object* value,
PropertyAttributes attributes);
Object* SetPropertyPostInterceptor(String* name,
Object* value,
PropertyAttributes attributes);
Object* IgnoreAttributesAndSetLocalProperty(String* key,
Object* value);
Object* SetLazyProperty(LookupResult* result,
String* name,
Object* value,
PropertyAttributes attributes);
// Returns the class name ([[Class]] property in the specification).
String* class_name();
// Retrieve interceptors.
InterceptorInfo* GetNamedInterceptor();
InterceptorInfo* GetIndexedInterceptor();
inline PropertyAttributes GetPropertyAttribute(String* name);
PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
String* name);
PropertyAttributes GetLocalPropertyAttribute(String* name);
Object* DefineAccessor(String* name, bool is_getter, JSFunction* fun,
PropertyAttributes attributes);
Object* LookupAccessor(String* name, bool is_getter);
// Used from Object::GetProperty().
Object* GetPropertyWithFailedAccessCheck(Object* receiver,
LookupResult* result,
String* name);
Object* GetPropertyWithInterceptor(JSObject* receiver,
String* name,
PropertyAttributes* attributes);
Object* GetPropertyPostInterceptor(JSObject* receiver,
String* name,
PropertyAttributes* attributes);
Object* GetLazyProperty(Object* receiver,
LookupResult* result,
String* name,
PropertyAttributes* attributes);
bool HasProperty(String* name) {
return GetPropertyAttribute(name) != ABSENT;
}
bool HasLocalProperty(String* name) {
return GetLocalPropertyAttribute(name) != ABSENT;
}
Object* DeleteProperty(String* name);
Object* DeleteElement(uint32_t index);
Object* DeleteLazyProperty(LookupResult* result, String* name);
// Tests for the fast common case for property enumeration.
bool IsSimpleEnum();
// Tells whether the backing storage for elements is fast (FixedArray).
inline bool HasFastElements();
// Returns true if the backing storage for the slow-case elements of
// this object takes up nearly as much space as a fast-case backing
// storage would. In that case the JSObject should have fast
// elements.
bool ShouldHaveFastElements();
// Return the object's prototype (might be Heap::null_value()).
inline Object* GetPrototype();
// Tells whether the index'th element is present.
inline bool HasElement(uint32_t index);
bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
bool HasLocalElement(uint32_t index);
bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
Object* SetFastElement(uint32_t index, Object* value);
// Set the index'th array element.
// A Failure object is returned if GC is needed.
Object* SetElement(uint32_t index, Object* value);
// Returns the index'th element.
// The undefined object if index is out of bounds.
Object* GetElementWithReceiver(JSObject* receiver, uint32_t index);
void SetFastElements(FixedArray* elements);
Object* SetSlowElements(Object* length);
// Lookup interceptors are used for handling properties controlled by host
// objects.
inline bool HasNamedInterceptor();
inline bool HasIndexedInterceptor();
// Support functions for v8 api (needed for correct interceptor behavior).
bool HasRealNamedProperty(String* key);
bool HasRealElementProperty(uint32_t index);
bool HasRealNamedCallbackProperty(String* key);
// Initializes the array to a certain length
Object* SetElementsLength(Object* length);
// Get the header size for a JSObject. Used to compute the index of
// internal fields as well as the number of internal fields.
inline int GetHeaderSize();
inline int GetInternalFieldCount();
inline Object* GetInternalField(int index);
inline void SetInternalField(int index, Object* value);
// Returns a deep copy of the JavaScript object.
// Properties and elements are copied too.
// Returns failure if allocation failed.
Object* Copy(PretenureFlag pretenure = NOT_TENURED);
// Lookup a property. If found, the result is valid and has
// detailed information.
void LocalLookup(String* name, LookupResult* result);
void Lookup(String* name, LookupResult* result);
// The following lookup functions skip interceptors.
void LocalLookupRealNamedProperty(String* name, LookupResult* result);
void LookupRealNamedProperty(String* name, LookupResult* result);
void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
// Returns the number of properties on this object filtering out properties
// with the specified attributes (ignoring interceptors).
int NumberOfLocalProperties(PropertyAttributes filter);
// Returns the number of enumerable properties (ignoring interceptors).
int NumberOfEnumProperties();
// Fill in details for properties into storage.
void GetLocalPropertyNames(FixedArray* storage);
// Returns the number of properties on this object filtering out properties
// with the specified attributes (ignoring interceptors).
int NumberOfLocalElements(PropertyAttributes filter);
// Returns the number of enumerable elements (ignoring interceptors).
int NumberOfEnumElements();
// Returns the number of elements on this object filtering out elements
// with the specified attributes (ignoring interceptors).
int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
// Count and fill in the enumerable elements into storage.
// (storage->length() == NumberOfEnumElements()).
// If storage is NULL, will count the elements without adding
// them to any storage.
// Returns the number of enumerable elements.
int GetEnumElementKeys(FixedArray* storage);
// Add a property to a fast-case object using a map transition to
// new_map.
Object* AddFastPropertyUsingMap(Map* new_map,
String* name,
Object* value);
// Add a constant function property to a fast-case object.
Object* AddConstantFunctionProperty(String* name,
JSFunction* function,
PropertyAttributes attributes);
// Replace a constant function property on a fast-case object.
Object* ReplaceConstantFunctionProperty(String* name,
Object* value);
// Add a property to a fast-case object.
Object* AddFastProperty(String* name,
Object* value,
PropertyAttributes attributes);
// Add a property to a slow-case object.
Object* AddSlowProperty(String* name,
Object* value,
PropertyAttributes attributes);
// Add a property to an object.
Object* AddProperty(String* name,
Object* value,
PropertyAttributes attributes);
// Convert the object to use the canonical dictionary
// representation.
Object* NormalizeProperties();
Object* NormalizeElements();
// Transform slow named properties to fast variants.
// Returns failure if allocation failed.
Object* TransformToFastProperties(int unused_property_fields);
// initializes the body after properties slot, properties slot is
// initialized by set_properties
// Note: this call does not update write barrier, it is caller's
// reponsibility to ensure that *v* can be collected without WB here.
inline void InitializeBody(int object_size);
// Check whether this object references another object
bool ReferencesObject(Object* obj);
// Casting.
static inline JSObject* cast(Object* obj);
// Dispatched behavior.
void JSObjectIterateBody(int object_size, ObjectVisitor* v);
void JSObjectShortPrint(StringStream* accumulator);
#ifdef DEBUG
void JSObjectPrint();
void JSObjectVerify();
void PrintProperties();
void PrintElements();
// Structure for collecting spill information about JSObjects.
class SpillInformation {
public:
void Clear();
void Print();
int number_of_objects_;
int number_of_objects_with_fast_properties_;
int number_of_objects_with_fast_elements_;
int number_of_fast_used_fields_;
int number_of_fast_unused_fields_;
int number_of_slow_used_properties_;
int number_of_slow_unused_properties_;
int number_of_fast_used_elements_;
int number_of_fast_unused_elements_;
int number_of_slow_used_elements_;
int number_of_slow_unused_elements_;
};
void IncrementSpillStatistics(SpillInformation* info);
#endif
Object* SlowReverseLookup(Object* value);
static const uint32_t kMaxGap = 1024;
static const int kMaxFastElementsLength = 5000;
// Layout description.
static const int kPropertiesOffset = HeapObject::kSize;
static const int kElementsOffset = kPropertiesOffset + kPointerSize;
static const int kHeaderSize = kElementsOffset + kPointerSize;
Object* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
private:
Object* SetElementWithInterceptor(uint32_t index, Object* value);
Object* SetElementPostInterceptor(uint32_t index, Object* value);
Object* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
Object* DeletePropertyPostInterceptor(String* name);
Object* DeletePropertyWithInterceptor(String* name);
Object* DeleteElementPostInterceptor(uint32_t index);
Object* DeleteElementWithInterceptor(uint32_t index);
PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
String* name,
bool continue_search);
PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
String* name,
bool continue_search);
PropertyAttributes GetPropertyAttribute(JSObject* receiver,
LookupResult* result,
String* name,
bool continue_search);
// Returns true if most of the elements backing storage is used.
bool HasDenseElements();
Object* DefineGetterSetter(String* name, PropertyAttributes attributes);
void LookupInDescriptor(String* name, LookupResult* result);
DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
};
// Abstract super class arrays. It provides length behavior.
class Array: public HeapObject {
public:
// [length]: length of the array.
inline int length();
inline void set_length(int value);
// Convert an object to an array index.
// Returns true if the conversion succeeded.
static inline bool IndexFromObject(Object* object, uint32_t* index);
// Layout descriptor.
static const int kLengthOffset = HeapObject::kSize;
static const int kHeaderSize = kLengthOffset + kIntSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Array);
};
// FixedArray describes fixed sized arrays where element
// type is Object*.
class FixedArray: public Array {
public:
// Setter and getter for elements.
inline Object* get(int index);
inline void set(int index, Object* value);
// Setters for frequently used oddballs located in old space.
inline void set_undefined(int index);
inline void set_the_hole(int index);
// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
inline void set(int index, Object* value, WriteBarrierMode mode);
// Return the write barrier mode for this.
inline WriteBarrierMode GetWriteBarrierMode();
// Copy operations.
Object* Copy();
Object* CopySize(int new_length);
// Add the elements of a JSArray to this FixedArray.
Object* AddKeysFromJSArray(JSArray* array);
// Compute the union of this and other.
Object* UnionOfKeys(FixedArray* other);
// Copy a sub array from the receiver to dest.
void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
// Garbage collection support.
static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
// Casting.
static inline FixedArray* cast(Object* obj);
// Dispatched behavior.
int FixedArraySize() { return SizeFor(length()); }
void FixedArrayIterateBody(ObjectVisitor* v);
#ifdef DEBUG
void FixedArrayPrint();
void FixedArrayVerify();
#endif
// Swap two elements.
void Swap(int i, int j);
// Sort this array and the smis as pairs wrt. the smis.
void SortPairs(FixedArray* smis);
protected:
// Set operation on FixedArray without using write barriers.
static inline void fast_set(FixedArray* array, int index, Object* value);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
};
// DescriptorArrays are fixed arrays used to hold instance descriptors.
// The format of the these objects is:
// [0]: point to a fixed array with (value, detail) pairs.
// [1]: next enumeration index (Smi), or pointer to small fixed array:
// [0]: next enumeration index (Smi)
// [1]: pointer to fixed array with enum cache
// [2]: first key
// [length() - 1]: last key
//
class DescriptorArray: public FixedArray {
public:
// Returns the number of descriptors in the array.
int number_of_descriptors() {
int len = length();
return len == 0 ? 0 : len - kFirstIndex;
}
int NextEnumerationIndex() {
if (length() == 0) return PropertyDetails::kInitialIndex;
Object* obj = get(kEnumerationIndexIndex);
if (obj->IsSmi()) {
return Smi::cast(obj)->value();
} else {
Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
return Smi::cast(index)->value();
}
}
// Set next enumeration index and flush any enum cache.
void SetNextEnumerationIndex(int value) {
fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
}
bool HasEnumCache() {
return length() > 0 && !get(kEnumerationIndexIndex)->IsSmi();
}
Object* GetEnumCache() {
ASSERT(HasEnumCache());
FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
return bridge->get(kEnumCacheBridgeCacheIndex);
}
// Initialize or change the enum cache,
// using the supplied storage for the small "bridge".
void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
// Accessors for fetching instance descriptor at descriptor number..
inline String* GetKey(int descriptor_number);
inline Object* GetValue(int descriptor_number);
inline Smi* GetDetails(int descriptor_number);
// Accessor for complete descriptor.
inline void Get(int descriptor_number, Descriptor* desc);
inline void Set(int descriptor_number, Descriptor* desc);
void ReplaceConstantFunction(int descriptor_number, JSFunction* value);
// Copy the descriptor array, insert a new descriptor and optionally
// remove map transitions.
Object* CopyInsert(Descriptor* desc, bool remove_map_transitions = false);
// Copy the descriptor array, replace the property index and attributes
// of the named property, but preserve its enumeration index.
Object* CopyReplace(String* name, int index, PropertyAttributes attributes);
// Sort the instance descriptors by the hash codes of their keys.
void Sort();
// Is the descriptor array sorted and without duplicates?
bool IsSortedNoDuplicates();
// Search the instance descriptors for given name.
inline int Search(String* name);
// Tells whether the name is present int the array.
bool Contains(String* name) { return kNotFound != Search(name); }
// Perform a binary search in the instance descriptors represented
// by this fixed array. low and high are descriptor indices. If there
// are three instance descriptors in this array it should be called
// with low=0 and high=2.
int BinarySearch(String* name, int low, int high);
static Object* Allocate(int number_of_descriptors);
// Casting.
static inline DescriptorArray* cast(Object* obj);
// Constant for denoting key was not found.
static const int kNotFound = -1;
static const int kContentArrayIndex = 0;
static const int kEnumerationIndexIndex = 1;
static const int kFirstIndex = 2;
// The length of the "bridge" to the enum cache.
static const int kEnumCacheBridgeLength = 2;
static const int kEnumCacheBridgeEnumIndex = 0;
static const int kEnumCacheBridgeCacheIndex = 1;
// Layout description.
static const int kContentArrayOffset = FixedArray::kHeaderSize;
static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
// Layout description for the bridge array.
static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
static const int kEnumCacheBridgeCacheOffset =
kEnumCacheBridgeEnumOffset + kPointerSize;
#ifdef DEBUG
// Print all the descriptors.
void PrintDescriptors();
#endif
// The maximum number of descriptors we want in a descriptor array (should
// fit in a page).
static const int kMaxNumberOfDescriptors = 1024 + 512;
private:
// Conversion from descriptor number to array indices.
static int ToKeyIndex(int descriptor_number) {
return descriptor_number+kFirstIndex;
}
static int ToValueIndex(int descriptor_number) {
return descriptor_number << 1;
}
static int ToDetailsIndex(int descriptor_number) {
return( descriptor_number << 1) + 1;
}
// Swap operation on FixedArray without using write barriers.
static inline void fast_swap(FixedArray* array, int first, int second);
// Swap descriptor first and second.
inline void Swap(int first, int second);
FixedArray* GetContentArray() {
return FixedArray::cast(get(kContentArrayIndex));
}
DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
};
// HashTable is a subclass of FixedArray that implements a hash table
// that uses open addressing and quadratic probing.
//
// In order for the quadratic probing to work, elements that have not
// yet been used and elements that have been deleted are
// distinguished. Probing continues when deleted elements are
// encountered and stops when unused elements are encountered.
//
// - Elements with key == undefined have not been used yet.
// - Elements with key == null have been deleted.
//
// The hash table class is parameterized with a prefix size and with
// the size, including the key size, of the elements held in the hash
// table. The prefix size indicates an amount of memory in the
// beginning of the backing storage that can be used for non-element
// information by subclasses.
template<int prefix_size, int element_size>
class HashTable: public FixedArray {
public:
// Returns the number of elements in the dictionary.
int NumberOfElements() {
return Smi::cast(get(kNumberOfElementsIndex))->value();
}
// Returns the capacity of the dictionary.
int Capacity() {
return Smi::cast(get(kCapacityIndex))->value();
}
// ElementAdded should be called whenever an element is added to a
// dictionary.
void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
// ElementRemoved should be called whenever an element is removed from
// a dictionary.
void ElementRemoved() { SetNumberOfElements(NumberOfElements() - 1); }
void ElementsRemoved(int n) { SetNumberOfElements(NumberOfElements() - n); }
// Returns a new array for dictionary usage. Might return Failure.
static Object* Allocate(int at_least_space_for);
// Returns the key at entry.
Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
// Tells wheter k is a real key. Null and undefined are not allowed
// as keys and can be used to indicate missing or deleted elements.
bool IsKey(Object* k) {
return !k->IsNull() && !k->IsUndefined();
}
// Garbage collection support.
void IteratePrefix(ObjectVisitor* visitor);
void IterateElements(ObjectVisitor* visitor);
// Casting.
static inline HashTable* cast(Object* obj);
// Key is an abstract superclass keys.
class Key {
public:
// Returns whether the other object matches this key.
virtual bool IsMatch(Object* other) = 0;
typedef uint32_t (*HashFunction)(Object* obj);
// Returns the hash function used for this key.
virtual HashFunction GetHashFunction() = 0;
// Returns the hash value for this key.
virtual uint32_t Hash() = 0;
// Returns the key object for storing into the dictionary.
// If allocations fails a failure object is returned.
virtual Object* GetObject() = 0;
virtual bool IsStringKey() = 0;
// Required.
virtual ~Key() {}
};
// Compute the probe offset (quadratic probing).
INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
return (n + n * n) >> 1;
}
static const int kNumberOfElementsIndex = 0;
static const int kCapacityIndex = 1;
static const int kPrefixStartIndex = 2;
static const int kElementsStartIndex = kPrefixStartIndex + prefix_size;
static const int kElementSize = element_size;
static const int kElementsStartOffset =
kHeaderSize + kElementsStartIndex * kPointerSize;
protected:
// Find entry for key otherwise return -1.
int FindEntry(Key* key);
// Find the entry at which to insert element with the given key that
// has the given hash value.
uint32_t FindInsertionEntry(Object* key, uint32_t hash);
// Returns the index for an entry (of the key)
static inline int EntryToIndex(int entry) {
return (entry * kElementSize) + kElementsStartIndex;
}
// Update the number of elements in the dictionary.
void SetNumberOfElements(int nof) {
fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
}
// Sets the capacity of the hash table.
void SetCapacity(int capacity) {
// To scale a computed hash code to fit within the hash table, we
// use bit-wise AND with a mask, so the capacity must be positive
// and non-zero.
ASSERT(capacity > 0);
fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
}
// Returns probe entry.
static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
ASSERT(IsPowerOf2(size));
return (hash + GetProbeOffset(number)) & (size - 1);
}
// Ensure enough space for n additional elements.
Object* EnsureCapacity(int n, Key* key);
};
// SymbolTable.
//
// No special elements in the prefix and the element size is 1
// because only the symbol itself (the key) needs to be stored.
class SymbolTable: public HashTable<0, 1> {
public:
// Find symbol in the symbol table. If it is not there yet, it is
// added. The return value is the symbol table which might have
// been enlarged. If the return value is not a failure, the symbol
// pointer *s is set to the symbol found.
Object* LookupSymbol(Vector<const char> str, Object** s);
Object* LookupString(String* key, Object** s);
// Casting.
static inline SymbolTable* cast(Object* obj);
private:
Object* LookupKey(Key* key, Object** s);
class Utf8Key; // Key based on utf8 string.
class StringKey; // Key based on String*.
DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
};
// Dictionary for keeping properties and elements in slow case.
//
// One element in the prefix is used for storing non-element
// information about the dictionary.
//
// The rest of the array embeds triples of (key, value, details).
// if key == undefined the triple is empty.
// if key == null the triple has been deleted.
// otherwise key contains the name of a property.
class DictionaryBase: public HashTable<2, 3> {};
class Dictionary: public DictionaryBase {
public:
// Returns the value at entry.
Object* ValueAt(int entry) { return get(EntryToIndex(entry)+1); }
// Set the value for entry.
void ValueAtPut(int entry, Object* value) {
set(EntryToIndex(entry)+1, value);
}
// Returns the property details for the property at entry.
PropertyDetails DetailsAt(int entry) {
return PropertyDetails(Smi::cast(get(EntryToIndex(entry) + 2)));
}
// Set the details for entry.
void DetailsAtPut(int entry, PropertyDetails value) {
set(EntryToIndex(entry) + 2, value.AsSmi());
}
// Remove all entries were key is a number and (from <= key && key < to).
void RemoveNumberEntries(uint32_t from, uint32_t to);
// Sorting support
Object* RemoveHoles();
void CopyValuesTo(FixedArray* elements);
// Casting.
static inline Dictionary* cast(Object* obj);
// Find entry for string key otherwise return -1.
int FindStringEntry(String* key);
// Find entry for number key otherwise return -1.
int FindNumberEntry(uint32_t index);
// Delete a property from the dictionary.
Object* DeleteProperty(int entry);
// Type specific at put (default NONE attributes is used when adding).
Object* AtStringPut(String* key, Object* value);
Object* AtNumberPut(uint32_t key, Object* value);
Object* AddStringEntry(String* key, Object* value, PropertyDetails details);
Object* AddNumberEntry(uint32_t key, Object* value, PropertyDetails details);
// Set and existing string entry or add a new one if needed.
Object* SetOrAddStringEntry(String* key,
Object* value,
PropertyDetails details);
// Returns the number of elements in the dictionary filtering out properties
// with the specified attributes.
int NumberOfElementsFilterAttributes(PropertyAttributes filter);
// Returns the number of enumerable elements in the dictionary.
int NumberOfEnumElements();
// Copies keys to preallocated fixed array.
void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
// Copies enumerable keys to preallocated fixed array.
void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
// Fill in details for properties into storage.
void CopyKeysTo(FixedArray* storage);
// Returns the value at entry.
static int ValueIndexFor(int entry) { return EntryToIndex(entry)+1; }
// For transforming properties of a JSObject.
Object* TransformPropertiesToFastFor(JSObject* obj,
int unused_property_fields);
// If slow elements are required we will never go back to fast-case
// for the elements kept in this dictionary. We require slow
// elements if an element has been added at an index larger than
// kRequiresSlowElementsLimit.
inline bool requires_slow_elements();
// Get the value of the max number key that has been added to this
// dictionary. max_number_key can only be called if
// requires_slow_elements returns false.
inline uint32_t max_number_key();
// Accessors for next enumeration index.
void SetNextEnumerationIndex(int index) {
fast_set(this, kNextEnumnerationIndexIndex, Smi::FromInt(index));
}
int NextEnumerationIndex() {
return Smi::cast(get(kNextEnumnerationIndexIndex))->value();
}
// Returns a new array for dictionary usage. Might return Failure.
static Object* Allocate(int at_least_space_for);
// Ensure enough space for n additional elements.
Object* EnsureCapacity(int n, Key* key);
#ifdef DEBUG
void Print();
#endif
// Returns the key (slow).
Object* SlowReverseLookup(Object* value);
// Bit masks.
static const int kRequiresSlowElementsMask = 1;
static const int kRequiresSlowElementsTagSize = 1;
static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
private:
// Generic at put operation.
Object* AtPut(Key* key, Object* value);
Object* Add(Key* key, Object* value, PropertyDetails details);
// Add entry to dictionary.
void AddEntry(Object* key,
Object* value,
PropertyDetails details,
uint32_t hash);
// Sets the entry to (key, value) pair.
inline void SetEntry(int entry,
Object* key,
Object* value,
PropertyDetails details);
void UpdateMaxNumberKey(uint32_t key);
// Generate new enumneration indices to avoid enumeration insdex overflow.
Object* GenerateNewEnumerationIndices();
static const int kMaxNumberKeyIndex = kPrefixStartIndex;
static const int kNextEnumnerationIndexIndex = kMaxNumberKeyIndex + 1;
class NumberKey; // Key containing uint32_t.
class StringKey; // Key containing String*.
DISALLOW_IMPLICIT_CONSTRUCTORS(Dictionary);
};
// ByteArray represents fixed sized byte arrays. Used by the outside world,
// such as PCRE, and also by the memory allocator and garbage collector to
// fill in free blocks in the heap.
class ByteArray: public Array {
public:
// Setter and getter.
inline byte get(int index);
inline void set(int index, byte value);
// Treat contents as an int array.
inline int get_int(int index);
static int SizeFor(int length) {
return kHeaderSize + OBJECT_SIZE_ALIGN(length);
}
// We use byte arrays for free blocks in the heap. Given a desired size in
// bytes that is a multiple of the word size and big enough to hold a byte
// array, this function returns the number of elements a byte array should
// have.
static int LengthFor(int size_in_bytes) {
ASSERT(IsAligned(size_in_bytes, kPointerSize));
ASSERT(size_in_bytes >= kHeaderSize);
return size_in_bytes - kHeaderSize;
}
// Returns data start address.
inline Address GetDataStartAddress();
// Returns a pointer to the ByteArray object for a given data start address.
static inline ByteArray* FromDataStartAddress(Address address);
// Casting.
static inline ByteArray* cast(Object* obj);
// Dispatched behavior.
int ByteArraySize() { return SizeFor(length()); }
#ifdef DEBUG
void ByteArrayPrint();
void ByteArrayVerify();
#endif
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
};
// Code describes objects with on-the-fly generated machine code.
class Code: public HeapObject {
public:
// Opaque data type for encapsulating code flags like kind, inline
// cache state, and arguments count.
enum Flags { };
enum Kind {
FUNCTION,
STUB,
BUILTIN,
LOAD_IC,
KEYED_LOAD_IC,
CALL_IC,
STORE_IC,
KEYED_STORE_IC,
// Pseudo-kinds.
FIRST_IC_KIND = LOAD_IC,
LAST_IC_KIND = KEYED_STORE_IC
};
enum {
NUMBER_OF_KINDS = LAST_IC_KIND + 1
};
// A state indicates that inline cache in this Code object contains
// objects or relative instruction addresses.
enum ICTargetState {
IC_TARGET_IS_ADDRESS,
IC_TARGET_IS_OBJECT
};
#ifdef DEBUG
static const char* Kind2String(Kind kind);
#endif
// [instruction_size]: Size of the native instructions
inline int instruction_size();
inline void set_instruction_size(int value);
// [relocation_size]: Size of relocation information.
inline int relocation_size();
inline void set_relocation_size(int value);
// [sinfo_size]: Size of scope information.
inline int sinfo_size();
inline void set_sinfo_size(int value);
// [flags]: Various code flags.
inline Flags flags();
inline void set_flags(Flags flags);
// [flags]: Access to specific code flags.
inline Kind kind();
inline InlineCacheState state(); // only valid for IC stubs
inline PropertyType type(); // only valid for monomorphic IC stubs
inline int arguments_count(); // only valid for call IC stubs
inline CodeStub::Major major_key(); // only valid for kind STUB
// Testers for IC stub kinds.
inline bool is_inline_cache_stub();
inline bool is_load_stub() { return kind() == LOAD_IC; }
inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
inline bool is_store_stub() { return kind() == STORE_IC; }
inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
inline bool is_call_stub() { return kind() == CALL_IC; }
// [ic_flag]: State of inline cache targets. The flag is set to the
// object variant in ConvertICTargetsFromAddressToObject, and set to
// the address variant in ConvertICTargetsFromObjectToAddress.
inline ICTargetState ic_flag();
inline void set_ic_flag(ICTargetState value);
// Flags operations.
static inline Flags ComputeFlags(Kind kind,
InlineCacheState state = UNINITIALIZED,
PropertyType type = NORMAL,
int argc = -1);
static inline Flags ComputeMonomorphicFlags(Kind kind,
PropertyType type,
int argc = -1);
static inline Kind ExtractKindFromFlags(Flags flags);
static inline InlineCacheState ExtractStateFromFlags(Flags flags);
static inline PropertyType ExtractTypeFromFlags(Flags flags);
static inline int ExtractArgumentsCountFromFlags(Flags flags);
static inline Flags RemoveTypeFromFlags(Flags flags);
// Returns the address of the first instruction.
inline byte* instruction_start();
// Returns the size of the instructions, padding, and relocation information.
inline int body_size();
// Returns the address of the first relocation info (read backwards!).
inline byte* relocation_start();
// Code entry point.
inline byte* entry();
// Returns true if pc is inside this object's instructions.
inline bool contains(byte* pc);
// Returns the adddress of the scope information.
inline byte* sinfo_start();
// Convert inline cache target from address to code object before GC.
void ConvertICTargetsFromAddressToObject();
// Convert inline cache target from code object to address after GC
void ConvertICTargetsFromObjectToAddress();
// Relocate the code by delta bytes. Called to signal that this code
// object has been moved by delta bytes.
void Relocate(int delta);
// Migrate code described by desc.
void CopyFrom(const CodeDesc& desc);
// Returns the object size for a given body and sinfo size (Used for
// allocation).
static int SizeFor(int body_size, int sinfo_size) {
ASSERT_SIZE_TAG_ALIGNED(body_size);
ASSERT_SIZE_TAG_ALIGNED(sinfo_size);
return kHeaderSize + body_size + sinfo_size;
}
// Locating source position.
int SourcePosition(Address pc);
int SourceStatementPosition(Address pc);
// Casting.
static inline Code* cast(Object* obj);
// Dispatched behavior.
int CodeSize() { return SizeFor(body_size(), sinfo_size()); }
void CodeIterateBody(ObjectVisitor* v);
#ifdef DEBUG
void CodePrint();
void CodeVerify();
#endif
// Layout description.
static const int kInstructionSizeOffset = HeapObject::kSize;
static const int kRelocationSizeOffset = kInstructionSizeOffset + kIntSize;
static const int kSInfoSizeOffset = kRelocationSizeOffset + kIntSize;
static const int kFlagsOffset = kSInfoSizeOffset + kIntSize;
static const int kICFlagOffset = kFlagsOffset + kIntSize;
static const int kHeaderSize = kICFlagOffset + kIntSize;
// Flags layout.
static const int kFlagsStateShift = 0;
static const int kFlagsKindShift = 3;
static const int kFlagsTypeShift = 6;
static const int kFlagsArgumentsCountShift = 9;
static const int kFlagsStateMask = 0x00000007; // 000000111
static const int kFlagsKindMask = 0x00000038; // 000111000
static const int kFlagsTypeMask = 0x000001C0; // 111000000
static const int kFlagsArgumentsCountMask = 0xFFFFFE00;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
};
// All heap objects have a Map that describes their structure.
// A Map contains information about:
// - Size information about the object
// - How to iterate over an object (for garbage collection)
class Map: public HeapObject {
public:
// instance size.
inline int instance_size();
inline void set_instance_size(int value);
// instance type.
inline InstanceType instance_type();
inline void set_instance_type(InstanceType value);
// tells how many unused property fields are available in the instance.
// (only used for JSObject in fast mode).
inline int unused_property_fields();
inline void set_unused_property_fields(int value);
// bit field.
inline byte bit_field();
inline void set_bit_field(byte value);
// Tells whether this object has a special lookup behavior.
void set_special_lookup() {
set_bit_field(bit_field() | (1 << kHasSpecialLookup));
}
bool has_special_lookup() {
return ((1 << kHasSpecialLookup) & bit_field()) != 0;
}
// Tells whether the object in the prototype property will be used
// for instances created from this function. If the prototype
// property is set to a value that is not a JSObject, the prototype
// property will not be used to create instances of the function.
// See ECMA-262, 13.2.2.
inline void set_non_instance_prototype(bool value);
inline bool has_non_instance_prototype();
// Tells whether the instance with this map should be ignored by the
// __proto__ accessor.
inline void set_is_hidden_prototype() {
set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
}
inline bool is_hidden_prototype() {
return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
}
// Tells whether the instance has a named interceptor.
inline void set_has_named_interceptor() {
set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
}
inline bool has_named_interceptor() {
return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
}
// Tells whether the instance has a named interceptor.
inline void set_has_indexed_interceptor() {
set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
}
inline bool has_indexed_interceptor() {
return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
}
// Tells whether the instance is undetectable.
// An undetectable object is a special class of JSObject: 'typeof' operator
// returns undefined, ToBoolean returns false. Otherwise it behaves like
// a normal JS object. It is useful for implementing undetectable
// document.all in Firefox & Safari.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
inline void set_is_undetectable() {
set_bit_field(bit_field() | (1 << kIsUndetectable));
}
inline bool is_undetectable() {
return ((1 << kIsUndetectable) & bit_field()) != 0;
}
// Tells whether the instance has a call-as-function handler.
inline void set_has_instance_call_handler() {
set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
}
inline bool has_instance_call_handler() {
return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
}
// Tells whether the instance needs security checks when accessing its
// properties.
inline void set_needs_access_check() {
set_bit_field(bit_field() | (1 << kNeedsAccessCheck));
}
inline bool needs_access_check() {
return ((1 << kNeedsAccessCheck) & bit_field()) != 0;
}
// [prototype]: implicit prototype object.
DECL_ACCESSORS(prototype, Object)
// [constructor]: points back to the function responsible for this map.
DECL_ACCESSORS(constructor, Object)
// [instance descriptors]: describes the object.
DECL_ACCESSORS(instance_descriptors, DescriptorArray)
// [stub cache]: contains stubs compiled for this map.
DECL_ACCESSORS(code_cache, FixedArray)
// Returns a copy of the map.
Object* Copy();
// Returns the property index for name (only valid for FAST MODE).
int PropertyIndexFor(String* name);
// Returns the next free property index (only valid for FAST MODE).
int NextFreePropertyIndex();
// Returns the number of properties described in instance_descriptors.
int NumberOfDescribedProperties();
// Casting.
static inline Map* cast(Object* obj);
// Locate an accessor in the instance descriptor.
AccessorDescriptor* FindAccessor(String* name);
// Make sure the instance descriptor has no map transitions
Object* EnsureNoMapTransitions();
// Code cache operations.
// Clears the code cache.
inline void ClearCodeCache();
// Update code cache.
Object* UpdateCodeCache(String* name, Code* code);
// Returns the found code or undefined if absent.
Object* FindInCodeCache(String* name, Code::Flags flags);
// Tells whether code is in the code cache.
bool IncludedInCodeCache(Code* code);
// Dispatched behavior.
void MapIterateBody(ObjectVisitor* v);
#ifdef DEBUG
void MapPrint();
void MapVerify();
#endif
// Layout description.
static const int kInstanceAttributesOffset = HeapObject::kSize;
static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
static const int kInstanceDescriptorsOffset =
kConstructorOffset + kPointerSize;
static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
static const int kSize = kCodeCacheOffset + kIntSize;
// Byte offsets within kInstanceAttributesOffset attributes.
static const int kInstanceSizeOffset = kInstanceAttributesOffset + 0;
static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1;
static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 2;
static const int kBitFieldOffset = kInstanceAttributesOffset + 3;
// Bit positions for bit field.
static const int kHasSpecialLookup = 0;
static const int kHasNonInstancePrototype = 1;
static const int kIsHiddenPrototype = 2;
static const int kHasNamedInterceptor = 3;
static const int kHasIndexedInterceptor = 4;
static const int kIsUndetectable = 5;
static const int kHasInstanceCallHandler = 6;
static const int kNeedsAccessCheck = 7;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
};
// An abstract superclass, a marker class really, for simple structure classes.
// It doesn't carry much functionality but allows struct classes to me
// identified in the type system.
class Struct: public HeapObject {
public:
inline void InitializeBody(int object_size);
static inline Struct* cast(Object* that);
};
// Script types.
enum ScriptType {
SCRIPT_TYPE_NATIVE,
SCRIPT_TYPE_EXTENSION,
SCRIPT_TYPE_NORMAL
};
// Script describes a script which has beed added to the VM.
class Script: public Struct {
public:
// [source]: the script source.
DECL_ACCESSORS(source, Object)
// [name]: the script name.
DECL_ACCESSORS(name, Object)
// [line_offset]: script line offset in resource from where it was extracted.
DECL_ACCESSORS(line_offset, Smi)
// [column_offset]: script column offset in resource from where it was
// extracted.
DECL_ACCESSORS(column_offset, Smi)
// [wrapper]: the wrapper cache.
DECL_ACCESSORS(wrapper, Proxy)
// [type]: the script type.
DECL_ACCESSORS(type, Smi)
static inline Script* cast(Object* obj);
#ifdef DEBUG
void ScriptPrint();
void ScriptVerify();
#endif
static const int kSourceOffset = HeapObject::kSize;
static const int kNameOffset = kSourceOffset + kPointerSize;
static const int kLineOffsetOffset = kNameOffset + kPointerSize;
static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
static const int kWrapperOffset = kColumnOffsetOffset + kPointerSize;
static const int kTypeOffset = kWrapperOffset + kPointerSize;
static const int kSize = kTypeOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
};
// SharedFunctionInfo describes the JSFunction information that can be
// shared by multiple instances of the function.
class SharedFunctionInfo: public HeapObject {
public:
// [name]: Function name.
DECL_ACCESSORS(name, Object)
// [code]: Function code.
DECL_ACCESSORS(code, Code)
// Returns if this function has been compiled to native code yet.
inline bool is_compiled();
// [length]: The function length - usually the number of declared parameters.
// Use up to 2^30 parameters.
inline int length();
inline void set_length(int value);
// [formal parameter count]: The declared number of parameters.
inline int formal_parameter_count();
inline void set_formal_parameter_count(int value);
// [expected_nof_properties]: Expected number of properties for the function.
inline int expected_nof_properties();
inline void set_expected_nof_properties(int value);
// [instance class name]: class name for instances.
DECL_ACCESSORS(instance_class_name, Object)
// [function data]: This field has been added for make benefit the API.
// In the long run we don't want all functions to have this field but
// we can fix that when we have a better model for storing hidden data
// on objects.
DECL_ACCESSORS(function_data, Object)
// [lazy load data]: If the function has lazy loading, this field
// contains contexts and other data needed to load it.
DECL_ACCESSORS(lazy_load_data, Object)
// [script info]: Script from which the function originates.
DECL_ACCESSORS(script, Object)
// [start_position_and_type]: Field used to store both the source code
// position, whether or not the function is a function expression,
// and whether or not the function is a toplevel function. The two
// least significants bit indicates whether the function is an
// expression and the rest contains the source code position.
inline int start_position_and_type();
inline void set_start_position_and_type(int value);
// [debug info]: Debug information.
DECL_ACCESSORS(debug_info, Object)
// Position of the 'function' token in the script source.
inline int function_token_position();
inline void set_function_token_position(int function_token_position);
// Position of this function in the script source.
inline int start_position();
inline void set_start_position(int start_position);
// End position of this function in the script source.
inline int end_position();
inline void set_end_position(int end_position);
// Is this function a function expression in the source code.
inline bool is_expression();
inline void set_is_expression(bool value);
// Is this function a top-level function. Used for accessing the
// caller of functions. Top-level functions (scripts, evals) are
// returned as null; see JSFunction::GetCallerAccessor(...).
inline bool is_toplevel();
inline void set_is_toplevel(bool value);
// [source code]: Source code for the function.
bool HasSourceCode();
Object* GetSourceCode();
// Dispatched behavior.
void SharedFunctionInfoIterateBody(ObjectVisitor* v);
// Set max_length to -1 for unlimited length.
void SourceCodePrint(StringStream* accumulator, int max_length);
#ifdef DEBUG
void SharedFunctionInfoPrint();
void SharedFunctionInfoVerify();
#endif
// Casting.
static inline SharedFunctionInfo* cast(Object* obj);
// Layout description.
static const int kNameOffset = HeapObject::kSize;
static const int kCodeOffset = kNameOffset + kPointerSize;
static const int kLengthOffset = kCodeOffset + kPointerSize;
static const int kFormalParameterCountOffset = kLengthOffset + kIntSize;
static const int kExpectedNofPropertiesOffset =
kFormalParameterCountOffset + kIntSize;
static const int kInstanceClassNameOffset =
kExpectedNofPropertiesOffset + kIntSize;
static const int kExternalReferenceDataOffset =
kInstanceClassNameOffset + kPointerSize;
static const int kLazyLoadDataOffset =
kExternalReferenceDataOffset + kPointerSize;
static const int kScriptOffset = kLazyLoadDataOffset + kPointerSize;
static const int kStartPositionAndTypeOffset = kScriptOffset + kPointerSize;
static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
static const int kFunctionTokenPositionOffset = kEndPositionOffset + kIntSize;
static const int kDebugInfoOffset = kFunctionTokenPositionOffset + kIntSize;
static const int kAccessAttributesOffset = kDebugInfoOffset + kPointerSize;
static const int kSize = kAccessAttributesOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
// Bit positions in length_and_flg.
// The least significant bit is used as the flag.
static const int kFlagBit = 0;
static const int kLengthShift = 1;
static const int kLengthMask = ~((1 << kLengthShift) - 1);
// Bit positions in start_position_and_type.
// The source code start position is in the 30 most significant bits of
// the start_position_and_type field.
static const int kIsExpressionBit = 0;
static const int kIsTopLevelBit = 1;
static const int kStartPositionShift = 2;
static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
};
// JSFunction describes JavaScript functions.
class JSFunction: public JSObject {
public:
// [prototype_or_initial_map]:
DECL_ACCESSORS(prototype_or_initial_map, Object)
// [shared_function_info]: The information about the function that
// can be shared by instances.
DECL_ACCESSORS(shared, SharedFunctionInfo)
// [context]: The context for this function.
inline Context* context();
inline Object* unchecked_context();
inline void set_context(Object* context);
// [code]: The generated code object for this function. Executed
// when the function is invoked, e.g. foo() or new foo(). See
// [[Call]] and [[Construct]] description in ECMA-262, section
// 8.6.2, page 27.
inline Code* code();
inline void set_code(Code* value);
// Tells whether this function is a context-independent boilerplate
// function.
inline bool IsBoilerplate();
// Tells whether this function needs to be loaded.
inline bool IsLoaded();
// [literals]: Fixed array holding the materialized literals.
DECL_ACCESSORS(literals, FixedArray)
// The initial map for an object created by this constructor.
inline Map* initial_map();
inline void set_initial_map(Map* value);
inline bool has_initial_map();
// Get and set the prototype property on a JSFunction. If the
// function has an initial map the prototype is set on the initial
// map. Otherwise, the prototype is put in the initial map field
// until an initial map is needed.
inline bool has_prototype();
inline bool has_instance_prototype();
inline Object* prototype();
inline Object* instance_prototype();
Object* SetInstancePrototype(Object* value);
Object* SetPrototype(Object* value);
// Accessor for this function's initial map's [[class]]
// property. This is primarily used by ECMA native functions. This
// method sets the class_name field of this function's initial map
// to a given value. It creates an initial map if this function does
// not have one. Note that this method does not copy the initial map
// if it has one already, but simply replaces it with the new value.
// Instances created afterwards will have a map whose [[class]] is
// set to 'value', but there is no guarantees on instances created
// before.
Object* SetInstanceClassName(String* name);
// Returns if this function has been compiled to native code yet.
inline bool is_compiled();
// Casting.
static inline JSFunction* cast(Object* obj);
// Dispatched behavior.
#ifdef DEBUG
void JSFunctionPrint();
void JSFunctionVerify();
#endif
// Returns the number of allocated literals.
int NumberOfLiterals();
// Layout descriptors.
static const int kPrototypeOrInitialMapOffset = JSObject::kHeaderSize;
static const int kSharedFunctionInfoOffset =
kPrototypeOrInitialMapOffset + kPointerSize;
static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
static const int kLiteralsOffset = kContextOffset + kPointerSize;
static const int kSize = kLiteralsOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
};
// Forward declaration.
class JSBuiltinsObject;
// Common super class for JavaScript global objects and the special
// builtins global objects.
class GlobalObject: public JSObject {
public:
// [builtins]: the object holding the runtime routines written in JS.
DECL_ACCESSORS(builtins, JSBuiltinsObject)
// [global context]: the global context corresponding to this global objet.
DECL_ACCESSORS(global_context, Context)
// Layout description.
static const int kBuiltinsOffset = JSObject::kHeaderSize;
static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
static const int kHeaderSize = kGlobalContextOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
};
// JavaScript global object.
class JSGlobalObject: public GlobalObject {
public:
// [security token]: the object being used for security check when accessing
// global properties.
DECL_ACCESSORS(security_token, Object)
// Casting.
static inline JSGlobalObject* cast(Object* obj);
// Dispatched behavior.
#ifdef DEBUG
void JSGlobalObjectPrint();
void JSGlobalObjectVerify();
#endif
// Layout description.
static const int kSecurityTokenOffset = GlobalObject::kHeaderSize;
static const int kSize = kSecurityTokenOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
};
// Builtins global object which holds the runtime routines written in
// JavaScript.
class JSBuiltinsObject: public GlobalObject {
public:
// Accessors for the runtime routines written in JavaScript.
inline Object* javascript_builtin(Builtins::JavaScript id);
inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
// Casting.
static inline JSBuiltinsObject* cast(Object* obj);
// Dispatched behavior.
#ifdef DEBUG
void JSBuiltinsObjectPrint();
void JSBuiltinsObjectVerify();
#endif
// Layout description. The size of the builtins object includes
// room for one pointer per runtime routine written in javascript.
static const int kJSBuiltinsCount = Builtins::id_count;
static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
static const int kSize =
kJSBuiltinsOffset + (kJSBuiltinsCount * kPointerSize);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
};
// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
class JSValue: public JSObject {
public:
// [value]: the object being wrapped.
DECL_ACCESSORS(value, Object)
// Casting.
static inline JSValue* cast(Object* obj);
// Dispatched behavior.
#ifdef DEBUG
void JSValuePrint();
void JSValueVerify();
#endif
// Layout description.
static const int kValueOffset = JSObject::kHeaderSize;
static const int kSize = kValueOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
};
enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
// The String abstract class captures JavaScript string values:
//
// Ecma-262:
// 4.3.16 String Value
// A string value is a member of the type String and is a finite
// ordered sequence of zero or more 16-bit unsigned integer values.
//
// All string values have a length field.
class String: public HeapObject {
public:
// Get and set the length of the string.
inline int length();
inline void set_length(int value);
// Get and set the uninterpreted length field of the string. Notice
// that the length field is also used to cache the hash value of
// strings. In order to get or set the actual length of the string
// use the length() and set_length methods.
inline int length_field();
inline void set_length_field(int value);
// Get and set individual two byte chars in the string.
inline void Set(int index, uint16_t value);
// Get individual two byte char in the string. Repeated calls
// to this method are not efficient unless the string is flat.
inline uint16_t Get(int index);
// Flatten the top level ConsString that is hiding behind this
// string. This is a no-op unless the string is a ConsString or a
// SlicedString. Flatten mutates the ConsString and might return a
// failure.
Object* Flatten();
// Try to flatten the string. Do not allow handling of allocation
// failures. After calling TryFlatten, the string could still be a
// ConsString.
inline void TryFlatten();
// Is this string an ascii string.
inline bool IsAscii();
// Fast testing routines that assume the receiver is a string and
// just check whether it is a certain kind of string.
inline bool StringIsSlicedString();
inline bool StringIsConsString();
// Mark the string as an undetectable object. It only applies to
// ascii and two byte string types.
bool MarkAsUndetectable();
// Slice the string and return a substring.
Object* Slice(int from, int to);
// String equality operations.
inline bool Equals(String* other);
bool IsEqualTo(Vector<const char> str);
// Return a UTF8 representation of the string. The string is null
// terminated but may optionally contain nulls. Length is returned
// in length_output if length_output is not a null pointer The string
// should be nearly flat, otherwise the performance of this method may
// be very slow (quadratic in the length). Setting robustness_flag to
// ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
// handles unexpected data without causing assert failures and it does not
// do any heap allocations. This is useful when printing stack traces.
SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
RobustnessFlag robustness_flag,
int offset,
int length,
int* length_output = 0);
SmartPointer<char> ToCString(
AllowNullsFlag allow_nulls = DISALLOW_NULLS,
RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
int* length_output = 0);
// Return a 16 bit Unicode representation of the string.
// The string should be nearly flat, otherwise the performance of
// of this method may be very bad. Setting robustness_flag to
// ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
// handles unexpected data without causing assert failures and it does not
// do any heap allocations. This is useful when printing stack traces.
uc16* ToWideCString(RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
// Tells whether the hash code has been computed.
inline bool HasHashCode();
// Returns a hash value used for the property table
inline uint32_t Hash();
static uint32_t ComputeHashCode(unibrow::CharacterStream* buffer, int length);
static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
uint32_t* index,
int length);
// Conversion.
inline bool AsArrayIndex(uint32_t* index);
// Casting.
static inline String* cast(Object* obj);
void PrintOn(FILE* out);
// Get the size tag.
inline uint32_t size_tag();
static inline uint32_t map_size_tag(Map* map);
// True if the string is a symbol.
inline bool is_symbol();
static inline bool is_symbol_map(Map* map);
// True if the string is ASCII.
inline bool is_ascii();
static inline bool is_ascii_map(Map* map);
// Get the representation tag.
inline StringRepresentationTag representation_tag();
static inline StringRepresentationTag map_representation_tag(Map* map);
// For use during stack traces. Performs rudimentary sanity check.
bool LooksValid();
// Dispatched behavior.
void StringShortPrint(StringStream* accumulator);
#ifdef DEBUG
void StringPrint();
void StringVerify();
#endif
inline bool IsFlat();
// Layout description.
static const int kLengthOffset = HeapObject::kSize;
static const int kSize = kLengthOffset + kIntSize;
// Limits on sizes of different types of strings.
static const int kMaxShortStringSize = 255;
static const int kMaxMediumStringSize = 65535;
// Max ascii char code.
static const int kMaxAsciiCharCode = 127;
// Shift constants for retriving length from length/hash field.
static const int kShortLengthShift = 3 * kBitsPerByte;
static const int kMediumLengthShift = 2 * kBitsPerByte;
static const int kLongLengthShift = 2;
// Mask constant for checking if a string has a computed hash code
// and if it is an array index. The least significant bit indicates
// whether a hash code has been computed. If the hash code has been
// computed the 2nd bit tells whether the string can be used as an
// array index.
static const int kHashComputedMask = 1;
static const int kIsArrayIndexMask = 1 << 1;
// Support for regular expressions.
const uc16* GetTwoByteData();
const uc16* GetTwoByteData(unsigned start);
// Support for StringInputBuffer
static const unibrow::byte* ReadBlock(String* input,
unibrow::byte* util_buffer,
unsigned capacity,
unsigned* remaining,
unsigned* offset);
static const unibrow::byte* ReadBlock(String** input,
unibrow::byte* util_buffer,
unsigned capacity,
unsigned* remaining,
unsigned* offset);
// Helper function for flattening strings.
static void Flatten(String* source,
String* sink,
int from,
int to,
int sink_offset);
protected:
class ReadBlockBuffer {
public:
ReadBlockBuffer(unibrow::byte* util_buffer_,
unsigned cursor_,
unsigned capacity_,
unsigned remaining_) :
util_buffer(util_buffer_),
cursor(cursor_),
capacity(capacity_),
remaining(remaining_) {
}
unibrow::byte* util_buffer;
unsigned cursor;
unsigned capacity;
unsigned remaining;
};
// NOTE: If you call StringInputBuffer routines on strings that are
// too deeply nested trees of cons and slice strings, then this
// routine will overflow the stack. Strings that are merely deeply
// nested trees of cons strings do not have a problem apart from
// performance.
static inline const unibrow::byte* ReadBlock(String* input,
ReadBlockBuffer* buffer,
unsigned* offset,
unsigned max_chars);
static void ReadBlockIntoBuffer(String* input,
ReadBlockBuffer* buffer,
unsigned* offset_ptr,
unsigned max_chars);
private:
// Slow case of String::Equals. This implementation works on any strings
// but it is most efficient on strings that are almost flat.
bool SlowEquals(String* other);
// Slow case of AsArrayIndex.
bool SlowAsArrayIndex(uint32_t* index);
// Compute and set the hash code.
uint32_t ComputeAndSetHash();
DISALLOW_IMPLICIT_CONSTRUCTORS(String);
};
// The SeqString abstract class captures sequential string values.
class SeqString: public String {
public:
// Casting.
static inline SeqString* cast(Object* obj);
// Dispatched behaviour.
// For regexp code.
uint16_t* SeqStringGetTwoByteAddress();
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
};
// The AsciiString class captures sequential ascii string objects.
// Each character in the AsciiString is an ascii character.
class AsciiString: public SeqString {
public:
// Dispatched behavior.
inline uint16_t AsciiStringGet(int index);
inline void AsciiStringSet(int index, uint16_t value);
// Get the address of the characters in this string.
inline Address GetCharsAddress();
// Casting
static inline AsciiString* cast(Object* obj);
// Garbage collection support. This method is called by the
// garbage collector to compute the actual size of an AsciiString
// instance.
inline int AsciiStringSize(Map* map);
// Computes the size for an AsciiString instance of a given length.
static int SizeFor(int length) {
return kHeaderSize + OBJECT_SIZE_ALIGN(length * kCharSize);
}
// Layout description.
static const int kHeaderSize = String::kSize;
// Support for StringInputBuffer.
inline void AsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
unsigned* offset,
unsigned chars);
inline const unibrow::byte* AsciiStringReadBlock(unsigned* remaining,
unsigned* offset,
unsigned chars);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(AsciiString);
};
// The TwoByteString class captures sequential unicode string objects.
// Each character in the TwoByteString is a two-byte uint16_t.
class TwoByteString: public SeqString {
public:
// Dispatched behavior.
inline uint16_t TwoByteStringGet(int index);
inline void TwoByteStringSet(int index, uint16_t value);
// For regexp code.
const uint16_t* TwoByteStringGetData(unsigned start);
// Casting
static inline TwoByteString* cast(Object* obj);
// Garbage collection support. This method is called by the
// garbage collector to compute the actual size of a TwoByteString
// instance.
inline int TwoByteStringSize(Map* map);
// Computes the size for a TwoByteString instance of a given length.
static int SizeFor(int length) {
return kHeaderSize + OBJECT_SIZE_ALIGN(length * kShortSize);
}
// Layout description.
static const int kHeaderSize = String::kSize;
// Support for StringInputBuffer.
inline void TwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
unsigned* offset_ptr,
unsigned chars);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(TwoByteString);
};
// The ConsString class describes string values built by using the
// addition operator on strings. A ConsString is a pair where the
// first and second components are pointers to other string values.
// One or both components of a ConsString can be pointers to other
// ConsStrings, creating a binary tree of ConsStrings where the leaves
// are non-ConsString string values. The string value represented by
// a ConsString can be obtained by concatenating the leaf string
// values in a left-to-right depth-first traversal of the tree.
class ConsString: public String {
public:
// First object of the cons cell.
inline Object* first();
inline void set_first(Object* first);
// Second object of the cons cell.
inline Object* second();
inline void set_second(Object* second);
// Dispatched behavior.
uint16_t ConsStringGet(int index);
// Casting.
static inline ConsString* cast(Object* obj);
// Garbage collection support. This method is called during garbage
// collection to iterate through the heap pointers in the body of
// the ConsString.
void ConsStringIterateBody(ObjectVisitor* v);
// Layout description.
static const int kFirstOffset = String::kSize;
static const int kSecondOffset = kFirstOffset + kPointerSize;
static const int kSize = kSecondOffset + kPointerSize;
// Support for StringInputBuffer.
inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
unsigned* offset_ptr,
unsigned chars);
inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
unsigned* offset_ptr,
unsigned chars);
// Minimum lenth for a cons string.
static const int kMinLength = 13;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
};
// The SlicedString class describes string values that are slices of
// some other string. SlicedStrings consist of a reference to an
// underlying heap-allocated string value, a start index, and the
// length field common to all strings.
class SlicedString: public String {
public:
// The underlying string buffer.
inline Object* buffer();
inline void set_buffer(Object* buffer);
// The start index of the slice.
inline int start();
inline void set_start(int start);
// Dispatched behavior.
uint16_t SlicedStringGet(int index);
// Flatten any ConsString hiding behind this SlicedString.
Object* SlicedStringFlatten();
// Casting.
static inline SlicedString* cast(Object* obj);
// Garbage collection support.
void SlicedStringIterateBody(ObjectVisitor* v);
// Layout description
static const int kBufferOffset = String::kSize;
static const int kStartOffset = kBufferOffset + kPointerSize;
static const int kSize = kStartOffset + kIntSize;
// Support for StringInputBuffer.
inline const unibrow::byte* SlicedStringReadBlock(ReadBlockBuffer* buffer,
unsigned* offset_ptr,
unsigned chars);
inline void SlicedStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
unsigned* offset_ptr,
unsigned chars);
// Minimum lenth for a sliced string.
static const int kMinLength = 13;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
};
// The ExternalString class describes string values that are backed by
// a string resource that lies outside the V8 heap. ExternalStrings
// consist of the length field common to all strings, a pointer to the
// external resource. It is important to ensure (externally) that the
// resource is not deallocated while the ExternalString is live in the
// V8 heap.
//
// The API expects that all ExternalStrings are created through the
// API. Therefore, ExternalStrings should not be used internally.
class ExternalString: public String {
public:
// Casting
static inline ExternalString* cast(Object* obj);
// Layout description.
static const int kResourceOffset = String::kSize;
static const int kSize = kResourceOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
};
// The ExternalAsciiString class is an external string backed by an
// ASCII string.
class ExternalAsciiString: public ExternalString {
public:
typedef v8::String::ExternalAsciiStringResource Resource;
// The underlying resource.
inline Resource* resource();
inline void set_resource(Resource* buffer);
// Dispatched behavior.
uint16_t ExternalAsciiStringGet(int index);
// Casting.
static inline ExternalAsciiString* cast(Object* obj);
// Support for StringInputBuffer.
const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
unsigned* offset,
unsigned chars);
inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
unsigned* offset,
unsigned chars);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
};
// The ExternalTwoByteString class is an external string backed by a UTF-16
// encoded string.
class ExternalTwoByteString: public ExternalString {
public:
typedef v8::String::ExternalStringResource Resource;
// The underlying string resource.
inline Resource* resource();
inline void set_resource(Resource* buffer);
// Dispatched behavior.
uint16_t ExternalTwoByteStringGet(int index);
// For regexp code.
const uint16_t* ExternalTwoByteStringGetData(unsigned start);
// Casting.
static inline ExternalTwoByteString* cast(Object* obj);
// Support for StringInputBuffer.
void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
unsigned* offset_ptr,
unsigned chars);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
};
// Note that StringInputBuffers are not valid across a GC! To fix this
// it would have to store a String Handle instead of a String* and
// AsciiStringReadBlock would have to be modified to use memcpy.
//
// StringInputBuffer is able to traverse any string regardless of how
// deeply nested a sequence of ConsStrings it is made of. However,
// performance will be better if deep strings are flattened before they
// are traversed. Since flattening requires memory allocation this is
// not always desirable, however (esp. in debugging situations).
class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
public:
virtual void Seek(unsigned pos);
inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
inline StringInputBuffer(String* backing):
unibrow::InputBuffer<String, String*, 1024>(backing) {}
};
class SafeStringInputBuffer
: public unibrow::InputBuffer<String, String**, 256> {
public:
virtual void Seek(unsigned pos);
inline SafeStringInputBuffer()
: unibrow::InputBuffer<String, String**, 256>() {}
inline SafeStringInputBuffer(String** backing)
: unibrow::InputBuffer<String, String**, 256>(backing) {}
};
// The Oddball describes objects null, undefined, true, and false.
class Oddball: public HeapObject {
public:
// [to_string]: Cached to_string computed at startup.
DECL_ACCESSORS(to_string, String)
// [to_number]: Cached to_number computed at startup.
DECL_ACCESSORS(to_number, Object)
// Casting.
static inline Oddball* cast(Object* obj);
// Dispatched behavior.
void OddballIterateBody(ObjectVisitor* v);
#ifdef DEBUG
void OddballVerify();
#endif
// Initialize the fields.
Object* Initialize(const char* to_string, Object* to_number);
// Layout description.
static const int kToStringOffset = HeapObject::kSize;
static const int kToNumberOffset = kToStringOffset + kPointerSize;
static const int kSize = kToNumberOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
};
// Proxy describes objects pointing from JavaScript to C structures.
class Proxy: public HeapObject {
public:
// [proxy]: field containing the address.
inline Address proxy();
inline void set_proxy(Address value);
// Casting.
static inline Proxy* cast(Object* obj);
// Dispatched behavior.
inline void ProxyIterateBody(ObjectVisitor* v);
#ifdef DEBUG
void ProxyPrint();
void ProxyVerify();
#endif
// Layout description.
static const int kProxyOffset = HeapObject::kSize;
static const int kSize = kProxyOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
};
// The JSArray describes JavaScript Arrays
// Such an array can be in one of two modes:
// - fast, backing storage is a FixedArray and length <= elements.length();
// Please note: push and pop can be used to grow and shrink the array.
// - slow, backing storage is a HashTable with numbers as keys.
class JSArray: public JSObject {
public:
// [length]: The length property.
DECL_ACCESSORS(length, Object)
Object* JSArrayUpdateLengthFromIndex(uint32_t index, Object* value);
// Initialize the array with the given capacity. The function may
// fail due to out-of-memory situations, but only if the requested
// capacity is non-zero.
Object* Initialize(int capacity);
// Set the content of the array to the content of storage.
void SetContent(FixedArray* storage);
// Support for sorting
Object* RemoveHoles();
// Casting.
static inline JSArray* cast(Object* obj);
// Dispatched behavior.
#ifdef DEBUG
void JSArrayPrint();
void JSArrayVerify();
#endif
// Layout description.
static const int kLengthOffset = JSObject::kHeaderSize;
static const int kSize = kLengthOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
};
// An accesor must have a getter, but can have no setter.
//
// When setting a property, V8 searches accessors in prototypes.
// If an accessor was found and it does not have a setter,
// the request is ignored.
//
// To allow shadow an accessor property, the accessor can
// have READ_ONLY property attribute so that a new value
// is added to the local object to shadow the accessor
// in prototypes.
class AccessorInfo: public Struct {
public:
DECL_ACCESSORS(getter, Object)
DECL_ACCESSORS(setter, Object)
DECL_ACCESSORS(data, Object)
DECL_ACCESSORS(name, Object)
DECL_ACCESSORS(flag, Smi)
inline bool all_can_read();
inline void set_all_can_read(bool value);
inline bool all_can_write();
inline void set_all_can_write(bool value);
inline PropertyAttributes property_attributes();
inline void set_property_attributes(PropertyAttributes attributes);
static inline AccessorInfo* cast(Object* obj);
#ifdef DEBUG
void AccessorInfoPrint();
void AccessorInfoVerify();
#endif
static const int kGetterOffset = HeapObject::kSize;
static const int kSetterOffset = kGetterOffset + kPointerSize;
static const int kDataOffset = kSetterOffset + kPointerSize;
static const int kNameOffset = kDataOffset + kPointerSize;
static const int kFlagOffset = kNameOffset + kPointerSize;
static const int kSize = kFlagOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
// Bit positions in flag.
static const int kAllCanReadBit = 0;
static const int kAllCanWriteBit = 1;
class AttributesField: public BitField<PropertyAttributes, 2, 3> {};
};
class AccessCheckInfo: public Struct {
public:
DECL_ACCESSORS(named_callback, Object)
DECL_ACCESSORS(indexed_callback, Object)
DECL_ACCESSORS(data, Object)
static inline AccessCheckInfo* cast(Object* obj);
#ifdef DEBUG
void AccessCheckInfoPrint();
void AccessCheckInfoVerify();
#endif
static const int kNamedCallbackOffset = HeapObject::kSize;
static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
static const int kSize = kDataOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
};
class InterceptorInfo: public Struct {
public:
DECL_ACCESSORS(getter, Object)
DECL_ACCESSORS(setter, Object)
DECL_ACCESSORS(query, Object)
DECL_ACCESSORS(deleter, Object)
DECL_ACCESSORS(enumerator, Object)
DECL_ACCESSORS(data, Object)
static inline InterceptorInfo* cast(Object* obj);
#ifdef DEBUG
void InterceptorInfoPrint();
void InterceptorInfoVerify();
#endif
static const int kGetterOffset = HeapObject::kSize;
static const int kSetterOffset = kGetterOffset + kPointerSize;
static const int kQueryOffset = kSetterOffset + kPointerSize;
static const int kDeleterOffset = kQueryOffset + kPointerSize;
static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
static const int kDataOffset = kEnumeratorOffset + kPointerSize;
static const int kSize = kDataOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
};
class CallHandlerInfo: public Struct {
public:
DECL_ACCESSORS(callback, Object)
DECL_ACCESSORS(data, Object)
static inline CallHandlerInfo* cast(Object* obj);
#ifdef DEBUG
void CallHandlerInfoPrint();
void CallHandlerInfoVerify();
#endif
static const int kCallbackOffset = HeapObject::kSize;
static const int kDataOffset = kCallbackOffset + kPointerSize;
static const int kSize = kDataOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
};
class TemplateInfo: public Struct {
public:
DECL_ACCESSORS(tag, Object)
DECL_ACCESSORS(property_list, Object)
#ifdef DEBUG
void TemplateInfoVerify();
#endif
static const int kTagOffset = HeapObject::kSize;
static const int kPropertyListOffset = kTagOffset + kPointerSize;
static const int kHeaderSize = kPropertyListOffset + kPointerSize;
protected:
friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
};
class FunctionTemplateInfo: public TemplateInfo {
public:
DECL_ACCESSORS(serial_number, Object)
DECL_ACCESSORS(call_code, Object)
DECL_ACCESSORS(internal_field_count, Object)
DECL_ACCESSORS(property_accessors, Object)
DECL_ACCESSORS(prototype_template, Object)
DECL_ACCESSORS(parent_template, Object)
DECL_ACCESSORS(named_property_handler, Object)
DECL_ACCESSORS(indexed_property_handler, Object)
DECL_ACCESSORS(instance_template, Object)
DECL_ACCESSORS(class_name, Object)
DECL_ACCESSORS(signature, Object)
DECL_ACCESSORS(lookup_callback, Object)
DECL_ACCESSORS(instance_call_handler, Object)
DECL_ACCESSORS(access_check_info, Object)
DECL_ACCESSORS(flag, Smi)
// Following properties use flag bits.
DECL_BOOLEAN_ACCESSORS(hidden_prototype)
DECL_BOOLEAN_ACCESSORS(undetectable)
// If the bit is set, object instances created by this function
// requires access check.
DECL_BOOLEAN_ACCESSORS(needs_access_check)
static inline FunctionTemplateInfo* cast(Object* obj);
#ifdef DEBUG
void FunctionTemplateInfoPrint();
void FunctionTemplateInfoVerify();
#endif
static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
static const int kInternalFieldCountOffset = kCallCodeOffset + kPointerSize;
static const int kPropertyAccessorsOffset =
kInternalFieldCountOffset + kPointerSize;
static const int kPrototypeTemplateOffset =
kPropertyAccessorsOffset + kPointerSize;
static const int kParentTemplateOffset =
kPrototypeTemplateOffset + kPointerSize;
static const int kNamedPropertyHandlerOffset =
kParentTemplateOffset + kPointerSize;
static const int kIndexedPropertyHandlerOffset =
kNamedPropertyHandlerOffset + kPointerSize;
static const int kInstanceTemplateOffset =
kIndexedPropertyHandlerOffset + kPointerSize;
static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
static const int kSignatureOffset = kClassNameOffset + kPointerSize;
static const int kLookupCallbackOffset = kSignatureOffset + kPointerSize;
static const int kInstanceCallHandlerOffset =
kLookupCallbackOffset + kPointerSize;
static const int kAccessCheckInfoOffset =
kInstanceCallHandlerOffset + kPointerSize;
static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
static const int kSize = kFlagOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
// Bit position in the flag, from least significant bit position.
static const int kHiddenPrototypeBit = 0;
static const int kUndetectableBit = 1;
static const int kNeedsAccessCheckBit = 2;
};
class ObjectTemplateInfo: public TemplateInfo {
public:
DECL_ACCESSORS(constructor, Object)
static inline ObjectTemplateInfo* cast(Object* obj);
#ifdef DEBUG
void ObjectTemplateInfoPrint();
void ObjectTemplateInfoVerify();
#endif
static const int kConstructorOffset = TemplateInfo::kHeaderSize;
static const int kSize = kConstructorOffset + kHeaderSize;
};
class SignatureInfo: public Struct {
public:
DECL_ACCESSORS(receiver, Object)
DECL_ACCESSORS(args, Object)
static inline SignatureInfo* cast(Object* obj);
#ifdef DEBUG
void SignatureInfoPrint();
void SignatureInfoVerify();
#endif
static const int kReceiverOffset = Struct::kSize;
static const int kArgsOffset = kReceiverOffset + kPointerSize;
static const int kSize = kArgsOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
};
class TypeSwitchInfo: public Struct {
public:
DECL_ACCESSORS(types, Object)
static inline TypeSwitchInfo* cast(Object* obj);
#ifdef DEBUG
void TypeSwitchInfoPrint();
void TypeSwitchInfoVerify();
#endif
static const int kTypesOffset = Struct::kSize;
static const int kSize = kTypesOffset + kPointerSize;
};
// The DebugInfo class holds additional information for a function beeing
// debugged.
class DebugInfo: public Struct {
public:
// The shared function info for the source beeing debugged.
DECL_ACCESSORS(shared, SharedFunctionInfo)
// Code object for the original code.
DECL_ACCESSORS(original_code, Code)
// Code object for the patched code. This code object is the code object
// currently active for the function.
DECL_ACCESSORS(code, Code)
// Fixed array holding status information for each active break point.
DECL_ACCESSORS(break_points, FixedArray)
// Check if there is a break point at a code position.
bool HasBreakPoint(int code_position);
// Get the break point info object for a code position.
Object* GetBreakPointInfo(int code_position);
// Clear a break point.
static void ClearBreakPoint(Handle<DebugInfo> debug_info,
int code_position,
Handle<Object> break_point_object);
// Set a break point.
static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
int source_position, int statement_position,
Handle<Object> break_point_object);
// Get the break point objects for a code position.
Object* GetBreakPointObjects(int code_position);
// Find the break point info holding this break point object.
static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
Handle<Object> break_point_object);
// Get the number of break points for this function.
int GetBreakPointCount();
static inline DebugInfo* cast(Object* obj);
#ifdef DEBUG
void DebugInfoPrint();
void DebugInfoVerify();
#endif
static const int kSharedFunctionInfoIndex = Struct::kSize;
static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
static const int kActiveBreakPointsCountIndex =
kPatchedCodeIndex + kPointerSize;
static const int kBreakPointsStateIndex =
kActiveBreakPointsCountIndex + kPointerSize;
static const int kSize = kBreakPointsStateIndex + kPointerSize;
private:
static const int kNoBreakPointInfo = -1;
// Lookup the index in the break_points array for a code position.
int GetBreakPointInfoIndex(int code_position);
DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
};
// The BreakPointInfo class holds information for break points set in a
// function. The DebugInfo object holds a BreakPointInfo object for each code
// position with one or more break points.
class BreakPointInfo: public Struct {
public:
// The position in the code for the break point.
DECL_ACCESSORS(code_position, Smi)
// The position in the source for the break position.
DECL_ACCESSORS(source_position, Smi)
// The position in the source for the last statement before this break
// position.
DECL_ACCESSORS(statement_position, Smi)
// List of related JavaScript break points.
DECL_ACCESSORS(break_point_objects, Object)
// Removes a break point.
static void ClearBreakPoint(Handle<BreakPointInfo> info,
Handle<Object> break_point_object);
// Set a break point.
static void SetBreakPoint(Handle<BreakPointInfo> info,
Handle<Object> break_point_object);
// Check if break point info has this break point object.
static bool HasBreakPointObject(Handle<BreakPointInfo> info,
Handle<Object> break_point_object);
// Get the number of break points for this code position.
int GetBreakPointCount();
static inline BreakPointInfo* cast(Object* obj);
#ifdef DEBUG
void BreakPointInfoPrint();
void BreakPointInfoVerify();
#endif
static const int kCodePositionIndex = Struct::kSize;
static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
static const int kStatementPositionIndex =
kSourcePositionIndex + kPointerSize;
static const int kBreakPointObjectsIndex =
kStatementPositionIndex + kPointerSize;
static const int kSize = kBreakPointObjectsIndex + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
};
#undef DECL_BOOLEAN_ACCESSORS
#undef DECL_ACCESSORS
// Abstract base class for visiting, and optionally modifying, the
// pointers contained in Objects. Used in GC and serialization/deserialization.
class ObjectVisitor BASE_EMBEDDED {
public:
virtual ~ObjectVisitor() {}
// Visits a contiguous arrays of pointers in the half-open range
// [start, end). Any or all of the values may be modified on return.
virtual void VisitPointers(Object** start, Object** end) = 0;
// To allow lazy clearing of inline caches the visitor has
// a rich interface for iterating over Code objects..
// Called prior to visiting the body of a Code object.
virtual void BeginCodeIteration(Code* code);
// Visits a code target in the instruction stream.
virtual void VisitCodeTarget(RelocInfo* rinfo);
// Visits a runtime entry in the instruction stream.
virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
// Visits a debug call target in the instruction stream.
virtual void VisitDebugTarget(RelocInfo* rinfo);
// Called after completing visiting the body of a Code object.
virtual void EndCodeIteration(Code* code) {}
// Handy shorthand for visiting a single pointer.
virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
// Visits a contiguous arrays of external references (references to the C++
// heap) in the half-open range [start, end). Any or all of the values
// may be modified on return.
virtual void VisitExternalReferences(Address* start, Address* end) {}
inline void VisitExternalReference(Address* p) {
VisitExternalReferences(p, p + 1);
}
#ifdef DEBUG
// Intended for serialization/deserialization checking: insert, or
// check for the presence of, a tag at this position in the stream.
virtual void Synchronize(const char* tag) {}
#endif
};
// BooleanBit is a helper class for setting and getting a bit in an
// integer or Smi.
class BooleanBit : public AllStatic {
public:
static inline bool get(Smi* smi, int bit_position) {
return get(smi->value(), bit_position);
}
static inline bool get(int value, int bit_position) {
return (value & (1 << bit_position)) != 0;
}
static inline Smi* set(Smi* smi, int bit_position, bool v) {
return Smi::FromInt(set(smi->value(), bit_position, v));
}
static inline int set(int value, int bit_position, bool v) {
if (v) {
value |= (1 << bit_position);
} else {
value &= ~(1 << bit_position);
}
return value;
}
};
} } // namespace v8::internal
#endif // V8_OBJECTS_H_