blob: b15a673552b9725aed766af96d9a78d9d02245cd [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "fast-codegen.h"
#include "stub-cache.h"
#include "debug.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm())
Handle<Code> FastCodeGenerator::MakeCode(FunctionLiteral* fun,
Handle<Script> script,
bool is_eval) {
CodeGenerator::MakeCodePrologue(fun);
const int kInitialBufferSize = 4 * KB;
MacroAssembler masm(NULL, kInitialBufferSize);
FastCodeGenerator cgen(&masm, script, is_eval);
cgen.Generate(fun);
if (cgen.HasStackOverflow()) {
ASSERT(!Top::has_pending_exception());
return Handle<Code>::null();
}
Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, NOT_IN_LOOP);
return CodeGenerator::MakeCodeEpilogue(fun, &masm, flags, script);
}
int FastCodeGenerator::SlotOffset(Slot* slot) {
ASSERT(slot != NULL);
// Offset is negative because higher indexes are at lower addresses.
int offset = -slot->index() * kPointerSize;
// Adjust by a (parameter or local) base offset.
switch (slot->type()) {
case Slot::PARAMETER:
offset += (function_->scope()->num_parameters() + 1) * kPointerSize;
break;
case Slot::LOCAL:
offset += JavaScriptFrameConstants::kLocal0Offset;
break;
default:
UNREACHABLE();
}
return offset;
}
void FastCodeGenerator::VisitDeclarations(
ZoneList<Declaration*>* declarations) {
int length = declarations->length();
int globals = 0;
for (int i = 0; i < length; i++) {
Declaration* decl = declarations->at(i);
Variable* var = decl->proxy()->var();
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile
// time, we need to "declare" it at runtime to make sure it
// actually exists in the local context.
if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
VisitDeclaration(decl);
} else {
// Count global variables and functions for later processing
globals++;
}
}
// Compute array of global variable and function declarations.
// Do nothing in case of no declared global functions or variables.
if (globals > 0) {
Handle<FixedArray> array = Factory::NewFixedArray(2 * globals, TENURED);
for (int j = 0, i = 0; i < length; i++) {
Declaration* decl = declarations->at(i);
Variable* var = decl->proxy()->var();
Slot* slot = var->slot();
if ((slot == NULL || slot->type() != Slot::LOOKUP) && var->is_global()) {
array->set(j++, *(var->name()));
if (decl->fun() == NULL) {
if (var->mode() == Variable::CONST) {
// In case this is const property use the hole.
array->set_the_hole(j++);
} else {
array->set_undefined(j++);
}
} else {
Handle<JSFunction> function =
Compiler::BuildBoilerplate(decl->fun(), script_, this);
// Check for stack-overflow exception.
if (HasStackOverflow()) return;
array->set(j++, *function);
}
}
}
// Invoke the platform-dependent code generator to do the actual
// declaration the global variables and functions.
DeclareGlobals(array);
}
}
void FastCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) {
CodeGenerator::RecordPositions(masm_, fun->start_position());
}
}
void FastCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) {
CodeGenerator::RecordPositions(masm_, fun->end_position());
}
}
void FastCodeGenerator::SetStatementPosition(Statement* stmt) {
if (FLAG_debug_info) {
CodeGenerator::RecordPositions(masm_, stmt->statement_pos());
}
}
void FastCodeGenerator::SetSourcePosition(int pos) {
if (FLAG_debug_info && pos != RelocInfo::kNoPosition) {
masm_->RecordPosition(pos);
}
}
void FastCodeGenerator::EmitLogicalOperation(BinaryOperation* expr) {
#ifdef DEBUG
Expression::Context expected = Expression::kUninitialized;
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect: // Fall through.
case Expression::kTest:
// The value of the left subexpression is not needed.
expected = Expression::kTest;
break;
case Expression::kValue:
// The value of the left subexpression is needed and its specific
// context depends on the operator.
expected = (expr->op() == Token::OR)
? Expression::kValueTest
: Expression::kTestValue;
break;
case Expression::kValueTest:
// The value of the left subexpression is needed for OR.
expected = (expr->op() == Token::OR)
? Expression::kValueTest
: Expression::kTest;
break;
case Expression::kTestValue:
// The value of the left subexpression is needed for AND.
expected = (expr->op() == Token::OR)
? Expression::kTest
: Expression::kTestValue;
break;
}
ASSERT_EQ(expected, expr->left()->context());
ASSERT_EQ(expr->context(), expr->right()->context());
#endif
Label eval_right, done;
Label* saved_true = true_label_;
Label* saved_false = false_label_;
// Set up the appropriate context for the left subexpression based on the
// operation and our own context.
if (expr->op() == Token::OR) {
// If there is no usable true label in the OR expression's context, use
// the end of this expression, otherwise inherit the same true label.
if (expr->context() == Expression::kEffect ||
expr->context() == Expression::kValue) {
true_label_ = &done;
}
// The false label is the label of the second subexpression.
false_label_ = &eval_right;
} else {
ASSERT_EQ(Token::AND, expr->op());
// The true label is the label of the second subexpression.
true_label_ = &eval_right;
// If there is no usable false label in the AND expression's context,
// use the end of the expression, otherwise inherit the same false
// label.
if (expr->context() == Expression::kEffect ||
expr->context() == Expression::kValue) {
false_label_ = &done;
}
}
Visit(expr->left());
true_label_ = saved_true;
false_label_ = saved_false;
__ bind(&eval_right);
Visit(expr->right());
__ bind(&done);
}
void FastCodeGenerator::VisitBlock(Block* stmt) {
Comment cmnt(masm_, "[ Block");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
VisitStatements(stmt->statements());
__ bind(nested_statement.break_target());
}
void FastCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
Comment cmnt(masm_, "[ ExpressionStatement");
SetStatementPosition(stmt);
Visit(stmt->expression());
}
void FastCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
Comment cmnt(masm_, "[ EmptyStatement");
SetStatementPosition(stmt);
}
void FastCodeGenerator::VisitIfStatement(IfStatement* stmt) {
Comment cmnt(masm_, "[ IfStatement");
// Expressions cannot recursively enter statements, there are no labels in
// the state.
ASSERT_EQ(NULL, true_label_);
ASSERT_EQ(NULL, false_label_);
Label then_part, else_part, done;
// Do not worry about optimizing for empty then or else bodies.
true_label_ = &then_part;
false_label_ = &else_part;
ASSERT(stmt->condition()->context() == Expression::kTest);
Visit(stmt->condition());
true_label_ = NULL;
false_label_ = NULL;
__ bind(&then_part);
Visit(stmt->then_statement());
__ jmp(&done);
__ bind(&else_part);
Visit(stmt->else_statement());
__ bind(&done);
}
void FastCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
Comment cmnt(masm_, "[ ContinueStatement");
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
while (!current->IsContinueTarget(stmt->target())) {
stack_depth = current->Exit(stack_depth);
current = current->outer();
}
__ Drop(stack_depth);
Iteration* loop = current->AsIteration();
__ jmp(loop->continue_target());
}
void FastCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
Comment cmnt(masm_, "[ BreakStatement");
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
while (!current->IsBreakTarget(stmt->target())) {
stack_depth = current->Exit(stack_depth);
current = current->outer();
}
__ Drop(stack_depth);
Breakable* target = current->AsBreakable();
__ jmp(target->break_target());
}
void FastCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
Comment cmnt(masm_, "[ ReturnStatement");
Expression* expr = stmt->expression();
// Complete the statement based on the type of the subexpression.
if (expr->AsLiteral() != NULL) {
__ Move(result_register(), expr->AsLiteral()->handle());
} else {
ASSERT_EQ(Expression::kValue, expr->context());
Visit(expr);
__ pop(result_register());
}
// Exit all nested statements.
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
while (current != NULL) {
stack_depth = current->Exit(stack_depth);
current = current->outer();
}
__ Drop(stack_depth);
EmitReturnSequence(stmt->statement_pos());
}
void FastCodeGenerator::VisitWithEnterStatement(WithEnterStatement* stmt) {
Comment cmnt(masm_, "[ WithEnterStatement");
SetStatementPosition(stmt);
Visit(stmt->expression());
if (stmt->is_catch_block()) {
__ CallRuntime(Runtime::kPushCatchContext, 1);
} else {
__ CallRuntime(Runtime::kPushContext, 1);
}
// Both runtime calls return the new context in both the context and the
// result registers.
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}
void FastCodeGenerator::VisitWithExitStatement(WithExitStatement* stmt) {
Comment cmnt(masm_, "[ WithExitStatement");
SetStatementPosition(stmt);
// Pop context.
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}
void FastCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
Comment cmnt(masm_, "[ DoWhileStatement");
Label body, stack_limit_hit, stack_check_success;
Iteration loop_statement(this, stmt);
increment_loop_depth();
__ bind(&body);
Visit(stmt->body());
// Check stack before looping.
__ StackLimitCheck(&stack_limit_hit);
__ bind(&stack_check_success);
// We are not in an expression context because we have been compiling
// statements. Set up a test expression context for the condition.
__ bind(loop_statement.continue_target());
ASSERT_EQ(NULL, true_label_);
ASSERT_EQ(NULL, false_label_);
true_label_ = &body;
false_label_ = loop_statement.break_target();
ASSERT(stmt->cond()->context() == Expression::kTest);
Visit(stmt->cond());
true_label_ = NULL;
false_label_ = NULL;
__ bind(&stack_limit_hit);
StackCheckStub stack_stub;
__ CallStub(&stack_stub);
__ jmp(&stack_check_success);
__ bind(loop_statement.break_target());
decrement_loop_depth();
}
void FastCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
Comment cmnt(masm_, "[ WhileStatement");
Label body, stack_limit_hit, stack_check_success;
Iteration loop_statement(this, stmt);
increment_loop_depth();
// Emit the test at the bottom of the loop.
__ jmp(loop_statement.continue_target());
__ bind(&body);
Visit(stmt->body());
__ bind(loop_statement.continue_target());
// Check stack before looping.
__ StackLimitCheck(&stack_limit_hit);
__ bind(&stack_check_success);
// We are not in an expression context because we have been compiling
// statements. Set up a test expression context for the condition.
ASSERT_EQ(NULL, true_label_);
ASSERT_EQ(NULL, false_label_);
true_label_ = &body;
false_label_ = loop_statement.break_target();
ASSERT(stmt->cond()->context() == Expression::kTest);
Visit(stmt->cond());
true_label_ = NULL;
false_label_ = NULL;
__ bind(&stack_limit_hit);
StackCheckStub stack_stub;
__ CallStub(&stack_stub);
__ jmp(&stack_check_success);
__ bind(loop_statement.break_target());
decrement_loop_depth();
}
void FastCodeGenerator::VisitForStatement(ForStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
// Try finally is compiled by setting up a try-handler on the stack while
// executing the try body, and removing it again afterwards.
//
// The try-finally construct can enter the finally block in three ways:
// 1. By exiting the try-block normally. This removes the try-handler and
// calls the finally block code before continuing.
// 2. By exiting the try-block with a function-local control flow transfer
// (break/continue/return). The site of the, e.g., break removes the
// try handler and calls the finally block code before continuing
// its outward control transfer.
// 3. by exiting the try-block with a thrown exception.
// This can happen in nested function calls. It traverses the try-handler
// chaing and consumes the try-handler entry before jumping to the
// handler code. The handler code then calls the finally-block before
// rethrowing the exception.
//
// The finally block must assume a return address on top of the stack
// (or in the link register on ARM chips) and a value (return value or
// exception) in the result register (rax/eax/r0), both of which must
// be preserved. The return address isn't GC-safe, so it should be
// cooked before GC.
Label finally_entry;
Label try_handler_setup;
// Setup the try-handler chain. Use a call to
// Jump to try-handler setup and try-block code. Use call to put try-handler
// address on stack.
__ Call(&try_handler_setup);
// Try handler code. Return address of call is pushed on handler stack.
{
// This code is only executed during stack-handler traversal when an
// exception is thrown. The execption is in the result register, which
// is retained by the finally block.
// Call the finally block and then rethrow the exception.
__ Call(&finally_entry);
ThrowException();
}
__ bind(&finally_entry);
{
// Finally block implementation.
EnterFinallyBlock();
Finally finally_block(this);
Visit(stmt->finally_block());
ExitFinallyBlock(); // Return to the calling code.
}
__ bind(&try_handler_setup);
{
// Setup try handler (stack pointer registers).
__ PushTryHandler(IN_JAVASCRIPT, TRY_FINALLY_HANDLER);
TryFinally try_block(this, &finally_entry);
VisitStatements(stmt->try_block()->statements());
__ PopTryHandler();
}
// Execute the finally block on the way out.
__ Call(&finally_entry);
}
void FastCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
#ifdef ENABLE_DEBUGGER_SUPPORT
Comment cmnt(masm_, "[ DebuggerStatement");
SetStatementPosition(stmt);
__ CallRuntime(Runtime::kDebugBreak, 0);
// Ignore the return value.
#endif
}
void FastCodeGenerator::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitConditional(Conditional* expr) {
Comment cmnt(masm_, "[ Conditional");
ASSERT_EQ(Expression::kTest, expr->condition()->context());
ASSERT_EQ(expr->context(), expr->then_expression()->context());
ASSERT_EQ(expr->context(), expr->else_expression()->context());
Label true_case, false_case, done;
Label* saved_true = true_label_;
Label* saved_false = false_label_;
true_label_ = &true_case;
false_label_ = &false_case;
Visit(expr->condition());
true_label_ = saved_true;
false_label_ = saved_false;
__ bind(&true_case);
Visit(expr->then_expression());
// If control flow falls through Visit, jump to done.
if (expr->context() == Expression::kEffect ||
expr->context() == Expression::kValue) {
__ jmp(&done);
}
__ bind(&false_case);
Visit(expr->else_expression());
// If control flow falls through Visit, merge it with true case here.
if (expr->context() == Expression::kEffect ||
expr->context() == Expression::kValue) {
__ bind(&done);
}
}
void FastCodeGenerator::VisitSlot(Slot* expr) {
// Slots do not appear directly in the AST.
UNREACHABLE();
}
void FastCodeGenerator::VisitLiteral(Literal* expr) {
Comment cmnt(masm_, "[ Literal");
Move(expr->context(), expr);
}
void FastCodeGenerator::VisitAssignment(Assignment* expr) {
Comment cmnt(masm_, "[ Assignment");
// Record source code position of the (possible) IC call.
SetSourcePosition(expr->position());
// Left-hand side can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->target()->AsProperty();
// In case of a property we use the uninitialized expression context
// of the key to detect a named property.
if (prop != NULL) {
assign_type = (prop->key()->context() == Expression::kUninitialized)
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
Visit(prop->obj());
ASSERT_EQ(Expression::kValue, prop->obj()->context());
break;
case KEYED_PROPERTY:
Visit(prop->obj());
ASSERT_EQ(Expression::kValue, prop->obj()->context());
Visit(prop->key());
ASSERT_EQ(Expression::kValue, prop->key()->context());
break;
}
// If we have a compound assignment: Get value of LHS expression and
// store in on top of the stack.
// Note: Relies on kValue context being 'stack'.
if (expr->is_compound()) {
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy()->var(),
Expression::kValue);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(prop, Expression::kValue);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(Expression::kValue);
break;
}
}
// Evaluate RHS expression.
Expression* rhs = expr->value();
ASSERT_EQ(Expression::kValue, rhs->context());
Visit(rhs);
// If we have a compount assignment: Apply operator.
if (expr->is_compound()) {
EmitCompoundAssignmentOp(expr->binary_op(), Expression::kValue);
}
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FastCodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitThrow(Throw* expr) {
UNREACHABLE();
}
int FastCodeGenerator::TryFinally::Exit(int stack_depth) {
// The macros used here must preserve the result register.
__ Drop(stack_depth);
__ PopTryHandler();
__ Call(finally_entry_);
return 0;
}
int FastCodeGenerator::TryCatch::Exit(int stack_depth) {
// The macros used here must preserve the result register.
__ Drop(stack_depth);
__ PopTryHandler();
return 0;
}
#undef __
} } // namespace v8::internal