blob: fcf6906af73e6d9ef9ca41b367df1828c42d4386 [file] [log] [blame]
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00001// Copyright 2011 the V8 project authors. All rights reserved.
whesse@chromium.orgcec079d2010-03-22 14:44:04 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_DOUBLE_H_
29#define V8_DOUBLE_H_
30
31#include "diy-fp.h"
32
33namespace v8 {
34namespace internal {
35
36// We assume that doubles and uint64_t have the same endianness.
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +000037inline uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
38inline double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000039
40// Helper functions for doubles.
41class Double {
42 public:
43 static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
44 static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
45 static const uint64_t kSignificandMask =
46 V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
47 static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
lrn@chromium.org303ada72010-10-27 09:33:13 +000048 static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
49 static const int kSignificandSize = 53;
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000050
51 Double() : d64_(0) {}
52 explicit Double(double d) : d64_(double_to_uint64(d)) {}
53 explicit Double(uint64_t d64) : d64_(d64) {}
lrn@chromium.org303ada72010-10-27 09:33:13 +000054 explicit Double(DiyFp diy_fp)
55 : d64_(DiyFpToUint64(diy_fp)) {}
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000056
ager@chromium.org01fe7df2010-11-10 11:59:11 +000057 // The value encoded by this Double must be greater or equal to +0.0.
58 // It must not be special (infinity, or NaN).
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000059 DiyFp AsDiyFp() const {
ager@chromium.org01fe7df2010-11-10 11:59:11 +000060 ASSERT(Sign() > 0);
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000061 ASSERT(!IsSpecial());
62 return DiyFp(Significand(), Exponent());
63 }
64
ager@chromium.org01fe7df2010-11-10 11:59:11 +000065 // The value encoded by this Double must be strictly greater than 0.
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000066 DiyFp AsNormalizedDiyFp() const {
ager@chromium.org01fe7df2010-11-10 11:59:11 +000067 ASSERT(value() > 0.0);
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000068 uint64_t f = Significand();
69 int e = Exponent();
70
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000071 // The current double could be a denormal.
72 while ((f & kHiddenBit) == 0) {
73 f <<= 1;
74 e--;
75 }
lrn@chromium.org303ada72010-10-27 09:33:13 +000076 // Do the final shifts in one go.
77 f <<= DiyFp::kSignificandSize - kSignificandSize;
78 e -= DiyFp::kSignificandSize - kSignificandSize;
whesse@chromium.orgcec079d2010-03-22 14:44:04 +000079 return DiyFp(f, e);
80 }
81
82 // Returns the double's bit as uint64.
83 uint64_t AsUint64() const {
84 return d64_;
85 }
86
ager@chromium.org01fe7df2010-11-10 11:59:11 +000087 // Returns the next greater double. Returns +infinity on input +infinity.
88 double NextDouble() const {
89 if (d64_ == kInfinity) return Double(kInfinity).value();
90 if (Sign() < 0 && Significand() == 0) {
91 // -0.0
92 return 0.0;
93 }
94 if (Sign() < 0) {
95 return Double(d64_ - 1).value();
96 } else {
97 return Double(d64_ + 1).value();
98 }
99 }
100
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000101 int Exponent() const {
102 if (IsDenormal()) return kDenormalExponent;
103
104 uint64_t d64 = AsUint64();
lrn@chromium.org303ada72010-10-27 09:33:13 +0000105 int biased_e =
106 static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000107 return biased_e - kExponentBias;
108 }
109
110 uint64_t Significand() const {
111 uint64_t d64 = AsUint64();
112 uint64_t significand = d64 & kSignificandMask;
113 if (!IsDenormal()) {
114 return significand + kHiddenBit;
115 } else {
116 return significand;
117 }
118 }
119
120 // Returns true if the double is a denormal.
121 bool IsDenormal() const {
122 uint64_t d64 = AsUint64();
123 return (d64 & kExponentMask) == 0;
124 }
125
126 // We consider denormals not to be special.
127 // Hence only Infinity and NaN are special.
128 bool IsSpecial() const {
129 uint64_t d64 = AsUint64();
130 return (d64 & kExponentMask) == kExponentMask;
131 }
132
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000133 bool IsInfinite() const {
134 uint64_t d64 = AsUint64();
135 return ((d64 & kExponentMask) == kExponentMask) &&
136 ((d64 & kSignificandMask) == 0);
137 }
138
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000139 int Sign() const {
140 uint64_t d64 = AsUint64();
141 return (d64 & kSignMask) == 0? 1: -1;
142 }
143
ager@chromium.org01fe7df2010-11-10 11:59:11 +0000144 // Precondition: the value encoded by this Double must be greater or equal
145 // than +0.0.
146 DiyFp UpperBoundary() const {
147 ASSERT(Sign() > 0);
148 return DiyFp(Significand() * 2 + 1, Exponent() - 1);
149 }
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000150
151 // Returns the two boundaries of this.
152 // The bigger boundary (m_plus) is normalized. The lower boundary has the same
153 // exponent as m_plus.
ager@chromium.org01fe7df2010-11-10 11:59:11 +0000154 // Precondition: the value encoded by this Double must be greater than 0.
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000155 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
ager@chromium.org01fe7df2010-11-10 11:59:11 +0000156 ASSERT(value() > 0.0);
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000157 DiyFp v = this->AsDiyFp();
158 bool significand_is_zero = (v.f() == kHiddenBit);
159 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
160 DiyFp m_minus;
161 if (significand_is_zero && v.e() != kDenormalExponent) {
162 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
163 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
164 // at a distance of 1e8.
165 // The only exception is for the smallest normal: the largest denormal is
166 // at the same distance as its successor.
167 // Note: denormals have the same exponent as the smallest normals.
168 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
169 } else {
170 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
171 }
172 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
173 m_minus.set_e(m_plus.e());
174 *out_m_plus = m_plus;
175 *out_m_minus = m_minus;
176 }
177
178 double value() const { return uint64_to_double(d64_); }
179
lrn@chromium.org303ada72010-10-27 09:33:13 +0000180 // Returns the significand size for a given order of magnitude.
181 // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
182 // This function returns the number of significant binary digits v will have
183 // once its encoded into a double. In almost all cases this is equal to
184 // kSignificandSize. The only exception are denormals. They start with leading
185 // zeroes and their effective significand-size is hence smaller.
186 static int SignificandSizeForOrderOfMagnitude(int order) {
187 if (order >= (kDenormalExponent + kSignificandSize)) {
188 return kSignificandSize;
189 }
190 if (order <= kDenormalExponent) return 0;
191 return order - kDenormalExponent;
192 }
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000193
lrn@chromium.org303ada72010-10-27 09:33:13 +0000194 private:
195 static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
196 static const int kDenormalExponent = -kExponentBias + 1;
197 static const int kMaxExponent = 0x7FF - kExponentBias;
198 static const uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
199
200 const uint64_t d64_;
201
202 static uint64_t DiyFpToUint64(DiyFp diy_fp) {
203 uint64_t significand = diy_fp.f();
204 int exponent = diy_fp.e();
205 while (significand > kHiddenBit + kSignificandMask) {
206 significand >>= 1;
207 exponent++;
208 }
209 if (exponent >= kMaxExponent) {
210 return kInfinity;
211 }
212 if (exponent < kDenormalExponent) {
213 return 0;
214 }
215 while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
216 significand <<= 1;
217 exponent--;
218 }
219 uint64_t biased_exponent;
220 if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
221 biased_exponent = 0;
222 } else {
223 biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
224 }
225 return (significand & kSignificandMask) |
226 (biased_exponent << kPhysicalSignificandSize);
227 }
whesse@chromium.orgcec079d2010-03-22 14:44:04 +0000228};
229
230} } // namespace v8::internal
231
232#endif // V8_DOUBLE_H_