blob: d8ed27e49033147361a96fea8b75f51f385c23cf [file] [log] [blame]
fschneider@chromium.orgfb144a02011-05-04 12:43:48 +00001// Copyright 2011 the V8 project authors. All rights reserved.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_SPACES_H_
29#define V8_SPACES_H_
30
lrn@chromium.org1c092762011-05-09 09:42:16 +000031#include "allocation.h"
fschneider@chromium.orgfb144a02011-05-04 12:43:48 +000032#include "list.h"
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000033#include "log.h"
34
kasperl@chromium.org71affb52009-05-26 05:44:31 +000035namespace v8 {
36namespace internal {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000037
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +000038class Isolate;
39
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000040// -----------------------------------------------------------------------------
41// Heap structures:
42//
43// A JS heap consists of a young generation, an old generation, and a large
44// object space. The young generation is divided into two semispaces. A
45// scavenger implements Cheney's copying algorithm. The old generation is
46// separated into a map space and an old object space. The map space contains
47// all (and only) map objects, the rest of old objects go into the old space.
48// The old generation is collected by a mark-sweep-compact collector.
49//
50// The semispaces of the young generation are contiguous. The old and map
ricow@chromium.org30ce4112010-05-31 10:38:25 +000051// spaces consists of a list of pages. A page has a page header and an object
52// area. A page size is deliberately chosen as 8K bytes.
53// The first word of a page is an opaque page header that has the
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000054// address of the next page and its ownership information. The second word may
ricow@chromium.org30ce4112010-05-31 10:38:25 +000055// have the allocation top address of this page. Heap objects are aligned to the
56// pointer size.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000057//
58// There is a separate large object space for objects larger than
59// Page::kMaxHeapObjectSize, so that they do not have to move during
ricow@chromium.org30ce4112010-05-31 10:38:25 +000060// collection. The large object space is paged. Pages in large object space
61// may be larger than 8K.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000062//
ricow@chromium.org30ce4112010-05-31 10:38:25 +000063// A card marking write barrier is used to keep track of intergenerational
64// references. Old space pages are divided into regions of Page::kRegionSize
65// size. Each region has a corresponding dirty bit in the page header which is
66// set if the region might contain pointers to new space. For details about
67// dirty bits encoding see comments in the Page::GetRegionNumberForAddress()
68// method body.
69//
70// During scavenges and mark-sweep collections we iterate intergenerational
71// pointers without decoding heap object maps so if the page belongs to old
72// pointer space or large object space it is essential to guarantee that
73// the page does not contain any garbage pointers to new space: every pointer
74// aligned word which satisfies the Heap::InNewSpace() predicate must be a
75// pointer to a live heap object in new space. Thus objects in old pointer
76// and large object spaces should have a special layout (e.g. no bare integer
77// fields). This requirement does not apply to map space which is iterated in
78// a special fashion. However we still require pointer fields of dead maps to
79// be cleaned.
80//
81// To enable lazy cleaning of old space pages we use a notion of allocation
82// watermark. Every pointer under watermark is considered to be well formed.
83// Page allocation watermark is not necessarily equal to page allocation top but
84// all alive objects on page should reside under allocation watermark.
85// During scavenge allocation watermark might be bumped and invalid pointers
86// might appear below it. To avoid following them we store a valid watermark
87// into special field in the page header and set a page WATERMARK_INVALIDATED
88// flag. For details see comments in the Page::SetAllocationWatermark() method
89// body.
90//
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000091
92// Some assertion macros used in the debugging mode.
93
sgjesse@chromium.org846fb742009-12-18 08:56:33 +000094#define ASSERT_PAGE_ALIGNED(address) \
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000095 ASSERT((OffsetFrom(address) & Page::kPageAlignmentMask) == 0)
96
sgjesse@chromium.org846fb742009-12-18 08:56:33 +000097#define ASSERT_OBJECT_ALIGNED(address) \
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000098 ASSERT((OffsetFrom(address) & kObjectAlignmentMask) == 0)
99
sgjesse@chromium.org846fb742009-12-18 08:56:33 +0000100#define ASSERT_MAP_ALIGNED(address) \
101 ASSERT((OffsetFrom(address) & kMapAlignmentMask) == 0)
102
103#define ASSERT_OBJECT_SIZE(size) \
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000104 ASSERT((0 < size) && (size <= Page::kMaxHeapObjectSize))
105
sgjesse@chromium.org846fb742009-12-18 08:56:33 +0000106#define ASSERT_PAGE_OFFSET(offset) \
107 ASSERT((Page::kObjectStartOffset <= offset) \
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000108 && (offset <= Page::kPageSize))
109
sgjesse@chromium.org846fb742009-12-18 08:56:33 +0000110#define ASSERT_MAP_PAGE_INDEX(index) \
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000111 ASSERT((0 <= index) && (index <= MapSpace::kMaxMapPageIndex))
112
113
114class PagedSpace;
115class MemoryAllocator;
kasper.lund7276f142008-07-30 08:49:36 +0000116class AllocationInfo;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000117
118// -----------------------------------------------------------------------------
119// A page normally has 8K bytes. Large object pages may be larger. A page
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000120// address is always aligned to the 8K page size.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000121//
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000122// Each page starts with a header of Page::kPageHeaderSize size which contains
123// bookkeeping data.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000124//
125// The mark-compact collector transforms a map pointer into a page index and a
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000126// page offset. The exact encoding is described in the comments for
sgjesse@chromium.org846fb742009-12-18 08:56:33 +0000127// class MapWord in objects.h.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000128//
129// The only way to get a page pointer is by calling factory methods:
130// Page* p = Page::FromAddress(addr); or
131// Page* p = Page::FromAllocationTop(top);
132class Page {
133 public:
134 // Returns the page containing a given address. The address ranges
135 // from [page_addr .. page_addr + kPageSize[
136 //
137 // Note that this function only works for addresses in normal paged
sgjesse@chromium.orgb9d7da12009-08-05 08:38:10 +0000138 // spaces and addresses in the first 8K of large object pages (i.e.,
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000139 // the start of large objects but not necessarily derived pointers
140 // within them).
141 INLINE(static Page* FromAddress(Address a)) {
142 return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask);
143 }
144
145 // Returns the page containing an allocation top. Because an allocation
146 // top address can be the upper bound of the page, we need to subtract
147 // it with kPointerSize first. The address ranges from
148 // [page_addr + kObjectStartOffset .. page_addr + kPageSize].
149 INLINE(static Page* FromAllocationTop(Address top)) {
150 Page* p = FromAddress(top - kPointerSize);
151 ASSERT_PAGE_OFFSET(p->Offset(top));
152 return p;
153 }
154
155 // Returns the start address of this page.
156 Address address() { return reinterpret_cast<Address>(this); }
157
158 // Checks whether this is a valid page address.
159 bool is_valid() { return address() != NULL; }
160
161 // Returns the next page of this page.
162 inline Page* next_page();
163
kasper.lund7276f142008-07-30 08:49:36 +0000164 // Return the end of allocation in this page. Undefined for unused pages.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000165 inline Address AllocationTop();
166
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000167 // Return the allocation watermark for the page.
168 // For old space pages it is guaranteed that the area under the watermark
169 // does not contain any garbage pointers to new space.
170 inline Address AllocationWatermark();
171
172 // Return the allocation watermark offset from the beginning of the page.
173 inline uint32_t AllocationWatermarkOffset();
174
175 inline void SetAllocationWatermark(Address allocation_watermark);
176
177 inline void SetCachedAllocationWatermark(Address allocation_watermark);
178 inline Address CachedAllocationWatermark();
179
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000180 // Returns the start address of the object area in this page.
181 Address ObjectAreaStart() { return address() + kObjectStartOffset; }
182
183 // Returns the end address (exclusive) of the object area in this page.
184 Address ObjectAreaEnd() { return address() + Page::kPageSize; }
185
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000186 // Checks whether an address is page aligned.
187 static bool IsAlignedToPageSize(Address a) {
188 return 0 == (OffsetFrom(a) & kPageAlignmentMask);
189 }
190
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000191 // True if this page was in use before current compaction started.
192 // Result is valid only for pages owned by paged spaces and
193 // only after PagedSpace::PrepareForMarkCompact was called.
194 inline bool WasInUseBeforeMC();
195
196 inline void SetWasInUseBeforeMC(bool was_in_use);
197
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000198 // True if this page is a large object page.
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000199 inline bool IsLargeObjectPage();
200
201 inline void SetIsLargeObjectPage(bool is_large_object_page);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000202
erik.corry@gmail.com145eff52010-08-23 11:36:18 +0000203 inline bool IsPageExecutable();
204
205 inline void SetIsPageExecutable(bool is_page_executable);
206
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000207 // Returns the offset of a given address to this page.
208 INLINE(int Offset(Address a)) {
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000209 int offset = static_cast<int>(a - address());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000210 ASSERT_PAGE_OFFSET(offset);
211 return offset;
212 }
213
214 // Returns the address for a given offset to the this page.
215 Address OffsetToAddress(int offset) {
216 ASSERT_PAGE_OFFSET(offset);
217 return address() + offset;
218 }
219
220 // ---------------------------------------------------------------------
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000221 // Card marking support
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000222
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000223 static const uint32_t kAllRegionsCleanMarks = 0x0;
224 static const uint32_t kAllRegionsDirtyMarks = 0xFFFFFFFF;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000225
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000226 inline uint32_t GetRegionMarks();
227 inline void SetRegionMarks(uint32_t dirty);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000228
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000229 inline uint32_t GetRegionMaskForAddress(Address addr);
ager@chromium.org2cc82ae2010-06-14 07:35:38 +0000230 inline uint32_t GetRegionMaskForSpan(Address start, int length_in_bytes);
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000231 inline int GetRegionNumberForAddress(Address addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000232
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000233 inline void MarkRegionDirty(Address addr);
234 inline bool IsRegionDirty(Address addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000235
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000236 inline void ClearRegionMarks(Address start,
237 Address end,
238 bool reaches_limit);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000239
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000240 // Page size in bytes. This must be a multiple of the OS page size.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000241 static const int kPageSize = 1 << kPageSizeBits;
242
243 // Page size mask.
kasperl@chromium.org71affb52009-05-26 05:44:31 +0000244 static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000245
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000246 static const int kPageHeaderSize = kPointerSize + kPointerSize + kIntSize +
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000247 kIntSize + kPointerSize + kPointerSize;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000248
whesse@chromium.org4a1fe7d2010-09-27 12:32:04 +0000249 // The start offset of the object area in a page. Aligned to both maps and
250 // code alignment to be suitable for both.
251 static const int kObjectStartOffset =
252 CODE_POINTER_ALIGN(MAP_POINTER_ALIGN(kPageHeaderSize));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000253
254 // Object area size in bytes.
255 static const int kObjectAreaSize = kPageSize - kObjectStartOffset;
256
257 // Maximum object size that fits in a page.
258 static const int kMaxHeapObjectSize = kObjectAreaSize;
259
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000260 static const int kDirtyFlagOffset = 2 * kPointerSize;
261 static const int kRegionSizeLog2 = 8;
262 static const int kRegionSize = 1 << kRegionSizeLog2;
263 static const intptr_t kRegionAlignmentMask = (kRegionSize - 1);
264
265 STATIC_CHECK(kRegionSize == kPageSize / kBitsPerInt);
266
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000267 enum PageFlag {
erik.corry@gmail.com145eff52010-08-23 11:36:18 +0000268 IS_NORMAL_PAGE = 0,
269 WAS_IN_USE_BEFORE_MC,
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000270
271 // Page allocation watermark was bumped by preallocation during scavenge.
272 // Correct watermark can be retrieved by CachedAllocationWatermark() method
erik.corry@gmail.com145eff52010-08-23 11:36:18 +0000273 WATERMARK_INVALIDATED,
274 IS_EXECUTABLE,
275 NUM_PAGE_FLAGS // Must be last
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000276 };
erik.corry@gmail.com145eff52010-08-23 11:36:18 +0000277 static const int kPageFlagMask = (1 << NUM_PAGE_FLAGS) - 1;
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000278
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000279 // To avoid an additional WATERMARK_INVALIDATED flag clearing pass during
280 // scavenge we just invalidate the watermark on each old space page after
281 // processing it. And then we flip the meaning of the WATERMARK_INVALIDATED
282 // flag at the beginning of the next scavenge and each page becomes marked as
283 // having a valid watermark.
284 //
285 // The following invariant must hold for pages in old pointer and map spaces:
286 // If page is in use then page is marked as having invalid watermark at
287 // the beginning and at the end of any GC.
288 //
289 // This invariant guarantees that after flipping flag meaning at the
290 // beginning of scavenge all pages in use will be marked as having valid
291 // watermark.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000292 static inline void FlipMeaningOfInvalidatedWatermarkFlag(Heap* heap);
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000293
294 // Returns true if the page allocation watermark was not altered during
295 // scavenge.
296 inline bool IsWatermarkValid();
297
298 inline void InvalidateWatermark(bool value);
299
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000300 inline bool GetPageFlag(PageFlag flag);
301 inline void SetPageFlag(PageFlag flag, bool value);
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000302 inline void ClearPageFlags();
303
304 inline void ClearGCFields();
305
erik.corry@gmail.com145eff52010-08-23 11:36:18 +0000306 static const int kAllocationWatermarkOffsetShift = WATERMARK_INVALIDATED + 1;
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000307 static const int kAllocationWatermarkOffsetBits = kPageSizeBits + 1;
308 static const uint32_t kAllocationWatermarkOffsetMask =
309 ((1 << kAllocationWatermarkOffsetBits) - 1) <<
310 kAllocationWatermarkOffsetShift;
311
312 static const uint32_t kFlagsMask =
313 ((1 << kAllocationWatermarkOffsetShift) - 1);
314
315 STATIC_CHECK(kBitsPerInt - kAllocationWatermarkOffsetShift >=
316 kAllocationWatermarkOffsetBits);
317
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000318 //---------------------------------------------------------------------------
319 // Page header description.
320 //
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000321 // If a page is not in the large object space, the first word,
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000322 // opaque_header, encodes the next page address (aligned to kPageSize 8K)
323 // and the chunk number (0 ~ 8K-1). Only MemoryAllocator should use
324 // opaque_header. The value range of the opaque_header is [0..kPageSize[,
325 // or [next_page_start, next_page_end[. It cannot point to a valid address
326 // in the current page. If a page is in the large object space, the first
327 // word *may* (if the page start and large object chunk start are the
328 // same) contain the address of the next large object chunk.
kasperl@chromium.org71affb52009-05-26 05:44:31 +0000329 intptr_t opaque_header;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000330
331 // If the page is not in the large object space, the low-order bit of the
332 // second word is set. If the page is in the large object space, the
333 // second word *may* (if the page start and large object chunk start are
334 // the same) contain the large object chunk size. In either case, the
335 // low-order bit for large object pages will be cleared.
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000336 // For normal pages this word is used to store page flags and
337 // offset of allocation top.
338 intptr_t flags_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000339
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000340 // This field contains dirty marks for regions covering the page. Only dirty
341 // regions might contain intergenerational references.
342 // Only 32 dirty marks are supported so for large object pages several regions
343 // might be mapped to a single dirty mark.
344 uint32_t dirty_regions_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000345
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000346 // The index of the page in its owner space.
347 int mc_page_index;
348
ricow@chromium.org30ce4112010-05-31 10:38:25 +0000349 // During mark-compact collections this field contains the forwarding address
350 // of the first live object in this page.
351 // During scavenge collection this field is used to store allocation watermark
352 // if it is altered during scavenge.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000353 Address mc_first_forwarded;
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000354
355 Heap* heap_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000356};
357
358
359// ----------------------------------------------------------------------------
kasper.lund7276f142008-07-30 08:49:36 +0000360// Space is the abstract superclass for all allocation spaces.
361class Space : public Malloced {
362 public:
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000363 Space(Heap* heap, AllocationSpace id, Executability executable)
364 : heap_(heap), id_(id), executable_(executable) {}
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000365
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000366 virtual ~Space() {}
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000367
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000368 Heap* heap() const { return heap_; }
369
kasper.lund7276f142008-07-30 08:49:36 +0000370 // Does the space need executable memory?
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000371 Executability executable() { return executable_; }
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000372
kasper.lund7276f142008-07-30 08:49:36 +0000373 // Identity used in error reporting.
374 AllocationSpace identity() { return id_; }
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000375
erik.corry@gmail.com4a6c3272010-11-18 12:04:40 +0000376 // Returns allocated size.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +0000377 virtual intptr_t Size() = 0;
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000378
erik.corry@gmail.com4a6c3272010-11-18 12:04:40 +0000379 // Returns size of objects. Can differ from the allocated size
380 // (e.g. see LargeObjectSpace).
381 virtual intptr_t SizeOfObjects() { return Size(); }
382
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000383#ifdef DEBUG
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000384 virtual void Print() = 0;
385#endif
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000386
fschneider@chromium.org0c20e672010-01-14 15:28:53 +0000387 // After calling this we can allocate a certain number of bytes using only
388 // linear allocation (with a LinearAllocationScope and an AlwaysAllocateScope)
389 // without using freelists or causing a GC. This is used by partial
390 // snapshots. It returns true of space was reserved or false if a GC is
391 // needed. For paged spaces the space requested must include the space wasted
392 // at the end of each when allocating linearly.
393 virtual bool ReserveSpace(int bytes) = 0;
394
kasper.lund7276f142008-07-30 08:49:36 +0000395 private:
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000396 Heap* heap_;
kasper.lund7276f142008-07-30 08:49:36 +0000397 AllocationSpace id_;
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000398 Executability executable_;
kasper.lund7276f142008-07-30 08:49:36 +0000399};
400
401
402// ----------------------------------------------------------------------------
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000403// All heap objects containing executable code (code objects) must be allocated
404// from a 2 GB range of memory, so that they can call each other using 32-bit
405// displacements. This happens automatically on 32-bit platforms, where 32-bit
406// displacements cover the entire 4GB virtual address space. On 64-bit
407// platforms, we support this using the CodeRange object, which reserves and
408// manages a range of virtual memory.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000409class CodeRange {
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000410 public:
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +0000411 explicit CodeRange(Isolate* isolate);
412
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000413 // Reserves a range of virtual memory, but does not commit any of it.
414 // Can only be called once, at heap initialization time.
415 // Returns false on failure.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000416 bool Setup(const size_t requested_size);
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000417
418 // Frees the range of virtual memory, and frees the data structures used to
419 // manage it.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000420 void TearDown();
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000421
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +0000422 bool exists() { return this != NULL && code_range_ != NULL; }
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000423 bool contains(Address address) {
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +0000424 if (this == NULL || code_range_ == NULL) return false;
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000425 Address start = static_cast<Address>(code_range_->address());
426 return start <= address && address < start + code_range_->size();
427 }
428
429 // Allocates a chunk of memory from the large-object portion of
430 // the code range. On platforms with no separate code range, should
431 // not be called.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000432 MUST_USE_RESULT void* AllocateRawMemory(const size_t requested,
433 size_t* allocated);
434 void FreeRawMemory(void* buf, size_t length);
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000435
436 private:
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +0000437 Isolate* isolate_;
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000438
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000439 // The reserved range of virtual memory that all code objects are put in.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000440 VirtualMemory* code_range_;
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000441 // Plain old data class, just a struct plus a constructor.
442 class FreeBlock {
443 public:
444 FreeBlock(Address start_arg, size_t size_arg)
445 : start(start_arg), size(size_arg) {}
446 FreeBlock(void* start_arg, size_t size_arg)
447 : start(static_cast<Address>(start_arg)), size(size_arg) {}
448
449 Address start;
450 size_t size;
451 };
452
453 // Freed blocks of memory are added to the free list. When the allocation
454 // list is exhausted, the free list is sorted and merged to make the new
455 // allocation list.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000456 List<FreeBlock> free_list_;
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000457 // Memory is allocated from the free blocks on the allocation list.
458 // The block at current_allocation_block_index_ is the current block.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000459 List<FreeBlock> allocation_list_;
460 int current_allocation_block_index_;
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000461
462 // Finds a block on the allocation list that contains at least the
463 // requested amount of memory. If none is found, sorts and merges
464 // the existing free memory blocks, and searches again.
465 // If none can be found, terminates V8 with FatalProcessOutOfMemory.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000466 void GetNextAllocationBlock(size_t requested);
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000467 // Compares the start addresses of two free blocks.
468 static int CompareFreeBlockAddress(const FreeBlock* left,
469 const FreeBlock* right);
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000470
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000471 DISALLOW_COPY_AND_ASSIGN(CodeRange);
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000472};
473
474
475// ----------------------------------------------------------------------------
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000476// A space acquires chunks of memory from the operating system. The memory
477// allocator manages chunks for the paged heap spaces (old space and map
478// space). A paged chunk consists of pages. Pages in a chunk have contiguous
479// addresses and are linked as a list.
480//
481// The allocator keeps an initial chunk which is used for the new space. The
482// leftover regions of the initial chunk are used for the initial chunks of
483// old space and map space if they are big enough to hold at least one page.
484// The allocator assumes that there is one old space and one map space, each
485// expands the space by allocating kPagesPerChunk pages except the last
486// expansion (before running out of space). The first chunk may contain fewer
487// than kPagesPerChunk pages as well.
488//
489// The memory allocator also allocates chunks for the large object space, but
490// they are managed by the space itself. The new space does not expand.
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000491//
492// The fact that pages for paged spaces are allocated and deallocated in chunks
493// induces a constraint on the order of pages in a linked lists. We say that
494// pages are linked in the chunk-order if and only if every two consecutive
495// pages from the same chunk are consecutive in the linked list.
496//
497
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000498
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000499class MemoryAllocator {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000500 public:
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +0000501 explicit MemoryAllocator(Isolate* isolate);
502
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000503 // Initializes its internal bookkeeping structures.
ager@chromium.org01fe7df2010-11-10 11:59:11 +0000504 // Max capacity of the total space and executable memory limit.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000505 bool Setup(intptr_t max_capacity, intptr_t capacity_executable);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000506
507 // Deletes valid chunks.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000508 void TearDown();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000509
510 // Reserves an initial address range of virtual memory to be split between
511 // the two new space semispaces, the old space, and the map space. The
512 // memory is not yet committed or assigned to spaces and split into pages.
513 // The initial chunk is unmapped when the memory allocator is torn down.
514 // This function should only be called when there is not already a reserved
515 // initial chunk (initial_chunk_ should be NULL). It returns the start
516 // address of the initial chunk if successful, with the side effect of
517 // setting the initial chunk, or else NULL if unsuccessful and leaves the
518 // initial chunk NULL.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000519 void* ReserveInitialChunk(const size_t requested);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000520
521 // Commits pages from an as-yet-unmanaged block of virtual memory into a
522 // paged space. The block should be part of the initial chunk reserved via
523 // a call to ReserveInitialChunk. The number of pages is always returned in
524 // the output parameter num_pages. This function assumes that the start
525 // address is non-null and that it is big enough to hold at least one
526 // page-aligned page. The call always succeeds, and num_pages is always
527 // greater than zero.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000528 Page* CommitPages(Address start, size_t size, PagedSpace* owner,
529 int* num_pages);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000530
531 // Commit a contiguous block of memory from the initial chunk. Assumes that
532 // the address is not NULL, the size is greater than zero, and that the
533 // block is contained in the initial chunk. Returns true if it succeeded
534 // and false otherwise.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000535 bool CommitBlock(Address start, size_t size, Executability executable);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000536
ager@chromium.orgadd848f2009-08-13 12:44:13 +0000537 // Uncommit a contiguous block of memory [start..(start+size)[.
538 // start is not NULL, the size is greater than zero, and the
539 // block is contained in the initial chunk. Returns true if it succeeded
540 // and false otherwise.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000541 bool UncommitBlock(Address start, size_t size);
ager@chromium.orgadd848f2009-08-13 12:44:13 +0000542
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000543 // Zaps a contiguous block of memory [start..(start+size)[ thus
544 // filling it up with a recognizable non-NULL bit pattern.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000545 void ZapBlock(Address start, size_t size);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000546
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000547 // Attempts to allocate the requested (non-zero) number of pages from the
548 // OS. Fewer pages might be allocated than requested. If it fails to
549 // allocate memory for the OS or cannot allocate a single page, this
550 // function returns an invalid page pointer (NULL). The caller must check
551 // whether the returned page is valid (by calling Page::is_valid()). It is
552 // guaranteed that allocated pages have contiguous addresses. The actual
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000553 // number of allocated pages is returned in the output parameter
554 // allocated_pages. If the PagedSpace owner is executable and there is
555 // a code range, the pages are allocated from the code range.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000556 Page* AllocatePages(int requested_pages, int* allocated_pages,
557 PagedSpace* owner);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000558
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000559 // Frees pages from a given page and after. Requires pages to be
560 // linked in chunk-order (see comment for class).
561 // If 'p' is the first page of a chunk, pages from 'p' are freed
562 // and this function returns an invalid page pointer.
563 // Otherwise, the function searches a page after 'p' that is
564 // the first page of a chunk. Pages after the found page
565 // are freed and the function returns 'p'.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000566 Page* FreePages(Page* p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000567
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000568 // Frees all pages owned by given space.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000569 void FreeAllPages(PagedSpace* space);
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000570
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000571 // Allocates and frees raw memory of certain size.
572 // These are just thin wrappers around OS::Allocate and OS::Free,
573 // but keep track of allocated bytes as part of heap.
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000574 // If the flag is EXECUTABLE and a code range exists, the requested
575 // memory is allocated from the code range. If a code range exists
576 // and the freed memory is in it, the code range manages the freed memory.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000577 MUST_USE_RESULT void* AllocateRawMemory(const size_t requested,
578 size_t* allocated,
579 Executability executable);
580 void FreeRawMemory(void* buf,
581 size_t length,
582 Executability executable);
583 void PerformAllocationCallback(ObjectSpace space,
584 AllocationAction action,
585 size_t size);
kmillikin@chromium.org3cdd9e12010-09-06 11:39:48 +0000586
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000587 void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
588 ObjectSpace space,
589 AllocationAction action);
590 void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
591 bool MemoryAllocationCallbackRegistered(MemoryAllocationCallback callback);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000592
593 // Returns the maximum available bytes of heaps.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000594 intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000595
kasperl@chromium.orge959c182009-07-27 08:59:04 +0000596 // Returns allocated spaces in bytes.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000597 intptr_t Size() { return size_; }
kasperl@chromium.orge959c182009-07-27 08:59:04 +0000598
ager@chromium.org01fe7df2010-11-10 11:59:11 +0000599 // Returns the maximum available executable bytes of heaps.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000600 intptr_t AvailableExecutable() {
ager@chromium.org01fe7df2010-11-10 11:59:11 +0000601 if (capacity_executable_ < size_executable_) return 0;
602 return capacity_executable_ - size_executable_;
603 }
604
erik.corry@gmail.com145eff52010-08-23 11:36:18 +0000605 // Returns allocated executable spaces in bytes.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000606 intptr_t SizeExecutable() { return size_executable_; }
erik.corry@gmail.com145eff52010-08-23 11:36:18 +0000607
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000608 // Returns maximum available bytes that the old space can have.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000609 intptr_t MaxAvailable() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000610 return (Available() / Page::kPageSize) * Page::kObjectAreaSize;
611 }
612
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000613 // Links two pages.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000614 inline void SetNextPage(Page* prev, Page* next);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000615
616 // Returns the next page of a given page.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000617 inline Page* GetNextPage(Page* p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000618
619 // Checks whether a page belongs to a space.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000620 inline bool IsPageInSpace(Page* p, PagedSpace* space);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000621
622 // Returns the space that owns the given page.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000623 inline PagedSpace* PageOwner(Page* page);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000624
625 // Finds the first/last page in the same chunk as a given page.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000626 Page* FindFirstPageInSameChunk(Page* p);
627 Page* FindLastPageInSameChunk(Page* p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000628
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000629 // Relinks list of pages owned by space to make it chunk-ordered.
630 // Returns new first and last pages of space.
631 // Also returns last page in relinked list which has WasInUsedBeforeMC
632 // flag set.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000633 void RelinkPageListInChunkOrder(PagedSpace* space,
634 Page** first_page,
635 Page** last_page,
636 Page** last_page_in_use);
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000637
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000638#ifdef DEBUG
639 // Reports statistic info of the space.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000640 void ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000641#endif
642
643 // Due to encoding limitation, we can only have 8K chunks.
sgjesse@chromium.org846fb742009-12-18 08:56:33 +0000644 static const int kMaxNofChunks = 1 << kPageSizeBits;
ager@chromium.orga1645e22009-09-09 19:27:10 +0000645 // If a chunk has at least 16 pages, the maximum heap size is about
646 // 8K * 8K * 16 = 1G bytes.
647#ifdef V8_TARGET_ARCH_X64
648 static const int kPagesPerChunk = 32;
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000649 // On 64 bit the chunk table consists of 4 levels of 4096-entry tables.
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000650 static const int kChunkTableLevels = 4;
651 static const int kChunkTableBitsPerLevel = 12;
kasperl@chromium.orge959c182009-07-27 08:59:04 +0000652#else
ager@chromium.orga1645e22009-09-09 19:27:10 +0000653 static const int kPagesPerChunk = 16;
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000654 // On 32 bit the chunk table consists of 2 levels of 256-entry tables.
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000655 static const int kChunkTableLevels = 2;
656 static const int kChunkTableBitsPerLevel = 8;
kasperl@chromium.orge959c182009-07-27 08:59:04 +0000657#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000658
659 private:
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000660 static const int kChunkSize = kPagesPerChunk * Page::kPageSize;
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000661
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +0000662 Isolate* isolate_;
663
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000664 // Maximum space size in bytes.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000665 intptr_t capacity_;
ager@chromium.org01fe7df2010-11-10 11:59:11 +0000666 // Maximum subset of capacity_ that can be executable
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000667 intptr_t capacity_executable_;
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000668
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000669 // Allocated space size in bytes.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000670 intptr_t size_;
671
erik.corry@gmail.com145eff52010-08-23 11:36:18 +0000672 // Allocated executable space size in bytes.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000673 intptr_t size_executable_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000674
kmillikin@chromium.org3cdd9e12010-09-06 11:39:48 +0000675 struct MemoryAllocationCallbackRegistration {
676 MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback,
677 ObjectSpace space,
678 AllocationAction action)
679 : callback(callback), space(space), action(action) {
680 }
681 MemoryAllocationCallback callback;
682 ObjectSpace space;
683 AllocationAction action;
684 };
685 // A List of callback that are triggered when memory is allocated or free'd
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000686 List<MemoryAllocationCallbackRegistration>
kmillikin@chromium.org3cdd9e12010-09-06 11:39:48 +0000687 memory_allocation_callbacks_;
688
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000689 // The initial chunk of virtual memory.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000690 VirtualMemory* initial_chunk_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000691
692 // Allocated chunk info: chunk start address, chunk size, and owning space.
693 class ChunkInfo BASE_EMBEDDED {
694 public:
kmillikin@chromium.org3cdd9e12010-09-06 11:39:48 +0000695 ChunkInfo() : address_(NULL),
696 size_(0),
697 owner_(NULL),
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000698 executable_(NOT_EXECUTABLE),
699 owner_identity_(FIRST_SPACE) {}
kmillikin@chromium.org3cdd9e12010-09-06 11:39:48 +0000700 inline void init(Address a, size_t s, PagedSpace* o);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000701 Address address() { return address_; }
702 size_t size() { return size_; }
703 PagedSpace* owner() { return owner_; }
kmillikin@chromium.org3cdd9e12010-09-06 11:39:48 +0000704 // We save executability of the owner to allow using it
705 // when collecting stats after the owner has been destroyed.
706 Executability executable() const { return executable_; }
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000707 AllocationSpace owner_identity() const { return owner_identity_; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000708
709 private:
710 Address address_;
711 size_t size_;
712 PagedSpace* owner_;
kmillikin@chromium.org3cdd9e12010-09-06 11:39:48 +0000713 Executability executable_;
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000714 AllocationSpace owner_identity_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000715 };
716
717 // Chunks_, free_chunk_ids_ and top_ act as a stack of free chunk ids.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000718 List<ChunkInfo> chunks_;
719 List<int> free_chunk_ids_;
720 int max_nof_chunks_;
721 int top_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000722
723 // Push/pop a free chunk id onto/from the stack.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000724 void Push(int free_chunk_id);
725 int Pop();
726 bool OutOfChunkIds() { return top_ == 0; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000727
728 // Frees a chunk.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000729 void DeleteChunk(int chunk_id);
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000730
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000731 // Basic check whether a chunk id is in the valid range.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000732 inline bool IsValidChunkId(int chunk_id);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000733
734 // Checks whether a chunk id identifies an allocated chunk.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000735 inline bool IsValidChunk(int chunk_id);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000736
737 // Returns the chunk id that a page belongs to.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000738 inline int GetChunkId(Page* p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000739
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000740 // True if the address lies in the initial chunk.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000741 inline bool InInitialChunk(Address address);
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000742
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000743 // Initializes pages in a chunk. Returns the first page address.
744 // This function and GetChunkId() are provided for the mark-compact
745 // collector to rebuild page headers in the from space, which is
746 // used as a marking stack and its page headers are destroyed.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000747 Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
748 PagedSpace* owner);
fschneider@chromium.org013f3e12010-04-26 13:27:52 +0000749
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000750 Page* RelinkPagesInChunk(int chunk_id,
751 Address chunk_start,
752 size_t chunk_size,
753 Page* prev,
754 Page** last_page_in_use);
755
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000756 DISALLOW_COPY_AND_ASSIGN(MemoryAllocator);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000757};
758
759
760// -----------------------------------------------------------------------------
761// Interface for heap object iterator to be implemented by all object space
762// object iterators.
763//
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000764// NOTE: The space specific object iterators also implements the own next()
765// method which is used to avoid using virtual functions
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000766// iterating a specific space.
767
768class ObjectIterator : public Malloced {
769 public:
770 virtual ~ObjectIterator() { }
771
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000772 virtual HeapObject* next_object() = 0;
773};
774
775
776// -----------------------------------------------------------------------------
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000777// Heap object iterator in new/old/map spaces.
778//
779// A HeapObjectIterator iterates objects from a given address to the
780// top of a space. The given address must be below the current
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000781// allocation pointer (space top). There are some caveats.
782//
783// (1) If the space top changes upward during iteration (because of
784// allocating new objects), the iterator does not iterate objects
785// above the original space top. The caller must create a new
786// iterator starting from the old top in order to visit these new
787// objects.
788//
789// (2) If new objects are allocated below the original allocation top
790// (e.g., free-list allocation in paged spaces), the new objects
791// may or may not be iterated depending on their position with
792// respect to the current point of iteration.
793//
794// (3) The space top should not change downward during iteration,
795// otherwise the iterator will return not-necessarily-valid
796// objects.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000797
798class HeapObjectIterator: public ObjectIterator {
799 public:
800 // Creates a new object iterator in a given space. If a start
801 // address is not given, the iterator starts from the space bottom.
802 // If the size function is not given, the iterator calls the default
803 // Object::Size().
804 explicit HeapObjectIterator(PagedSpace* space);
805 HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func);
806 HeapObjectIterator(PagedSpace* space, Address start);
807 HeapObjectIterator(PagedSpace* space,
808 Address start,
809 HeapObjectCallback size_func);
ricow@chromium.orgd236f4d2010-09-01 06:52:08 +0000810 HeapObjectIterator(Page* page, HeapObjectCallback size_func);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000811
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000812 inline HeapObject* next() {
813 return (cur_addr_ < cur_limit_) ? FromCurrentPage() : FromNextPage();
814 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000815
816 // implementation of ObjectIterator.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000817 virtual HeapObject* next_object() { return next(); }
818
819 private:
820 Address cur_addr_; // current iteration point
821 Address end_addr_; // end iteration point
822 Address cur_limit_; // current page limit
823 HeapObjectCallback size_func_; // size function
824 Page* end_page_; // caches the page of the end address
825
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000826 HeapObject* FromCurrentPage() {
827 ASSERT(cur_addr_ < cur_limit_);
828
829 HeapObject* obj = HeapObject::FromAddress(cur_addr_);
830 int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj);
831 ASSERT_OBJECT_SIZE(obj_size);
832
833 cur_addr_ += obj_size;
834 ASSERT(cur_addr_ <= cur_limit_);
835
836 return obj;
837 }
838
839 // Slow path of next, goes into the next page.
840 HeapObject* FromNextPage();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000841
842 // Initializes fields.
843 void Initialize(Address start, Address end, HeapObjectCallback size_func);
844
845#ifdef DEBUG
846 // Verifies whether fields have valid values.
847 void Verify();
848#endif
849};
850
851
852// -----------------------------------------------------------------------------
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000853// A PageIterator iterates the pages in a paged space.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000854//
855// The PageIterator class provides three modes for iterating pages in a space:
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000856// PAGES_IN_USE iterates pages containing allocated objects.
857// PAGES_USED_BY_MC iterates pages that hold relocated objects during a
858// mark-compact collection.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000859// ALL_PAGES iterates all pages in the space.
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000860//
861// There are some caveats.
862//
863// (1) If the space expands during iteration, new pages will not be
864// returned by the iterator in any mode.
865//
866// (2) If new objects are allocated during iteration, they will appear
867// in pages returned by the iterator. Allocation may cause the
868// allocation pointer or MC allocation pointer in the last page to
869// change between constructing the iterator and iterating the last
870// page.
871//
872// (3) The space should not shrink during iteration, otherwise the
873// iterator will return deallocated pages.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000874
875class PageIterator BASE_EMBEDDED {
876 public:
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000877 enum Mode {
878 PAGES_IN_USE,
879 PAGES_USED_BY_MC,
880 ALL_PAGES
881 };
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000882
883 PageIterator(PagedSpace* space, Mode mode);
884
885 inline bool has_next();
886 inline Page* next();
887
888 private:
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000889 PagedSpace* space_;
890 Page* prev_page_; // Previous page returned.
891 Page* stop_page_; // Page to stop at (last page returned by the iterator).
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000892};
893
894
895// -----------------------------------------------------------------------------
896// A space has a list of pages. The next page can be accessed via
897// Page::next_page() call. The next page of the last page is an
898// invalid page pointer. A space can expand and shrink dynamically.
899
900// An abstraction of allocation and relocation pointers in a page-structured
901// space.
kasper.lund7276f142008-07-30 08:49:36 +0000902class AllocationInfo {
903 public:
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000904 Address top; // current allocation top
905 Address limit; // current allocation limit
kasper.lund7276f142008-07-30 08:49:36 +0000906
907#ifdef DEBUG
908 bool VerifyPagedAllocation() {
909 return (Page::FromAllocationTop(top) == Page::FromAllocationTop(limit))
910 && (top <= limit);
911 }
912#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000913};
914
915
916// An abstraction of the accounting statistics of a page-structured space.
917// The 'capacity' of a space is the number of object-area bytes (ie, not
918// including page bookkeeping structures) currently in the space. The 'size'
919// of a space is the number of allocated bytes, the 'waste' in the space is
920// the number of bytes that are not allocated and not available to
921// allocation without reorganizing the space via a GC (eg, small blocks due
922// to internal fragmentation, top of page areas in map space), and the bytes
923// 'available' is the number of unallocated bytes that are not waste. The
924// capacity is the sum of size, waste, and available.
925//
926// The stats are only set by functions that ensure they stay balanced. These
927// functions increase or decrease one of the non-capacity stats in
928// conjunction with capacity, or else they always balance increases and
929// decreases to the non-capacity stats.
930class AllocationStats BASE_EMBEDDED {
931 public:
932 AllocationStats() { Clear(); }
933
934 // Zero out all the allocation statistics (ie, no capacity).
935 void Clear() {
936 capacity_ = 0;
937 available_ = 0;
938 size_ = 0;
939 waste_ = 0;
940 }
941
942 // Reset the allocation statistics (ie, available = capacity with no
943 // wasted or allocated bytes).
944 void Reset() {
945 available_ = capacity_;
946 size_ = 0;
947 waste_ = 0;
948 }
949
950 // Accessors for the allocation statistics.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +0000951 intptr_t Capacity() { return capacity_; }
952 intptr_t Available() { return available_; }
953 intptr_t Size() { return size_; }
954 intptr_t Waste() { return waste_; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000955
956 // Grow the space by adding available bytes.
957 void ExpandSpace(int size_in_bytes) {
958 capacity_ += size_in_bytes;
959 available_ += size_in_bytes;
960 }
961
962 // Shrink the space by removing available bytes.
963 void ShrinkSpace(int size_in_bytes) {
964 capacity_ -= size_in_bytes;
965 available_ -= size_in_bytes;
966 }
967
968 // Allocate from available bytes (available -> size).
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +0000969 void AllocateBytes(intptr_t size_in_bytes) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000970 available_ -= size_in_bytes;
971 size_ += size_in_bytes;
972 }
973
974 // Free allocated bytes, making them available (size -> available).
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +0000975 void DeallocateBytes(intptr_t size_in_bytes) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000976 size_ -= size_in_bytes;
977 available_ += size_in_bytes;
978 }
979
980 // Waste free bytes (available -> waste).
981 void WasteBytes(int size_in_bytes) {
982 available_ -= size_in_bytes;
983 waste_ += size_in_bytes;
984 }
985
986 // Consider the wasted bytes to be allocated, as they contain filler
987 // objects (waste -> size).
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +0000988 void FillWastedBytes(intptr_t size_in_bytes) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000989 waste_ -= size_in_bytes;
990 size_ += size_in_bytes;
991 }
992
993 private:
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +0000994 intptr_t capacity_;
995 intptr_t available_;
996 intptr_t size_;
997 intptr_t waste_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000998};
999
1000
kasper.lund7276f142008-07-30 08:49:36 +00001001class PagedSpace : public Space {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001002 public:
1003 // Creates a space with a maximum capacity, and an id.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001004 PagedSpace(Heap* heap,
1005 intptr_t max_capacity,
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001006 AllocationSpace id,
1007 Executability executable);
kasper.lund7276f142008-07-30 08:49:36 +00001008
1009 virtual ~PagedSpace() {}
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001010
1011 // Set up the space using the given address range of virtual memory (from
1012 // the memory allocator's initial chunk) if possible. If the block of
1013 // addresses is not big enough to contain a single page-aligned page, a
1014 // fresh chunk will be allocated.
1015 bool Setup(Address start, size_t size);
1016
1017 // Returns true if the space has been successfully set up and not
1018 // subsequently torn down.
1019 bool HasBeenSetup();
1020
1021 // Cleans up the space, frees all pages in this space except those belonging
1022 // to the initial chunk, uncommits addresses in the initial chunk.
1023 void TearDown();
1024
1025 // Checks whether an object/address is in this space.
1026 inline bool Contains(Address a);
1027 bool Contains(HeapObject* o) { return Contains(o->address()); }
kasperl@chromium.orga5551262010-12-07 12:49:48 +00001028 // Never crashes even if a is not a valid pointer.
1029 inline bool SafeContains(Address a);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001030
kasper.lund7276f142008-07-30 08:49:36 +00001031 // Given an address occupied by a live object, return that object if it is
1032 // in this space, or Failure::Exception() if it is not. The implementation
1033 // iterates over objects in the page containing the address, the cost is
1034 // linear in the number of objects in the page. It may be slow.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001035 MUST_USE_RESULT MaybeObject* FindObject(Address addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001036
kasper.lund7276f142008-07-30 08:49:36 +00001037 // Checks whether page is currently in use by this space.
1038 bool IsUsed(Page* page);
1039
ricow@chromium.org30ce4112010-05-31 10:38:25 +00001040 void MarkAllPagesClean();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001041
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001042 // Prepares for a mark-compact GC.
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001043 virtual void PrepareForMarkCompact(bool will_compact);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001044
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001045 // The top of allocation in a page in this space. Undefined if page is unused.
1046 Address PageAllocationTop(Page* page) {
1047 return page == TopPageOf(allocation_info_) ? top()
1048 : PageAllocationLimit(page);
1049 }
1050
1051 // The limit of allocation for a page in this space.
1052 virtual Address PageAllocationLimit(Page* page) = 0;
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001053
ricow@chromium.org30ce4112010-05-31 10:38:25 +00001054 void FlushTopPageWatermark() {
1055 AllocationTopPage()->SetCachedAllocationWatermark(top());
1056 AllocationTopPage()->InvalidateWatermark(true);
1057 }
1058
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001059 // Current capacity without growing (Size() + Available() + Waste()).
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001060 intptr_t Capacity() { return accounting_stats_.Capacity(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001061
ager@chromium.org3811b432009-10-28 14:53:37 +00001062 // Total amount of memory committed for this space. For paged
1063 // spaces this equals the capacity.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001064 intptr_t CommittedMemory() { return Capacity(); }
ager@chromium.org3811b432009-10-28 14:53:37 +00001065
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001066 // Available bytes without growing.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001067 intptr_t Available() { return accounting_stats_.Available(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001068
1069 // Allocated bytes in this space.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001070 virtual intptr_t Size() { return accounting_stats_.Size(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001071
1072 // Wasted bytes due to fragmentation and not recoverable until the
1073 // next GC of this space.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001074 intptr_t Waste() { return accounting_stats_.Waste(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001075
1076 // Returns the address of the first object in this space.
1077 Address bottom() { return first_page_->ObjectAreaStart(); }
1078
1079 // Returns the allocation pointer in this space.
1080 Address top() { return allocation_info_.top; }
1081
kasper.lund7276f142008-07-30 08:49:36 +00001082 // Allocate the requested number of bytes in the space if possible, return a
1083 // failure object if not.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001084 MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001085
kasper.lund7276f142008-07-30 08:49:36 +00001086 // Allocate the requested number of bytes for relocation during mark-compact
1087 // collection.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001088 MUST_USE_RESULT inline MaybeObject* MCAllocateRaw(int size_in_bytes);
kasper.lund7276f142008-07-30 08:49:36 +00001089
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001090 virtual bool ReserveSpace(int bytes);
1091
1092 // Used by ReserveSpace.
1093 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page) = 0;
kasper.lund7276f142008-07-30 08:49:36 +00001094
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001095 // Free all pages in range from prev (exclusive) to last (inclusive).
1096 // Freed pages are moved to the end of page list.
1097 void FreePages(Page* prev, Page* last);
1098
ricow@chromium.orgd236f4d2010-09-01 06:52:08 +00001099 // Deallocates a block.
1100 virtual void DeallocateBlock(Address start,
1101 int size_in_bytes,
1102 bool add_to_freelist) = 0;
1103
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001104 // Set space allocation info.
1105 void SetTop(Address top) {
1106 allocation_info_.top = top;
1107 allocation_info_.limit = PageAllocationLimit(Page::FromAllocationTop(top));
1108 }
1109
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001110 // ---------------------------------------------------------------------------
1111 // Mark-compact collection support functions
1112
1113 // Set the relocation point to the beginning of the space.
1114 void MCResetRelocationInfo();
1115
1116 // Writes relocation info to the top page.
1117 void MCWriteRelocationInfoToPage() {
ricow@chromium.org30ce4112010-05-31 10:38:25 +00001118 TopPageOf(mc_forwarding_info_)->
1119 SetAllocationWatermark(mc_forwarding_info_.top);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001120 }
1121
1122 // Computes the offset of a given address in this space to the beginning
1123 // of the space.
1124 int MCSpaceOffsetForAddress(Address addr);
1125
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001126 // Updates the allocation pointer to the relocation top after a mark-compact
1127 // collection.
1128 virtual void MCCommitRelocationInfo() = 0;
1129
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001130 // Releases half of unused pages.
1131 void Shrink();
1132
1133 // Ensures that the capacity is at least 'capacity'. Returns false on failure.
1134 bool EnsureCapacity(int capacity);
1135
1136#ifdef DEBUG
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001137 // Print meta info and objects in this space.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001138 virtual void Print();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001139
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001140 // Verify integrity of this space.
1141 virtual void Verify(ObjectVisitor* visitor);
1142
1143 // Overridden by subclasses to verify space-specific object
1144 // properties (e.g., only maps or free-list nodes are in map space).
1145 virtual void VerifyObject(HeapObject* obj) {}
1146
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001147 // Report code object related statistics
1148 void CollectCodeStatistics();
1149 static void ReportCodeStatistics();
1150 static void ResetCodeStatistics();
1151#endif
1152
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001153 // Returns the page of the allocation pointer.
1154 Page* AllocationTopPage() { return TopPageOf(allocation_info_); }
1155
ricow@chromium.orgd236f4d2010-09-01 06:52:08 +00001156 void RelinkPageListInChunkOrder(bool deallocate_blocks);
1157
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001158 protected:
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001159 // Maximum capacity of this space.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001160 intptr_t max_capacity_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001161
1162 // Accounting information for this space.
1163 AllocationStats accounting_stats_;
1164
1165 // The first page in this space.
1166 Page* first_page_;
1167
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +00001168 // The last page in this space. Initially set in Setup, updated in
1169 // Expand and Shrink.
1170 Page* last_page_;
1171
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001172 // True if pages owned by this space are linked in chunk-order.
1173 // See comment for class MemoryAllocator for definition of chunk-order.
1174 bool page_list_is_chunk_ordered_;
1175
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001176 // Normal allocation information.
1177 AllocationInfo allocation_info_;
1178
1179 // Relocation information during mark-compact collections.
1180 AllocationInfo mc_forwarding_info_;
1181
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001182 // Bytes of each page that cannot be allocated. Possibly non-zero
1183 // for pages in spaces with only fixed-size objects. Always zero
1184 // for pages in spaces with variable sized objects (those pages are
1185 // padded with free-list nodes).
1186 int page_extra_;
1187
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001188 // Sets allocation pointer to a page bottom.
1189 static void SetAllocationInfo(AllocationInfo* alloc_info, Page* p);
1190
1191 // Returns the top page specified by an allocation info structure.
1192 static Page* TopPageOf(AllocationInfo alloc_info) {
1193 return Page::FromAllocationTop(alloc_info.limit);
1194 }
1195
kasperl@chromium.orgeac059f2010-01-25 11:02:06 +00001196 int CountPagesToTop() {
1197 Page* p = Page::FromAllocationTop(allocation_info_.top);
1198 PageIterator it(this, PageIterator::ALL_PAGES);
1199 int counter = 1;
1200 while (it.has_next()) {
1201 if (it.next() == p) return counter;
1202 counter++;
1203 }
1204 UNREACHABLE();
1205 return -1;
1206 }
1207
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001208 // Expands the space by allocating a fixed number of pages. Returns false if
1209 // it cannot allocate requested number of pages from OS. Newly allocated
ager@chromium.org32912102009-01-16 10:38:43 +00001210 // pages are append to the last_page;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001211 bool Expand(Page* last_page);
1212
kasper.lund7276f142008-07-30 08:49:36 +00001213 // Generic fast case allocation function that tries linear allocation in
1214 // the top page of 'alloc_info'. Returns NULL on failure.
1215 inline HeapObject* AllocateLinearly(AllocationInfo* alloc_info,
1216 int size_in_bytes);
1217
1218 // During normal allocation or deserialization, roll to the next page in
1219 // the space (there is assumed to be one) and allocate there. This
1220 // function is space-dependent.
1221 virtual HeapObject* AllocateInNextPage(Page* current_page,
1222 int size_in_bytes) = 0;
1223
1224 // Slow path of AllocateRaw. This function is space-dependent.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001225 MUST_USE_RESULT virtual HeapObject* SlowAllocateRaw(int size_in_bytes) = 0;
kasper.lund7276f142008-07-30 08:49:36 +00001226
1227 // Slow path of MCAllocateRaw.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001228 MUST_USE_RESULT HeapObject* SlowMCAllocateRaw(int size_in_bytes);
kasper.lund7276f142008-07-30 08:49:36 +00001229
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001230#ifdef DEBUG
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001231 // Returns the number of total pages in this space.
1232 int CountTotalPages();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001233#endif
1234 private:
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001235
1236 // Returns a pointer to the page of the relocation pointer.
1237 Page* MCRelocationTopPage() { return TopPageOf(mc_forwarding_info_); }
1238
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00001239 friend class PageIterator;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001240};
1241
1242
sgjesse@chromium.org0b6db592009-07-30 14:48:31 +00001243class NumberAndSizeInfo BASE_EMBEDDED {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001244 public:
sgjesse@chromium.org0b6db592009-07-30 14:48:31 +00001245 NumberAndSizeInfo() : number_(0), bytes_(0) {}
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001246
sgjesse@chromium.org0b6db592009-07-30 14:48:31 +00001247 int number() const { return number_; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001248 void increment_number(int num) { number_ += num; }
1249
sgjesse@chromium.org0b6db592009-07-30 14:48:31 +00001250 int bytes() const { return bytes_; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001251 void increment_bytes(int size) { bytes_ += size; }
1252
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001253 void clear() {
1254 number_ = 0;
1255 bytes_ = 0;
1256 }
1257
1258 private:
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001259 int number_;
1260 int bytes_;
1261};
sgjesse@chromium.org0b6db592009-07-30 14:48:31 +00001262
1263
1264// HistogramInfo class for recording a single "bar" of a histogram. This
whesse@chromium.org030d38e2011-07-13 13:23:34 +00001265// class is used for collecting statistics to print to the log file.
sgjesse@chromium.org0b6db592009-07-30 14:48:31 +00001266class HistogramInfo: public NumberAndSizeInfo {
1267 public:
1268 HistogramInfo() : NumberAndSizeInfo() {}
1269
1270 const char* name() { return name_; }
1271 void set_name(const char* name) { name_ = name; }
1272
1273 private:
1274 const char* name_;
1275};
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001276
1277
1278// -----------------------------------------------------------------------------
1279// SemiSpace in young generation
1280//
1281// A semispace is a contiguous chunk of memory. The mark-compact collector
1282// uses the memory in the from space as a marking stack when tracing live
1283// objects.
1284
kasper.lund7276f142008-07-30 08:49:36 +00001285class SemiSpace : public Space {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001286 public:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001287 // Constructor.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001288 explicit SemiSpace(Heap* heap) : Space(heap, NEW_SPACE, NOT_EXECUTABLE) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001289 start_ = NULL;
1290 age_mark_ = NULL;
1291 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001292
1293 // Sets up the semispace using the given chunk.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001294 bool Setup(Address start, int initial_capacity, int maximum_capacity);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001295
1296 // Tear down the space. Heap memory was not allocated by the space, so it
1297 // is not deallocated here.
1298 void TearDown();
1299
1300 // True if the space has been set up but not torn down.
1301 bool HasBeenSetup() { return start_ != NULL; }
1302
christian.plesner.hansen@gmail.com5a6af922009-08-12 14:20:51 +00001303 // Grow the size of the semispace by committing extra virtual memory.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001304 // Assumes that the caller has checked that the semispace has not reached
ager@chromium.org32912102009-01-16 10:38:43 +00001305 // its maximum capacity (and thus there is space available in the reserved
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001306 // address range to grow).
christian.plesner.hansen@gmail.com5a6af922009-08-12 14:20:51 +00001307 bool Grow();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001308
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001309 // Grow the semispace to the new capacity. The new capacity
1310 // requested must be larger than the current capacity.
1311 bool GrowTo(int new_capacity);
1312
1313 // Shrinks the semispace to the new capacity. The new capacity
1314 // requested must be more than the amount of used memory in the
1315 // semispace and less than the current capacity.
1316 bool ShrinkTo(int new_capacity);
1317
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001318 // Returns the start address of the space.
1319 Address low() { return start_; }
1320 // Returns one past the end address of the space.
1321 Address high() { return low() + capacity_; }
1322
1323 // Age mark accessors.
1324 Address age_mark() { return age_mark_; }
1325 void set_age_mark(Address mark) { age_mark_ = mark; }
1326
1327 // True if the address is in the address range of this semispace (not
1328 // necessarily below the allocation pointer).
1329 bool Contains(Address a) {
ager@chromium.org5ec48922009-05-05 07:25:34 +00001330 return (reinterpret_cast<uintptr_t>(a) & address_mask_)
1331 == reinterpret_cast<uintptr_t>(start_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001332 }
1333
1334 // True if the object is a heap object in the address range of this
1335 // semispace (not necessarily below the allocation pointer).
1336 bool Contains(Object* o) {
ager@chromium.org5ec48922009-05-05 07:25:34 +00001337 return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001338 }
1339
ager@chromium.org32912102009-01-16 10:38:43 +00001340 // The offset of an address from the beginning of the space.
ager@chromium.orgc4c92722009-11-18 14:12:51 +00001341 int SpaceOffsetForAddress(Address addr) {
1342 return static_cast<int>(addr - low());
1343 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001344
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001345 // If we don't have these here then SemiSpace will be abstract. However
1346 // they should never be called.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001347 virtual intptr_t Size() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001348 UNREACHABLE();
1349 return 0;
1350 }
1351
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001352 virtual bool ReserveSpace(int bytes) {
1353 UNREACHABLE();
1354 return false;
1355 }
1356
ager@chromium.orgadd848f2009-08-13 12:44:13 +00001357 bool is_committed() { return committed_; }
1358 bool Commit();
1359 bool Uncommit();
1360
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001361#ifdef DEBUG
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001362 virtual void Print();
1363 virtual void Verify();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001364#endif
1365
christian.plesner.hansen@gmail.com5a6af922009-08-12 14:20:51 +00001366 // Returns the current capacity of the semi space.
1367 int Capacity() { return capacity_; }
1368
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001369 // Returns the maximum capacity of the semi space.
1370 int MaximumCapacity() { return maximum_capacity_; }
1371
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001372 // Returns the initial capacity of the semi space.
1373 int InitialCapacity() { return initial_capacity_; }
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001374
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001375 private:
1376 // The current and maximum capacity of the space.
1377 int capacity_;
1378 int maximum_capacity_;
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001379 int initial_capacity_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001380
1381 // The start address of the space.
1382 Address start_;
1383 // Used to govern object promotion during mark-compact collection.
1384 Address age_mark_;
1385
1386 // Masks and comparison values to test for containment in this semispace.
ager@chromium.org5ec48922009-05-05 07:25:34 +00001387 uintptr_t address_mask_;
1388 uintptr_t object_mask_;
1389 uintptr_t object_expected_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001390
ager@chromium.orgadd848f2009-08-13 12:44:13 +00001391 bool committed_;
1392
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001393 public:
1394 TRACK_MEMORY("SemiSpace")
1395};
1396
1397
1398// A SemiSpaceIterator is an ObjectIterator that iterates over the active
1399// semispace of the heap's new space. It iterates over the objects in the
1400// semispace from a given start address (defaulting to the bottom of the
1401// semispace) to the top of the semispace. New objects allocated after the
1402// iterator is created are not iterated.
1403class SemiSpaceIterator : public ObjectIterator {
1404 public:
1405 // Create an iterator over the objects in the given space. If no start
1406 // address is given, the iterator starts from the bottom of the space. If
1407 // no size function is given, the iterator calls Object::Size().
1408 explicit SemiSpaceIterator(NewSpace* space);
1409 SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func);
1410 SemiSpaceIterator(NewSpace* space, Address start);
1411
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001412 HeapObject* next() {
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00001413 if (current_ == limit_) return NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001414
1415 HeapObject* object = HeapObject::FromAddress(current_);
1416 int size = (size_func_ == NULL) ? object->Size() : size_func_(object);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001417
1418 current_ += size;
1419 return object;
1420 }
1421
1422 // Implementation of the ObjectIterator functions.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001423 virtual HeapObject* next_object() { return next(); }
1424
1425 private:
1426 void Initialize(NewSpace* space, Address start, Address end,
1427 HeapObjectCallback size_func);
1428
1429 // The semispace.
1430 SemiSpace* space_;
1431 // The current iteration point.
1432 Address current_;
1433 // The end of iteration.
1434 Address limit_;
1435 // The callback function.
1436 HeapObjectCallback size_func_;
1437};
1438
1439
1440// -----------------------------------------------------------------------------
1441// The young generation space.
1442//
1443// The new space consists of a contiguous pair of semispaces. It simply
1444// forwards most functions to the appropriate semispace.
1445
kasper.lund7276f142008-07-30 08:49:36 +00001446class NewSpace : public Space {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001447 public:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001448 // Constructor.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001449 explicit NewSpace(Heap* heap)
1450 : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
1451 to_space_(heap),
1452 from_space_(heap) {}
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001453
1454 // Sets up the new space using the given chunk.
1455 bool Setup(Address start, int size);
1456
1457 // Tears down the space. Heap memory was not allocated by the space, so it
1458 // is not deallocated here.
1459 void TearDown();
1460
1461 // True if the space has been set up but not torn down.
1462 bool HasBeenSetup() {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001463 return to_space_.HasBeenSetup() && from_space_.HasBeenSetup();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001464 }
1465
1466 // Flip the pair of spaces.
1467 void Flip();
1468
christian.plesner.hansen@gmail.com5a6af922009-08-12 14:20:51 +00001469 // Grow the capacity of the semispaces. Assumes that they are not at
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001470 // their maximum capacity.
1471 void Grow();
1472
1473 // Shrink the capacity of the semispaces.
1474 void Shrink();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001475
1476 // True if the address or object lies in the address range of either
1477 // semispace (not necessarily below the allocation pointer).
1478 bool Contains(Address a) {
ager@chromium.org5ec48922009-05-05 07:25:34 +00001479 return (reinterpret_cast<uintptr_t>(a) & address_mask_)
1480 == reinterpret_cast<uintptr_t>(start_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001481 }
1482 bool Contains(Object* o) {
ager@chromium.org5ec48922009-05-05 07:25:34 +00001483 return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001484 }
1485
1486 // Return the allocated bytes in the active semispace.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001487 virtual intptr_t Size() { return static_cast<int>(top() - bottom()); }
1488 // The same, but returning an int. We have to have the one that returns
1489 // intptr_t because it is inherited, but if we know we are dealing with the
1490 // new space, which can't get as big as the other spaces then this is useful:
1491 int SizeAsInt() { return static_cast<int>(Size()); }
ager@chromium.org3811b432009-10-28 14:53:37 +00001492
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001493 // Return the current capacity of a semispace.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001494 intptr_t Capacity() {
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001495 ASSERT(to_space_.Capacity() == from_space_.Capacity());
1496 return to_space_.Capacity();
1497 }
ager@chromium.org3811b432009-10-28 14:53:37 +00001498
1499 // Return the total amount of memory committed for new space.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001500 intptr_t CommittedMemory() {
ager@chromium.org3811b432009-10-28 14:53:37 +00001501 if (from_space_.is_committed()) return 2 * Capacity();
1502 return Capacity();
1503 }
1504
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001505 // Return the available bytes without growing in the active semispace.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001506 intptr_t Available() { return Capacity() - Size(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001507
1508 // Return the maximum capacity of a semispace.
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001509 int MaximumCapacity() {
1510 ASSERT(to_space_.MaximumCapacity() == from_space_.MaximumCapacity());
1511 return to_space_.MaximumCapacity();
1512 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001513
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001514 // Returns the initial capacity of a semispace.
1515 int InitialCapacity() {
1516 ASSERT(to_space_.InitialCapacity() == from_space_.InitialCapacity());
1517 return to_space_.InitialCapacity();
1518 }
1519
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001520 // Return the address of the allocation pointer in the active semispace.
1521 Address top() { return allocation_info_.top; }
1522 // Return the address of the first object in the active semispace.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001523 Address bottom() { return to_space_.low(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001524
1525 // Get the age mark of the inactive semispace.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001526 Address age_mark() { return from_space_.age_mark(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001527 // Set the age mark in the active semispace.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001528 void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001529
1530 // The start address of the space and a bit mask. Anding an address in the
1531 // new space with the mask will result in the start address.
1532 Address start() { return start_; }
sgjesse@chromium.orgb9d7da12009-08-05 08:38:10 +00001533 uintptr_t mask() { return address_mask_; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001534
1535 // The allocation top and limit addresses.
1536 Address* allocation_top_address() { return &allocation_info_.top; }
1537 Address* allocation_limit_address() { return &allocation_info_.limit; }
1538
lrn@chromium.org303ada72010-10-27 09:33:13 +00001539 MUST_USE_RESULT MaybeObject* AllocateRaw(int size_in_bytes) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001540 return AllocateRawInternal(size_in_bytes, &allocation_info_);
1541 }
1542
1543 // Allocate the requested number of bytes for relocation during mark-compact
1544 // collection.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001545 MUST_USE_RESULT MaybeObject* MCAllocateRaw(int size_in_bytes) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001546 return AllocateRawInternal(size_in_bytes, &mc_forwarding_info_);
1547 }
1548
1549 // Reset the allocation pointer to the beginning of the active semispace.
1550 void ResetAllocationInfo();
1551 // Reset the reloction pointer to the bottom of the inactive semispace in
1552 // preparation for mark-compact collection.
1553 void MCResetRelocationInfo();
1554 // Update the allocation pointer in the active semispace after a
1555 // mark-compact collection.
1556 void MCCommitRelocationInfo();
1557
1558 // Get the extent of the inactive semispace (for use as a marking stack).
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001559 Address FromSpaceLow() { return from_space_.low(); }
1560 Address FromSpaceHigh() { return from_space_.high(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001561
1562 // Get the extent of the active semispace (to sweep newly copied objects
1563 // during a scavenge collection).
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001564 Address ToSpaceLow() { return to_space_.low(); }
1565 Address ToSpaceHigh() { return to_space_.high(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001566
1567 // Offsets from the beginning of the semispaces.
1568 int ToSpaceOffsetForAddress(Address a) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001569 return to_space_.SpaceOffsetForAddress(a);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001570 }
1571 int FromSpaceOffsetForAddress(Address a) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001572 return from_space_.SpaceOffsetForAddress(a);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001573 }
1574
1575 // True if the object is a heap object in the address range of the
1576 // respective semispace (not necessarily below the allocation pointer of the
1577 // semispace).
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001578 bool ToSpaceContains(Object* o) { return to_space_.Contains(o); }
1579 bool FromSpaceContains(Object* o) { return from_space_.Contains(o); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001580
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001581 bool ToSpaceContains(Address a) { return to_space_.Contains(a); }
1582 bool FromSpaceContains(Address a) { return from_space_.Contains(a); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001583
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001584 virtual bool ReserveSpace(int bytes);
1585
ager@chromium.org5f0c45f2010-12-17 08:51:21 +00001586 // Resizes a sequential string which must be the most recent thing that was
1587 // allocated in new space.
1588 template <typename StringType>
1589 inline void ShrinkStringAtAllocationBoundary(String* string, int len);
1590
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001591#ifdef DEBUG
1592 // Verify the active semispace.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001593 virtual void Verify();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001594 // Print the active semispace.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001595 virtual void Print() { to_space_.Print(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001596#endif
1597
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001598 // Iterates the active semispace to collect statistics.
1599 void CollectStatistics();
1600 // Reports previously collected statistics of the active semispace.
1601 void ReportStatistics();
1602 // Clears previously collected statistics.
1603 void ClearHistograms();
1604
1605 // Record the allocation or promotion of a heap object. Note that we don't
1606 // record every single allocation, but only those that happen in the
1607 // to space during a scavenge GC.
1608 void RecordAllocation(HeapObject* obj);
1609 void RecordPromotion(HeapObject* obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001610
ager@chromium.orgadd848f2009-08-13 12:44:13 +00001611 // Return whether the operation succeded.
1612 bool CommitFromSpaceIfNeeded() {
1613 if (from_space_.is_committed()) return true;
1614 return from_space_.Commit();
1615 }
1616
1617 bool UncommitFromSpace() {
1618 if (!from_space_.is_committed()) return true;
1619 return from_space_.Uncommit();
1620 }
1621
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001622 private:
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001623 // The semispaces.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001624 SemiSpace to_space_;
1625 SemiSpace from_space_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001626
1627 // Start address and bit mask for containment testing.
1628 Address start_;
ager@chromium.org9085a012009-05-11 19:22:57 +00001629 uintptr_t address_mask_;
1630 uintptr_t object_mask_;
1631 uintptr_t object_expected_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001632
1633 // Allocation pointer and limit for normal allocation and allocation during
1634 // mark-compact collection.
1635 AllocationInfo allocation_info_;
1636 AllocationInfo mc_forwarding_info_;
1637
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001638 HistogramInfo* allocated_histogram_;
1639 HistogramInfo* promoted_histogram_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001640
1641 // Implementation of AllocateRaw and MCAllocateRaw.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001642 MUST_USE_RESULT inline MaybeObject* AllocateRawInternal(
1643 int size_in_bytes,
1644 AllocationInfo* alloc_info);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001645
1646 friend class SemiSpaceIterator;
1647
1648 public:
1649 TRACK_MEMORY("NewSpace")
1650};
1651
1652
1653// -----------------------------------------------------------------------------
1654// Free lists for old object spaces
1655//
1656// Free-list nodes are free blocks in the heap. They look like heap objects
1657// (free-list node pointers have the heap object tag, and they have a map like
1658// a heap object). They have a size and a next pointer. The next pointer is
1659// the raw address of the next free list node (or NULL).
1660class FreeListNode: public HeapObject {
1661 public:
1662 // Obtain a free-list node from a raw address. This is not a cast because
1663 // it does not check nor require that the first word at the address is a map
1664 // pointer.
1665 static FreeListNode* FromAddress(Address address) {
1666 return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address));
1667 }
1668
ager@chromium.org3811b432009-10-28 14:53:37 +00001669 static inline bool IsFreeListNode(HeapObject* object);
1670
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001671 // Set the size in bytes, which can be read with HeapObject::Size(). This
1672 // function also writes a map to the first word of the block so that it
1673 // looks like a heap object to the garbage collector and heap iteration
1674 // functions.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001675 void set_size(Heap* heap, int size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001676
1677 // Accessors for the next field.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001678 inline Address next(Heap* heap);
1679 inline void set_next(Heap* heap, Address next);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001680
1681 private:
kasperl@chromium.org2abc4502009-07-02 07:00:29 +00001682 static const int kNextOffset = POINTER_SIZE_ALIGN(ByteArray::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001683
1684 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode);
1685};
1686
1687
1688// The free list for the old space.
1689class OldSpaceFreeList BASE_EMBEDDED {
1690 public:
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001691 OldSpaceFreeList(Heap* heap, AllocationSpace owner);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001692
1693 // Clear the free list.
1694 void Reset();
1695
1696 // Return the number of bytes available on the free list.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001697 intptr_t available() { return available_; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001698
1699 // Place a node on the free list. The block of size 'size_in_bytes'
1700 // starting at 'start' is placed on the free list. The return value is the
1701 // number of bytes that have been lost due to internal fragmentation by
1702 // freeing the block. Bookkeeping information will be written to the block,
1703 // ie, its contents will be destroyed. The start address should be word
1704 // aligned, and the size should be a non-zero multiple of the word size.
1705 int Free(Address start, int size_in_bytes);
1706
1707 // Allocate a block of size 'size_in_bytes' from the free list. The block
1708 // is unitialized. A failure is returned if no block is available. The
1709 // number of bytes lost to fragmentation is returned in the output parameter
1710 // 'wasted_bytes'. The size should be a non-zero multiple of the word size.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001711 MUST_USE_RESULT MaybeObject* Allocate(int size_in_bytes, int* wasted_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001712
erik.corry@gmail.com4a6c3272010-11-18 12:04:40 +00001713 void MarkNodes();
1714
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001715 private:
1716 // The size range of blocks, in bytes. (Smaller allocations are allowed, but
1717 // will always result in waste.)
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001718 static const int kMinBlockSize = 2 * kPointerSize;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001719 static const int kMaxBlockSize = Page::kMaxHeapObjectSize;
1720
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001721 Heap* heap_;
1722
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001723 // The identity of the owning space, for building allocation Failure
1724 // objects.
1725 AllocationSpace owner_;
1726
1727 // Total available bytes in all blocks on this free list.
1728 int available_;
1729
1730 // Blocks are put on exact free lists in an array, indexed by size in words.
1731 // The available sizes are kept in an increasingly ordered list. Entries
1732 // corresponding to sizes < kMinBlockSize always have an empty free list
1733 // (but index kHead is used for the head of the size list).
1734 struct SizeNode {
1735 // Address of the head FreeListNode of the implied block size or NULL.
1736 Address head_node_;
1737 // Size (words) of the next larger available size if head_node_ != NULL.
1738 int next_size_;
1739 };
1740 static const int kFreeListsLength = kMaxBlockSize / kPointerSize + 1;
1741 SizeNode free_[kFreeListsLength];
1742
1743 // Sentinel elements for the size list. Real elements are in ]kHead..kEnd[.
1744 static const int kHead = kMinBlockSize / kPointerSize - 1;
1745 static const int kEnd = kMaxInt;
1746
1747 // We keep a "finger" in the size list to speed up a common pattern:
1748 // repeated requests for the same or increasing sizes.
1749 int finger_;
1750
1751 // Starting from *prev, find and return the smallest size >= index (words),
1752 // or kEnd. Update *prev to be the largest size < index, or kHead.
1753 int FindSize(int index, int* prev) {
1754 int cur = free_[*prev].next_size_;
1755 while (cur < index) {
1756 *prev = cur;
1757 cur = free_[cur].next_size_;
1758 }
1759 return cur;
1760 }
1761
1762 // Remove an existing element from the size list.
1763 void RemoveSize(int index) {
1764 int prev = kHead;
1765 int cur = FindSize(index, &prev);
1766 ASSERT(cur == index);
1767 free_[prev].next_size_ = free_[cur].next_size_;
1768 finger_ = prev;
1769 }
1770
1771 // Insert a new element into the size list.
1772 void InsertSize(int index) {
1773 int prev = kHead;
1774 int cur = FindSize(index, &prev);
1775 ASSERT(cur != index);
1776 free_[prev].next_size_ = index;
1777 free_[index].next_size_ = cur;
1778 }
1779
1780 // The size list is not updated during a sequence of calls to Free, but is
1781 // rebuilt before the next allocation.
1782 void RebuildSizeList();
1783 bool needs_rebuild_;
1784
kasper.lund7276f142008-07-30 08:49:36 +00001785#ifdef DEBUG
1786 // Does this free list contain a free block located at the address of 'node'?
1787 bool Contains(FreeListNode* node);
1788#endif
1789
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001790 DISALLOW_COPY_AND_ASSIGN(OldSpaceFreeList);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001791};
1792
1793
1794// The free list for the map space.
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001795class FixedSizeFreeList BASE_EMBEDDED {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001796 public:
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001797 FixedSizeFreeList(Heap* heap, AllocationSpace owner, int object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001798
1799 // Clear the free list.
1800 void Reset();
1801
1802 // Return the number of bytes available on the free list.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001803 intptr_t available() { return available_; }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001804
1805 // Place a node on the free list. The block starting at 'start' (assumed to
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001806 // have size object_size_) is placed on the free list. Bookkeeping
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001807 // information will be written to the block, ie, its contents will be
1808 // destroyed. The start address should be word aligned.
1809 void Free(Address start);
1810
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001811 // Allocate a fixed sized block from the free list. The block is unitialized.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001812 // A failure is returned if no block is available.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001813 MUST_USE_RESULT MaybeObject* Allocate();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001814
erik.corry@gmail.com4a6c3272010-11-18 12:04:40 +00001815 void MarkNodes();
1816
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001817 private:
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001818
1819 Heap* heap_;
1820
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001821 // Available bytes on the free list.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001822 intptr_t available_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001823
1824 // The head of the free list.
1825 Address head_;
1826
ricow@chromium.org30ce4112010-05-31 10:38:25 +00001827 // The tail of the free list.
1828 Address tail_;
1829
kasper.lund7276f142008-07-30 08:49:36 +00001830 // The identity of the owning space, for building allocation Failure
1831 // objects.
1832 AllocationSpace owner_;
1833
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001834 // The size of the objects in this space.
1835 int object_size_;
1836
1837 DISALLOW_COPY_AND_ASSIGN(FixedSizeFreeList);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001838};
1839
1840
1841// -----------------------------------------------------------------------------
1842// Old object space (excluding map objects)
1843
1844class OldSpace : public PagedSpace {
1845 public:
1846 // Creates an old space object with a given maximum capacity.
1847 // The constructor does not allocate pages from OS.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001848 OldSpace(Heap* heap,
1849 intptr_t max_capacity,
1850 AllocationSpace id,
1851 Executability executable)
1852 : PagedSpace(heap, max_capacity, id, executable),
1853 free_list_(heap, id) {
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001854 page_extra_ = 0;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001855 }
1856
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001857 // The bytes available on the free list (ie, not above the linear allocation
1858 // pointer).
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00001859 intptr_t AvailableFree() { return free_list_.available(); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001860
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001861 // The limit of allocation for a page in this space.
1862 virtual Address PageAllocationLimit(Page* page) {
1863 return page->ObjectAreaEnd();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001864 }
1865
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001866 // Give a block of memory to the space's free list. It might be added to
1867 // the free list or accounted as waste.
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001868 // If add_to_freelist is false then just accounting stats are updated and
1869 // no attempt to add area to free list is made.
1870 void Free(Address start, int size_in_bytes, bool add_to_freelist) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001871 accounting_stats_.DeallocateBytes(size_in_bytes);
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001872
1873 if (add_to_freelist) {
1874 int wasted_bytes = free_list_.Free(start, size_in_bytes);
1875 accounting_stats_.WasteBytes(wasted_bytes);
1876 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001877 }
1878
ricow@chromium.orgd236f4d2010-09-01 06:52:08 +00001879 virtual void DeallocateBlock(Address start,
1880 int size_in_bytes,
1881 bool add_to_freelist);
1882
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001883 // Prepare for full garbage collection. Resets the relocation pointer and
1884 // clears the free list.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001885 virtual void PrepareForMarkCompact(bool will_compact);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001886
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001887 // Updates the allocation pointer to the relocation top after a mark-compact
1888 // collection.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001889 virtual void MCCommitRelocationInfo();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001890
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001891 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page);
1892
erik.corry@gmail.com4a6c3272010-11-18 12:04:40 +00001893 void MarkFreeListNodes() { free_list_.MarkNodes(); }
1894
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001895#ifdef DEBUG
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001896 // Reports statistics for the space
1897 void ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001898#endif
1899
kasper.lund7276f142008-07-30 08:49:36 +00001900 protected:
1901 // Virtual function in the superclass. Slow path of AllocateRaw.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001902 MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes);
kasper.lund7276f142008-07-30 08:49:36 +00001903
1904 // Virtual function in the superclass. Allocate linearly at the start of
1905 // the page after current_page (there is assumed to be one).
1906 HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes);
1907
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001908 private:
1909 // The space's free list.
1910 OldSpaceFreeList free_list_;
1911
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001912 public:
1913 TRACK_MEMORY("OldSpace")
1914};
1915
1916
1917// -----------------------------------------------------------------------------
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001918// Old space for objects of a fixed size
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001919
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001920class FixedSpace : public PagedSpace {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001921 public:
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001922 FixedSpace(Heap* heap,
1923 intptr_t max_capacity,
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001924 AllocationSpace id,
1925 int object_size_in_bytes,
1926 const char* name)
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001927 : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE),
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001928 object_size_in_bytes_(object_size_in_bytes),
1929 name_(name),
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00001930 free_list_(heap, id, object_size_in_bytes) {
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001931 page_extra_ = Page::kObjectAreaSize % object_size_in_bytes;
1932 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001933
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001934 // The limit of allocation for a page in this space.
1935 virtual Address PageAllocationLimit(Page* page) {
1936 return page->ObjectAreaEnd() - page_extra_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001937 }
1938
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001939 int object_size_in_bytes() { return object_size_in_bytes_; }
1940
1941 // Give a fixed sized block of memory to the space's free list.
fschneider@chromium.org013f3e12010-04-26 13:27:52 +00001942 // If add_to_freelist is false then just accounting stats are updated and
1943 // no attempt to add area to free list is made.
1944 void Free(Address start, bool add_to_freelist) {
1945 if (add_to_freelist) {
1946 free_list_.Free(start);
1947 }
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001948 accounting_stats_.DeallocateBytes(object_size_in_bytes_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001949 }
1950
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001951 // Prepares for a mark-compact GC.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001952 virtual void PrepareForMarkCompact(bool will_compact);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001953
1954 // Updates the allocation pointer to the relocation top after a mark-compact
1955 // collection.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001956 virtual void MCCommitRelocationInfo();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001957
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001958 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page);
1959
ricow@chromium.orgd236f4d2010-09-01 06:52:08 +00001960 virtual void DeallocateBlock(Address start,
1961 int size_in_bytes,
1962 bool add_to_freelist);
erik.corry@gmail.com4a6c3272010-11-18 12:04:40 +00001963
1964 void MarkFreeListNodes() { free_list_.MarkNodes(); }
1965
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001966#ifdef DEBUG
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001967 // Reports statistic info of the space
1968 void ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001969#endif
1970
kasper.lund7276f142008-07-30 08:49:36 +00001971 protected:
1972 // Virtual function in the superclass. Slow path of AllocateRaw.
lrn@chromium.org303ada72010-10-27 09:33:13 +00001973 MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes);
kasper.lund7276f142008-07-30 08:49:36 +00001974
1975 // Virtual function in the superclass. Allocate linearly at the start of
1976 // the page after current_page (there is assumed to be one).
1977 HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes);
1978
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001979 void ResetFreeList() {
1980 free_list_.Reset();
1981 }
1982
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001983 private:
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001984 // The size of objects in this space.
1985 int object_size_in_bytes_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001986
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001987 // The name of this space.
1988 const char* name_;
1989
1990 // The space's free list.
1991 FixedSizeFreeList free_list_;
1992};
1993
1994
1995// -----------------------------------------------------------------------------
1996// Old space for all map objects
1997
1998class MapSpace : public FixedSpace {
1999 public:
2000 // Creates a map space object with a maximum capacity.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00002001 MapSpace(Heap* heap,
2002 intptr_t max_capacity,
2003 int max_map_space_pages,
2004 AllocationSpace id)
2005 : FixedSpace(heap, max_capacity, id, Map::kSize, "map"),
kasperl@chromium.orgeac059f2010-01-25 11:02:06 +00002006 max_map_space_pages_(max_map_space_pages) {
2007 ASSERT(max_map_space_pages < kMaxMapPageIndex);
2008 }
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002009
2010 // Prepares for a mark-compact GC.
2011 virtual void PrepareForMarkCompact(bool will_compact);
2012
2013 // Given an index, returns the page address.
2014 Address PageAddress(int page_index) { return page_addresses_[page_index]; }
2015
kasperl@chromium.orgeac059f2010-01-25 11:02:06 +00002016 static const int kMaxMapPageIndex = 1 << MapWord::kMapPageIndexBits;
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002017
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002018 // Are map pointers encodable into map word?
2019 bool MapPointersEncodable() {
2020 if (!FLAG_use_big_map_space) {
kasperl@chromium.orgeac059f2010-01-25 11:02:06 +00002021 ASSERT(CountPagesToTop() <= kMaxMapPageIndex);
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002022 return true;
2023 }
kasperl@chromium.orgeac059f2010-01-25 11:02:06 +00002024 return CountPagesToTop() <= max_map_space_pages_;
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002025 }
2026
2027 // Should be called after forced sweep to find out if map space needs
2028 // compaction.
2029 bool NeedsCompaction(int live_maps) {
kasperl@chromium.orgeac059f2010-01-25 11:02:06 +00002030 return !MapPointersEncodable() && live_maps <= CompactionThreshold();
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002031 }
2032
2033 Address TopAfterCompaction(int live_maps) {
2034 ASSERT(NeedsCompaction(live_maps));
2035
2036 int pages_left = live_maps / kMapsPerPage;
2037 PageIterator it(this, PageIterator::ALL_PAGES);
2038 while (pages_left-- > 0) {
2039 ASSERT(it.has_next());
ricow@chromium.org30ce4112010-05-31 10:38:25 +00002040 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks);
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002041 }
2042 ASSERT(it.has_next());
2043 Page* top_page = it.next();
ricow@chromium.org30ce4112010-05-31 10:38:25 +00002044 top_page->SetRegionMarks(Page::kAllRegionsCleanMarks);
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002045 ASSERT(top_page->is_valid());
2046
2047 int offset = live_maps % kMapsPerPage * Map::kSize;
2048 Address top = top_page->ObjectAreaStart() + offset;
2049 ASSERT(top < top_page->ObjectAreaEnd());
2050 ASSERT(Contains(top));
2051
2052 return top;
2053 }
2054
2055 void FinishCompaction(Address new_top, int live_maps) {
2056 Page* top_page = Page::FromAddress(new_top);
2057 ASSERT(top_page->is_valid());
2058
2059 SetAllocationInfo(&allocation_info_, top_page);
2060 allocation_info_.top = new_top;
2061
2062 int new_size = live_maps * Map::kSize;
2063 accounting_stats_.DeallocateBytes(accounting_stats_.Size());
2064 accounting_stats_.AllocateBytes(new_size);
2065
vegorov@chromium.org5d6c1f52011-02-28 13:13:38 +00002066 // Flush allocation watermarks.
2067 for (Page* p = first_page_; p != top_page; p = p->next_page()) {
2068 p->SetAllocationWatermark(p->AllocationTop());
2069 }
2070 top_page->SetAllocationWatermark(new_top);
2071
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002072#ifdef DEBUG
2073 if (FLAG_enable_slow_asserts) {
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002074 intptr_t actual_size = 0;
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002075 for (Page* p = first_page_; p != top_page; p = p->next_page())
2076 actual_size += kMapsPerPage * Map::kSize;
2077 actual_size += (new_top - top_page->ObjectAreaStart());
2078 ASSERT(accounting_stats_.Size() == actual_size);
2079 }
2080#endif
2081
2082 Shrink();
2083 ResetFreeList();
2084 }
2085
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002086 protected:
2087#ifdef DEBUG
2088 virtual void VerifyObject(HeapObject* obj);
2089#endif
2090
2091 private:
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002092 static const int kMapsPerPage = Page::kObjectAreaSize / Map::kSize;
2093
2094 // Do map space compaction if there is a page gap.
kasperl@chromium.orgeac059f2010-01-25 11:02:06 +00002095 int CompactionThreshold() {
2096 return kMapsPerPage * (max_map_space_pages_ - 1);
2097 }
2098
2099 const int max_map_space_pages_;
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002100
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002101 // An array of page start address in a map space.
kasperl@chromium.orgeac059f2010-01-25 11:02:06 +00002102 Address page_addresses_[kMaxMapPageIndex];
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002103
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002104 public:
2105 TRACK_MEMORY("MapSpace")
2106};
2107
2108
2109// -----------------------------------------------------------------------------
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002110// Old space for all global object property cell objects
2111
2112class CellSpace : public FixedSpace {
2113 public:
2114 // Creates a property cell space object with a maximum capacity.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00002115 CellSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id)
2116 : FixedSpace(heap, max_capacity, id, JSGlobalPropertyCell::kSize, "cell")
2117 {}
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002118
2119 protected:
2120#ifdef DEBUG
2121 virtual void VerifyObject(HeapObject* obj);
2122#endif
2123
2124 public:
ager@chromium.org4af710e2009-09-15 12:20:11 +00002125 TRACK_MEMORY("CellSpace")
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002126};
2127
2128
2129// -----------------------------------------------------------------------------
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002130// Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by
2131// the large object space. A large object is allocated from OS heap with
2132// extra padding bytes (Page::kPageSize + Page::kObjectStartOffset).
2133// A large object always starts at Page::kObjectStartOffset to a page.
2134// Large objects do not move during garbage collections.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002135
2136// A LargeObjectChunk holds exactly one large object page with exactly one
2137// large object.
2138class LargeObjectChunk {
2139 public:
2140 // Allocates a new LargeObjectChunk that contains a large object page
2141 // (Page::kPageSize aligned) that has at least size_in_bytes (for a large
ricow@chromium.org30ce4112010-05-31 10:38:25 +00002142 // object) bytes after the object area start of that page.
kasperl@chromium.orga5551262010-12-07 12:49:48 +00002143 static LargeObjectChunk* New(int size_in_bytes, Executability executable);
2144
2145 // Free the memory associated with the chunk.
2146 inline void Free(Executability executable);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002147
2148 // Interpret a raw address as a large object chunk.
2149 static LargeObjectChunk* FromAddress(Address address) {
2150 return reinterpret_cast<LargeObjectChunk*>(address);
2151 }
2152
2153 // Returns the address of this chunk.
2154 Address address() { return reinterpret_cast<Address>(this); }
2155
2156 // Accessors for the fields of the chunk.
2157 LargeObjectChunk* next() { return next_; }
2158 void set_next(LargeObjectChunk* chunk) { next_ = chunk; }
erik.corry@gmail.com145eff52010-08-23 11:36:18 +00002159 size_t size() { return size_ & ~Page::kPageFlagMask; }
kasperl@chromium.orga5551262010-12-07 12:49:48 +00002160
2161 // Compute the start address in the chunk.
2162 inline Address GetStartAddress();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002163
2164 // Returns the object in this chunk.
kasperl@chromium.orga5551262010-12-07 12:49:48 +00002165 HeapObject* GetObject() { return HeapObject::FromAddress(GetStartAddress()); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002166
ricow@chromium.org30ce4112010-05-31 10:38:25 +00002167 // Given a requested size returns the physical size of a chunk to be
2168 // allocated.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002169 static int ChunkSizeFor(int size_in_bytes);
2170
ricow@chromium.org30ce4112010-05-31 10:38:25 +00002171 // Given a chunk size, returns the object size it can accommodate. Used by
2172 // LargeObjectSpace::Available.
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00002173 static intptr_t ObjectSizeFor(intptr_t chunk_size) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002174 if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
2175 return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
2176 }
2177
2178 private:
2179 // A pointer to the next large object chunk in the space or NULL.
2180 LargeObjectChunk* next_;
2181
kasperl@chromium.orga5551262010-12-07 12:49:48 +00002182 // The total size of this chunk.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002183 size_t size_;
2184
2185 public:
2186 TRACK_MEMORY("LargeObjectChunk")
2187};
2188
2189
kasper.lund7276f142008-07-30 08:49:36 +00002190class LargeObjectSpace : public Space {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002191 public:
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00002192 LargeObjectSpace(Heap* heap, AllocationSpace id);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002193 virtual ~LargeObjectSpace() {}
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002194
2195 // Initializes internal data structures.
2196 bool Setup();
2197
2198 // Releases internal resources, frees objects in this space.
2199 void TearDown();
2200
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002201 // Allocates a (non-FixedArray, non-Code) large object.
lrn@chromium.org303ada72010-10-27 09:33:13 +00002202 MUST_USE_RESULT MaybeObject* AllocateRaw(int size_in_bytes);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002203 // Allocates a large Code object.
lrn@chromium.org303ada72010-10-27 09:33:13 +00002204 MUST_USE_RESULT MaybeObject* AllocateRawCode(int size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002205 // Allocates a large FixedArray.
lrn@chromium.org303ada72010-10-27 09:33:13 +00002206 MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002207
ricow@chromium.org30ce4112010-05-31 10:38:25 +00002208 // Available bytes for objects in this space.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00002209 inline intptr_t Available();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002210
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00002211 virtual intptr_t Size() {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002212 return size_;
2213 }
2214
erik.corry@gmail.com4a6c3272010-11-18 12:04:40 +00002215 virtual intptr_t SizeOfObjects() {
2216 return objects_size_;
2217 }
2218
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002219 int PageCount() {
2220 return page_count_;
2221 }
2222
2223 // Finds an object for a given address, returns Failure::Exception()
2224 // if it is not found. The function iterates through all objects in this
2225 // space, may be slow.
lrn@chromium.org303ada72010-10-27 09:33:13 +00002226 MaybeObject* FindObject(Address a);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002227
ricow@chromium.orgd236f4d2010-09-01 06:52:08 +00002228 // Finds a large object page containing the given pc, returns NULL
2229 // if such a page doesn't exist.
2230 LargeObjectChunk* FindChunkContainingPc(Address pc);
2231
ricow@chromium.org30ce4112010-05-31 10:38:25 +00002232 // Iterates objects covered by dirty regions.
2233 void IterateDirtyRegions(ObjectSlotCallback func);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002234
2235 // Frees unmarked objects.
2236 void FreeUnmarkedObjects();
2237
2238 // Checks whether a heap object is in this space; O(1).
2239 bool Contains(HeapObject* obj);
2240
2241 // Checks whether the space is empty.
2242 bool IsEmpty() { return first_chunk_ == NULL; }
2243
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00002244 // See the comments for ReserveSpace in the Space class. This has to be
2245 // called after ReserveSpace has been called on the paged spaces, since they
2246 // may use some memory, leaving less for large objects.
2247 virtual bool ReserveSpace(int bytes);
2248
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002249#ifdef DEBUG
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002250 virtual void Verify();
2251 virtual void Print();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002252 void ReportStatistics();
2253 void CollectCodeStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002254#endif
2255 // Checks whether an address is in the object area in this space. It
2256 // iterates all objects in the space. May be slow.
2257 bool SlowContains(Address addr) { return !FindObject(addr)->IsFailure(); }
2258
2259 private:
2260 // The head of the linked list of large object chunks.
2261 LargeObjectChunk* first_chunk_;
kmillikin@chromium.orgf05f2912010-09-30 10:07:24 +00002262 intptr_t size_; // allocated bytes
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002263 int page_count_; // number of chunks
erik.corry@gmail.com4a6c3272010-11-18 12:04:40 +00002264 intptr_t objects_size_; // size of objects
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002265
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002266 // Shared implementation of AllocateRaw, AllocateRawCode and
2267 // AllocateRawFixedArray.
lrn@chromium.org303ada72010-10-27 09:33:13 +00002268 MUST_USE_RESULT MaybeObject* AllocateRawInternal(int requested_size,
2269 int object_size,
2270 Executability executable);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002271
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00002272 friend class LargeObjectIterator;
2273
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002274 public:
2275 TRACK_MEMORY("LargeObjectSpace")
2276};
2277
2278
2279class LargeObjectIterator: public ObjectIterator {
2280 public:
2281 explicit LargeObjectIterator(LargeObjectSpace* space);
2282 LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func);
2283
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002284 HeapObject* next();
2285
2286 // implementation of ObjectIterator.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002287 virtual HeapObject* next_object() { return next(); }
2288
2289 private:
2290 LargeObjectChunk* current_;
2291 HeapObjectCallback size_func_;
2292};
2293
2294
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00002295#ifdef DEBUG
2296struct CommentStatistic {
2297 const char* comment;
2298 int size;
2299 int count;
2300 void Clear() {
2301 comment = NULL;
2302 size = 0;
2303 count = 0;
2304 }
2305 // Must be small, since an iteration is used for lookup.
2306 static const int kMaxComments = 64;
2307};
2308#endif
2309
2310
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002311} } // namespace v8::internal
2312
2313#endif // V8_SPACES_H_