blob: 6b45da02b93040d7e64d616f86f285be7b8c7d00 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "data-flow.h"
namespace v8 {
namespace internal {
void FlowGraph::AppendInstruction(AstNode* instruction) {
ASSERT(instruction != NULL);
if (is_empty() || !exit()->IsBlockNode()) {
AppendNode(new BlockNode());
}
BlockNode::cast(exit())->AddInstruction(instruction);
}
void FlowGraph::AppendNode(Node* node) {
ASSERT(node != NULL);
if (is_empty()) {
entry_ = exit_ = node;
} else {
exit()->AddSuccessor(node);
node->AddPredecessor(exit());
exit_ = node;
}
}
void FlowGraph::AppendGraph(FlowGraph* graph) {
ASSERT(!graph->is_empty());
if (is_empty()) {
entry_ = graph->entry();
exit_ = graph->exit();
} else {
exit()->AddSuccessor(graph->entry());
graph->entry()->AddPredecessor(exit());
exit_ = graph->exit();
}
}
void FlowGraph::Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* merge) {
// Graphs are in edge split form. Add empty blocks if necessary.
if (left->is_empty()) left->AppendNode(new BlockNode());
if (right->is_empty()) right->AppendNode(new BlockNode());
// Add the branch, left flowgraph and merge.
AppendNode(branch);
AppendGraph(left);
AppendNode(merge);
// Splice in the right flowgraph.
right->AppendNode(merge);
branch->AddSuccessor(right->entry());
right->entry()->AddPredecessor(branch);
}
void FlowGraph::Loop(JoinNode* merge,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body) {
// Add the merge, condition and branch. Add merge's predecessors in
// left-to-right order.
AppendNode(merge);
body->AppendNode(merge);
AppendGraph(condition);
AppendNode(branch);
// Splice in the body flowgraph.
branch->AddSuccessor(body->entry());
body->entry()->AddPredecessor(branch);
}
void EntryNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void ExitNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
preorder->Add(this);
postorder->Add(this);
}
void BlockNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void BranchNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor0_ != NULL && successor1_ != NULL);
preorder->Add(this);
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
successor0_->Traverse(mark, preorder, postorder);
}
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
successor1_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void JoinNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void FlowGraphBuilder::Build(FunctionLiteral* lit) {
graph_ = FlowGraph::Empty();
graph_.AppendNode(new EntryNode());
global_exit_ = new ExitNode();
VisitStatements(lit->body());
if (HasStackOverflow()) {
graph_ = FlowGraph::Empty();
return;
}
graph_.AppendNode(global_exit_);
// Build preorder and postorder traversal orders. All the nodes in
// the graph have the same mark flag. For the traversal, use that
// flag's negation. Traversal will flip all the flags.
bool mark = graph_.entry()->IsMarkedWith(false);
graph_.entry()->MarkWith(mark);
graph_.entry()->Traverse(mark, &preorder_, &postorder_);
}
void FlowGraphBuilder::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
// Nothing to do.
}
void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) {
Visit(stmt->condition());
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->then_statement());
FlowGraph left = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->else_statement());
JoinNode* join = new JoinNode();
original.Split(branch, &left, &graph_, join);
graph_ = original;
}
void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
Visit(stmt->expression());
graph_.AppendInstruction(stmt);
graph_.AppendNode(global_exit());
}
void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
Visit(stmt->expression());
graph_.AppendInstruction(stmt);
}
void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
graph_.AppendInstruction(stmt);
}
void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
FlowGraph body = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->cond());
BranchNode* branch = new BranchNode();
// Add body, condition and branch.
original.AppendNode(join);
original.AppendGraph(&body);
original.AppendGraph(&graph_); // The condition.
original.AppendNode(branch);
// Tie the knot.
branch->AddSuccessor(join);
join->AddPredecessor(branch);
graph_ = original;
}
void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->cond());
BranchNode* branch = new BranchNode();
FlowGraph condition = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
original.Loop(join, &condition, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) Visit(stmt->init());
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
if (stmt->cond() != NULL) Visit(stmt->cond());
BranchNode* branch = new BranchNode();
FlowGraph condition = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
if (stmt->next() != NULL) Visit(stmt->next());
original.Loop(join, &condition, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
Visit(stmt->enumerable());
JoinNode* join = new JoinNode();
FlowGraph empty;
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
original.Loop(join, &empty, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
graph_.AppendInstruction(stmt);
}
void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitConditional(Conditional* expr) {
Visit(expr->condition());
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(expr->then_expression());
FlowGraph left = graph_;
graph_ = FlowGraph::Empty();
Visit(expr->else_expression());
JoinNode* join = new JoinNode();
original.Split(branch, &left, &graph_, join);
graph_ = original;
}
void FlowGraphBuilder::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitLiteral(Literal* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
ZoneList<ObjectLiteral::Property*>* properties = expr->properties();
for (int i = 0, len = properties->length(); i < len; i++) {
Visit(properties->at(i)->value());
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
ZoneList<Expression*>* values = expr->values();
for (int i = 0, len = values->length(); i < len; i++) {
Visit(values->at(i));
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
// Left-hand side can be a variable or property (or reference error) but
// not both.
ASSERT(var == NULL || prop == NULL);
if (var != NULL) {
Visit(expr->value());
if (var->IsStackAllocated()) definitions_.Add(expr);
} else if (prop != NULL) {
Visit(prop->obj());
if (!prop->key()->IsPropertyName()) Visit(prop->key());
Visit(expr->value());
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitThrow(Throw* expr) {
Visit(expr->exception());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitProperty(Property* expr) {
Visit(expr->obj());
if (!expr->key()->IsPropertyName()) Visit(expr->key());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCall(Call* expr) {
Visit(expr->expression());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCallNew(CallNew* expr) {
Visit(expr->expression());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
Visit(expr->expression());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) {
Visit(expr->expression());
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (var != NULL && var->IsStackAllocated()) {
definitions_.Add(expr);
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
Visit(expr->left());
switch (expr->op()) {
case Token::COMMA:
Visit(expr->right());
break;
case Token::OR: {
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(expr->right());
FlowGraph empty;
JoinNode* join = new JoinNode();
original.Split(branch, &empty, &graph_, join);
graph_ = original;
break;
}
case Token::AND: {
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(expr->right());
FlowGraph empty;
JoinNode* join = new JoinNode();
original.Split(branch, &graph_, &empty, join);
graph_ = original;
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
Visit(expr->right());
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
Visit(expr->left());
Visit(expr->right());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) {
graph_.AppendInstruction(expr);
}
void AstLabeler::Label(CompilationInfo* info) {
info_ = info;
VisitStatements(info_->function()->body());
}
void AstLabeler::VisitStatements(ZoneList<Statement*>* stmts) {
for (int i = 0, len = stmts->length(); i < len; i++) {
Visit(stmts->at(i));
}
}
void AstLabeler::VisitDeclarations(ZoneList<Declaration*>* decls) {
UNREACHABLE();
}
void AstLabeler::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void AstLabeler::VisitExpressionStatement(
ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void AstLabeler::VisitEmptyStatement(EmptyStatement* stmt) {
// Do nothing.
}
void AstLabeler::VisitIfStatement(IfStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitReturnStatement(ReturnStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWithEnterStatement(
WithEnterStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWithExitStatement(WithExitStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitDoWhileStatement(DoWhileStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitWhileStatement(WhileStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitForStatement(ForStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitForInStatement(ForInStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitDebuggerStatement(
DebuggerStatement* stmt) {
UNREACHABLE();
}
void AstLabeler::VisitFunctionLiteral(FunctionLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitConditional(Conditional* expr) {
UNREACHABLE();
}
void AstLabeler::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void AstLabeler::VisitVariableProxy(VariableProxy* expr) {
expr->set_num(next_number_++);
Variable* var = expr->var();
if (var->is_global() && !var->is_this()) {
info_->set_has_globals(true);
}
}
void AstLabeler::VisitLiteral(Literal* expr) {
UNREACHABLE();
}
void AstLabeler::VisitRegExpLiteral(RegExpLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitObjectLiteral(ObjectLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitArrayLiteral(ArrayLiteral* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
UNREACHABLE();
}
void AstLabeler::VisitAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->IsPropertyName());
VariableProxy* proxy = prop->obj()->AsVariableProxy();
USE(proxy);
ASSERT(proxy != NULL && proxy->var()->is_this());
info()->set_has_this_properties(true);
prop->obj()->set_num(AstNode::kNoNumber);
prop->key()->set_num(AstNode::kNoNumber);
Visit(expr->value());
expr->set_num(next_number_++);
}
void AstLabeler::VisitThrow(Throw* expr) {
UNREACHABLE();
}
void AstLabeler::VisitProperty(Property* expr) {
ASSERT(expr->key()->IsPropertyName());
VariableProxy* proxy = expr->obj()->AsVariableProxy();
USE(proxy);
ASSERT(proxy != NULL && proxy->var()->is_this());
info()->set_has_this_properties(true);
expr->obj()->set_num(AstNode::kNoNumber);
expr->key()->set_num(AstNode::kNoNumber);
expr->set_num(next_number_++);
}
void AstLabeler::VisitCall(Call* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCallNew(CallNew* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCallRuntime(CallRuntime* expr) {
UNREACHABLE();
}
void AstLabeler::VisitUnaryOperation(UnaryOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitCountOperation(CountOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitBinaryOperation(BinaryOperation* expr) {
Visit(expr->left());
Visit(expr->right());
expr->set_num(next_number_++);
}
void AstLabeler::VisitCompareOperation(CompareOperation* expr) {
UNREACHABLE();
}
void AstLabeler::VisitThisFunction(ThisFunction* expr) {
UNREACHABLE();
}
void AstLabeler::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
ZoneList<Expression*>* VarUseMap::Lookup(Variable* var) {
HashMap::Entry* entry = HashMap::Lookup(var, var->name()->Hash(), true);
if (entry->value == NULL) {
entry->value = new ZoneList<Expression*>(1);
}
return reinterpret_cast<ZoneList<Expression*>*>(entry->value);
}
void LivenessAnalyzer::Analyze(FunctionLiteral* fun) {
// Process the function body.
VisitStatements(fun->body());
// All variables are implicitly defined at the function start.
// Record a definition of all variables live at function entry.
for (HashMap::Entry* p = live_vars_.Start();
p != NULL;
p = live_vars_.Next(p)) {
Variable* var = reinterpret_cast<Variable*>(p->key);
RecordDef(var, fun);
}
}
void LivenessAnalyzer::VisitStatements(ZoneList<Statement*>* stmts) {
// Visit statements right-to-left.
for (int i = stmts->length() - 1; i >= 0; i--) {
Visit(stmts->at(i));
}
}
void LivenessAnalyzer::RecordUse(Variable* var, Expression* expr) {
ASSERT(var->is_global() || var->is_this());
ZoneList<Expression*>* uses = live_vars_.Lookup(var);
uses->Add(expr);
}
void LivenessAnalyzer::RecordDef(Variable* var, Expression* expr) {
ASSERT(var->is_global() || var->is_this());
// We do not support other expressions that can define variables.
ASSERT(expr->AsFunctionLiteral() != NULL);
// Add the variable to the list of defined variables.
if (expr->defined_vars() == NULL) {
expr->set_defined_vars(new ZoneList<DefinitionInfo*>(1));
}
DefinitionInfo* def = new DefinitionInfo();
expr->AsFunctionLiteral()->defined_vars()->Add(def);
// Compute the last use of the definition. The variable uses are
// inserted in reversed evaluation order. The first element
// in the list of live uses is the last use.
ZoneList<Expression*>* uses = live_vars_.Lookup(var);
while (uses->length() > 0) {
Expression* use_site = uses->RemoveLast();
use_site->set_var_def(def);
if (uses->length() == 0) {
def->set_last_use(use_site);
}
}
}
// Visitor functions for live variable analysis.
void LivenessAnalyzer::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void LivenessAnalyzer::VisitExpressionStatement(
ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void LivenessAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) {
// Do nothing.
}
void LivenessAnalyzer::VisitIfStatement(IfStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitReturnStatement(ReturnStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitWithEnterStatement(
WithEnterStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitWithExitStatement(WithExitStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitWhileStatement(WhileStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitForStatement(ForStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitForInStatement(ForInStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitDebuggerStatement(
DebuggerStatement* stmt) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitConditional(Conditional* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->var();
ASSERT(var->is_global());
ASSERT(!var->is_this());
RecordUse(var, expr);
}
void LivenessAnalyzer::VisitLiteral(Literal* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->IsPropertyName());
VariableProxy* proxy = prop->obj()->AsVariableProxy();
ASSERT(proxy != NULL && proxy->var()->is_this());
// Record use of this at the assignment node. Assignments to
// this-properties are treated like unary operations.
RecordUse(proxy->var(), expr);
// Visit right-hand side.
Visit(expr->value());
}
void LivenessAnalyzer::VisitThrow(Throw* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitProperty(Property* expr) {
ASSERT(expr->key()->IsPropertyName());
VariableProxy* proxy = expr->obj()->AsVariableProxy();
ASSERT(proxy != NULL && proxy->var()->is_this());
RecordUse(proxy->var(), expr);
}
void LivenessAnalyzer::VisitCall(Call* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitCallNew(CallNew* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitCallRuntime(CallRuntime* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitUnaryOperation(UnaryOperation* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitCountOperation(CountOperation* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitBinaryOperation(BinaryOperation* expr) {
// Visit child nodes in reverse evaluation order.
Visit(expr->right());
Visit(expr->left());
}
void LivenessAnalyzer::VisitCompareOperation(CompareOperation* expr) {
UNREACHABLE();
}
void LivenessAnalyzer::VisitThisFunction(ThisFunction* expr) {
UNREACHABLE();
}
#ifdef DEBUG
// Print a textual representation of an instruction in a flow graph. Using
// the AstVisitor is overkill because there is no recursion here. It is
// only used for printing in debug mode.
class TextInstructionPrinter: public AstVisitor {
public:
TextInstructionPrinter() {}
private:
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter);
};
void TextInstructionPrinter::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBlock(Block* stmt) {
PrintF("Block");
}
void TextInstructionPrinter::VisitExpressionStatement(
ExpressionStatement* stmt) {
PrintF("ExpressionStatement");
}
void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) {
PrintF("EmptyStatement");
}
void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) {
PrintF("IfStatement");
}
void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) {
PrintF("return @%d", stmt->expression()->num());
}
void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) {
PrintF("WithEnterStatement");
}
void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) {
PrintF("WithExitStatement");
}
void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) {
PrintF("DoWhileStatement");
}
void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) {
PrintF("WhileStatement");
}
void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) {
PrintF("ForStatement");
}
void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) {
PrintF("ForInStatement");
}
void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) {
PrintF("DebuggerStatement");
}
void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) {
PrintF("FunctionLiteral");
}
void TextInstructionPrinter::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
PrintF("FunctionBoilerplateLiteral");
}
void TextInstructionPrinter::VisitConditional(Conditional* expr) {
PrintF("Conditional");
}
void TextInstructionPrinter::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->AsVariable();
if (var != NULL) {
SmartPointer<char> name = var->name()->ToCString();
PrintF("%s", *name);
} else {
ASSERT(expr->AsProperty() != NULL);
VisitProperty(expr->AsProperty());
}
}
void TextInstructionPrinter::VisitLiteral(Literal* expr) {
expr->handle()->ShortPrint();
}
void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) {
PrintF("RegExpLiteral");
}
void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) {
PrintF("ObjectLiteral");
}
void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) {
PrintF("ArrayLiteral");
}
void TextInstructionPrinter::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
PrintF("CatchExtensionObject");
}
void TextInstructionPrinter::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
if (var != NULL) {
SmartPointer<char> name = var->name()->ToCString();
PrintF("%s %s @%d",
*name,
Token::String(expr->op()),
expr->value()->num());
} else if (prop != NULL) {
if (prop->key()->IsPropertyName()) {
PrintF("@%d.", prop->obj()->num());
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
PrintF(" %s @%d",
Token::String(expr->op()),
expr->value()->num());
} else {
PrintF("@%d[@%d] %s @%d",
prop->obj()->num(),
prop->key()->num(),
Token::String(expr->op()),
expr->value()->num());
}
} else {
// Throw reference error.
Visit(expr->target());
}
}
void TextInstructionPrinter::VisitThrow(Throw* expr) {
PrintF("throw @%d", expr->exception()->num());
}
void TextInstructionPrinter::VisitProperty(Property* expr) {
if (expr->key()->IsPropertyName()) {
PrintF("@%d.", expr->obj()->num());
ASSERT(expr->key()->AsLiteral() != NULL);
expr->key()->AsLiteral()->handle()->Print();
} else {
PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num());
}
}
void TextInstructionPrinter::VisitCall(Call* expr) {
PrintF("@%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallNew(CallNew* expr) {
PrintF("new @%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) {
SmartPointer<char> name = expr->name()->ToCString();
PrintF("%s(", *name);
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) {
PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num());
}
void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) {
if (expr->is_prefix()) {
PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num());
} else {
PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op()));
}
}
void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(expr->op() != Token::COMMA);
ASSERT(expr->op() != Token::OR);
ASSERT(expr->op() != Token::AND);
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) {
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) {
PrintF("ThisFunction");
}
static int node_count = 0;
static int instruction_count = 0;
void Node::AssignNumbers() {
set_number(node_count++);
}
void BlockNode::AssignNumbers() {
set_number(node_count++);
for (int i = 0, len = instructions_.length(); i < len; i++) {
instructions_[i]->set_num(instruction_count++);
}
}
void EntryNode::PrintText() {
PrintF("L%d: Entry\n", number());
PrintF("goto L%d\n\n", successor_->number());
}
void ExitNode::PrintText() {
PrintF("L%d: Exit\n\n", number());
}
void BlockNode::PrintText() {
// Print the instructions in the block.
PrintF("L%d: Block\n", number());
TextInstructionPrinter printer;
for (int i = 0, len = instructions_.length(); i < len; i++) {
PrintF("%d ", instructions_[i]->num());
printer.Visit(instructions_[i]);
PrintF("\n");
}
PrintF("goto L%d\n\n", successor_->number());
}
void BranchNode::PrintText() {
PrintF("L%d: Branch\n", number());
PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number());
}
void JoinNode::PrintText() {
PrintF("L%d: Join(", number());
for (int i = 0, len = predecessors_.length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("L%d", predecessors_[i]->number());
}
PrintF(")\ngoto L%d\n\n", successor_->number());
}
void FlowGraph::PrintText(ZoneList<Node*>* postorder) {
PrintF("\n========\n");
// Number nodes and instructions in reverse postorder.
node_count = 0;
instruction_count = 0;
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->AssignNumbers();
}
// Print basic blocks in reverse postorder.
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->PrintText();
}
}
#endif // defined(DEBUG)
} } // namespace v8::internal