blob: 3087a3e9306cafc6796008d8ff6bc54a11d91e6f [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "a64/lithium-gap-resolver-a64.h"
#include "a64/lithium-codegen-a64.h"
namespace v8 {
namespace internal {
// We use the root register to spill a value while breaking a cycle in parallel
// moves. We don't need access to roots while resolving the move list and using
// the root register has two advantages:
// - It is not in crankshaft allocatable registers list, so it can't interfere
// with any of the moves we are resolving.
// - We don't need to push it on the stack, as we can reload it with its value
// once we have resolved a cycle.
#define kSavedValue root
LGapResolver::LGapResolver(LCodeGen* owner)
: cgen_(owner), moves_(32, owner->zone()), root_index_(0), in_cycle_(false),
saved_destination_(NULL), need_to_restore_root_(false) { }
#define __ ACCESS_MASM(cgen_->masm())
void LGapResolver::Resolve(LParallelMove* parallel_move) {
ASSERT(moves_.is_empty());
// Build up a worklist of moves.
BuildInitialMoveList(parallel_move);
for (int i = 0; i < moves_.length(); ++i) {
LMoveOperands move = moves_[i];
// Skip constants to perform them last. They don't block other moves
// and skipping such moves with register destinations keeps those
// registers free for the whole algorithm.
if (!move.IsEliminated() && !move.source()->IsConstantOperand()) {
root_index_ = i; // Any cycle is found when we reach this move again.
PerformMove(i);
if (in_cycle_) RestoreValue();
}
}
// Perform the moves with constant sources.
for (int i = 0; i < moves_.length(); ++i) {
LMoveOperands move = moves_[i];
if (!move.IsEliminated()) {
ASSERT(move.source()->IsConstantOperand());
EmitMove(i);
}
}
if (need_to_restore_root_) {
ASSERT(kSavedValue.Is(root));
__ InitializeRootRegister();
need_to_restore_root_ = false;
}
moves_.Rewind(0);
}
void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) {
// Perform a linear sweep of the moves to add them to the initial list of
// moves to perform, ignoring any move that is redundant (the source is
// the same as the destination, the destination is ignored and
// unallocated, or the move was already eliminated).
const ZoneList<LMoveOperands>* moves = parallel_move->move_operands();
for (int i = 0; i < moves->length(); ++i) {
LMoveOperands move = moves->at(i);
if (!move.IsRedundant()) moves_.Add(move, cgen_->zone());
}
Verify();
}
void LGapResolver::PerformMove(int index) {
// Each call to this function performs a move and deletes it from the move
// graph. We first recursively perform any move blocking this one. We
// mark a move as "pending" on entry to PerformMove in order to detect
// cycles in the move graph.
LMoveOperands& current_move = moves_[index];
ASSERT(!current_move.IsPending());
ASSERT(!current_move.IsRedundant());
// Clear this move's destination to indicate a pending move. The actual
// destination is saved in a stack allocated local. Multiple moves can
// be pending because this function is recursive.
ASSERT(current_move.source() != NULL); // Otherwise it will look eliminated.
LOperand* destination = current_move.destination();
current_move.set_destination(NULL);
// Perform a depth-first traversal of the move graph to resolve
// dependencies. Any unperformed, unpending move with a source the same
// as this one's destination blocks this one so recursively perform all
// such moves.
for (int i = 0; i < moves_.length(); ++i) {
LMoveOperands other_move = moves_[i];
if (other_move.Blocks(destination) && !other_move.IsPending()) {
PerformMove(i);
// If there is a blocking, pending move it must be moves_[root_index_]
// and all other moves with the same source as moves_[root_index_] are
// sucessfully executed (because they are cycle-free) by this loop.
}
}
// We are about to resolve this move and don't need it marked as
// pending, so restore its destination.
current_move.set_destination(destination);
// The move may be blocked on a pending move, which must be the starting move.
// In this case, we have a cycle, and we save the source of this move to
// a scratch register to break it.
LMoveOperands other_move = moves_[root_index_];
if (other_move.Blocks(destination)) {
ASSERT(other_move.IsPending());
BreakCycle(index);
return;
}
// This move is no longer blocked.
EmitMove(index);
}
void LGapResolver::Verify() {
#ifdef ENABLE_SLOW_ASSERTS
// No operand should be the destination for more than one move.
for (int i = 0; i < moves_.length(); ++i) {
LOperand* destination = moves_[i].destination();
for (int j = i + 1; j < moves_.length(); ++j) {
SLOW_ASSERT(!destination->Equals(moves_[j].destination()));
}
}
#endif
}
void LGapResolver::BreakCycle(int index) {
ASSERT(moves_[index].destination()->Equals(moves_[root_index_].source()));
ASSERT(!in_cycle_);
// We use a register which is not allocatable by crankshaft to break the cycle
// to be sure it doesn't interfere with the moves we are resolving.
ASSERT(!kSavedValue.IsAllocatable());
need_to_restore_root_ = true;
// We save in a register the source of that move and we remember its
// destination. Then we mark this move as resolved so the cycle is
// broken and we can perform the other moves.
in_cycle_ = true;
LOperand* source = moves_[index].source();
saved_destination_ = moves_[index].destination();
if (source->IsRegister()) {
__ Mov(kSavedValue, cgen_->ToRegister(source));
} else if (source->IsStackSlot()) {
__ Ldr(kSavedValue, cgen_->ToMemOperand(source));
} else if (source->IsDoubleRegister()) {
// TODO(all): We should use a double register to store the value to avoid
// the penalty of the mov across register banks. We are going to reserve
// d31 to hold 0.0 value. We could clobber this register while breaking the
// cycle and restore it after like we do with the root register.
// LGapResolver::RestoreValue() will need to be updated as well when we'll
// do that.
__ Fmov(kSavedValue, cgen_->ToDoubleRegister(source));
} else if (source->IsDoubleStackSlot()) {
__ Ldr(kSavedValue, cgen_->ToMemOperand(source));
} else {
UNREACHABLE();
}
// Mark this move as resolved.
// This move will be actually performed by moving the saved value to this
// move's destination in LGapResolver::RestoreValue().
moves_[index].Eliminate();
}
void LGapResolver::RestoreValue() {
ASSERT(in_cycle_);
ASSERT(saved_destination_ != NULL);
if (saved_destination_->IsRegister()) {
__ Mov(cgen_->ToRegister(saved_destination_), kSavedValue);
} else if (saved_destination_->IsStackSlot()) {
__ Str(kSavedValue, cgen_->ToMemOperand(saved_destination_));
} else if (saved_destination_->IsDoubleRegister()) {
__ Fmov(cgen_->ToDoubleRegister(saved_destination_), kSavedValue);
} else if (saved_destination_->IsDoubleStackSlot()) {
__ Str(kSavedValue, cgen_->ToMemOperand(saved_destination_));
} else {
UNREACHABLE();
}
in_cycle_ = false;
saved_destination_ = NULL;
}
void LGapResolver::EmitMove(int index) {
LOperand* source = moves_[index].source();
LOperand* destination = moves_[index].destination();
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister()) {
Register source_register = cgen_->ToRegister(source);
if (destination->IsRegister()) {
__ Mov(cgen_->ToRegister(destination), source_register);
} else {
ASSERT(destination->IsStackSlot());
__ Str(source_register, cgen_->ToMemOperand(destination));
}
} else if (source->IsStackSlot()) {
MemOperand source_operand = cgen_->ToMemOperand(source);
if (destination->IsRegister()) {
__ Ldr(cgen_->ToRegister(destination), source_operand);
} else {
ASSERT(destination->IsStackSlot());
EmitStackSlotMove(index);
}
} else if (source->IsConstantOperand()) {
LConstantOperand* constant_source = LConstantOperand::cast(source);
if (destination->IsRegister()) {
Register dst = cgen_->ToRegister(destination);
if (cgen_->IsSmi(constant_source)) {
__ Mov(dst, Operand(cgen_->ToSmi(constant_source)));
} else if (cgen_->IsInteger32Constant(constant_source)) {
__ Mov(dst, cgen_->ToInteger32(constant_source));
} else {
__ LoadObject(dst, cgen_->ToHandle(constant_source));
}
} else if (destination->IsDoubleRegister()) {
DoubleRegister result = cgen_->ToDoubleRegister(destination);
__ Fmov(result, cgen_->ToDouble(constant_source));
} else {
ASSERT(destination->IsStackSlot());
ASSERT(!in_cycle_); // Constant moves happen after all cycles are gone.
need_to_restore_root_ = true;
if (cgen_->IsSmi(constant_source)) {
__ Mov(kSavedValue, Operand(cgen_->ToSmi(constant_source)));
} else if (cgen_->IsInteger32Constant(constant_source)) {
__ Mov(kSavedValue, cgen_->ToInteger32(constant_source));
} else {
__ LoadObject(kSavedValue, cgen_->ToHandle(constant_source));
}
__ Str(kSavedValue, cgen_->ToMemOperand(destination));
}
} else if (source->IsDoubleRegister()) {
DoubleRegister src = cgen_->ToDoubleRegister(source);
if (destination->IsDoubleRegister()) {
__ Fmov(cgen_->ToDoubleRegister(destination), src);
} else {
ASSERT(destination->IsDoubleStackSlot());
__ Str(src, cgen_->ToMemOperand(destination));
}
} else if (source->IsDoubleStackSlot()) {
MemOperand src = cgen_->ToMemOperand(source);
if (destination->IsDoubleRegister()) {
__ Ldr(cgen_->ToDoubleRegister(destination), src);
} else {
ASSERT(destination->IsDoubleStackSlot());
EmitStackSlotMove(index);
}
} else {
UNREACHABLE();
}
// The move has been emitted, we can eliminate it.
moves_[index].Eliminate();
}
void LGapResolver::EmitStackSlotMove(int index) {
// We need a temp register to perform a stack slot to stack slot move, and
// the register must not be involved in breaking cycles.
// Use the Crankshaft double scratch register as the temporary.
DoubleRegister temp = crankshaft_fp_scratch;
LOperand* src = moves_[index].source();
LOperand* dst = moves_[index].destination();
ASSERT(src->IsStackSlot());
ASSERT(dst->IsStackSlot());
__ Ldr(temp, cgen_->ToMemOperand(src));
__ Str(temp, cgen_->ToMemOperand(dst));
}
} } // namespace v8::internal