blob: 5342b5a981c550db4374d50346781278c2b42e79 [file] [log] [blame]
ager@chromium.org7c537e22008-10-16 08:43:32 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_CODEGEN_ARM_H_
29#define V8_CODEGEN_ARM_H_
30
31#include "scopes.h"
32
33namespace v8 { namespace internal {
34
35// Forward declarations
36class DeferredCode;
37
38// Mode to overwrite BinaryExpression values.
39enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT };
40
41
42// -----------------------------------------------------------------------------
43// Reference support
44
45// A reference is a C++ stack-allocated object that keeps an ECMA
46// reference on the execution stack while in scope. For variables
47// the reference is empty, indicating that it isn't necessary to
48// store state on the stack for keeping track of references to those.
49// For properties, we keep either one (named) or two (indexed) values
50// on the execution stack to represent the reference.
51
52enum InitState { CONST_INIT, NOT_CONST_INIT };
53enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
54
55class Reference BASE_EMBEDDED {
56 public:
57 // The values of the types is important, see size().
58 enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
59 Reference(CodeGenerator* cgen, Expression* expression);
60 ~Reference();
61
62 Expression* expression() const { return expression_; }
63 Type type() const { return type_; }
64 void set_type(Type value) {
65 ASSERT(type_ == ILLEGAL);
66 type_ = value;
67 }
68
69 // The size of the reference or -1 if the reference is illegal.
70 int size() const { return type_; }
71
72 bool is_illegal() const { return type_ == ILLEGAL; }
73 bool is_slot() const { return type_ == SLOT; }
74 bool is_property() const { return type_ == NAMED || type_ == KEYED; }
75
76 // Return the name. Only valid for named property references.
77 Handle<String> GetName();
78
79 // Generate code to push the value of the reference on top of the
80 // expression stack. The reference is expected to be already on top of
81 // the expression stack, and it is left in place with its value above it.
82 void GetValue(TypeofState typeof_state);
83
84 // Generate code to store the value on top of the expression stack in the
85 // reference. The reference is expected to be immediately below the value
86 // on the expression stack. The stored value is left in place (with the
87 // reference intact below it) to support chained assignments.
88 void SetValue(InitState init_state);
89
90 private:
91 CodeGenerator* cgen_;
92 Expression* expression_;
93 Type type_;
94};
95
96
97// -------------------------------------------------------------------------
98// Code generation state
99
100// The state is passed down the AST by the code generator (and back up, in
101// the form of the state of the label pair). It is threaded through the
102// call stack. Constructing a state implicitly pushes it on the owning code
103// generator's stack of states, and destroying one implicitly pops it.
104
105class CodeGenState BASE_EMBEDDED {
106 public:
107 // Create an initial code generator state. Destroying the initial state
108 // leaves the code generator with a NULL state.
109 explicit CodeGenState(CodeGenerator* owner);
110
111 // Create a code generator state based on a code generator's current
112 // state. The new state has its own typeof state and pair of branch
113 // labels.
114 CodeGenState(CodeGenerator* owner,
115 TypeofState typeof_state,
116 Label* true_target,
117 Label* false_target);
118
119 // Destroy a code generator state and restore the owning code generator's
120 // previous state.
121 ~CodeGenState();
122
123 TypeofState typeof_state() const { return typeof_state_; }
124 Label* true_target() const { return true_target_; }
125 Label* false_target() const { return false_target_; }
126
127 private:
128 CodeGenerator* owner_;
129 TypeofState typeof_state_;
130 Label* true_target_;
131 Label* false_target_;
132 CodeGenState* previous_;
133};
134
135
136// -----------------------------------------------------------------------------
137// CodeGenerator
138
139class CodeGenerator: public Visitor {
140 public:
141 // Takes a function literal, generates code for it. This function should only
142 // be called by compiler.cc.
143 static Handle<Code> MakeCode(FunctionLiteral* fun,
144 Handle<Script> script,
145 bool is_eval);
146
147 static void SetFunctionInfo(Handle<JSFunction> fun,
148 int length,
149 int function_token_position,
150 int start_position,
151 int end_position,
152 bool is_expression,
153 bool is_toplevel,
154 Handle<Script> script);
155
156 // Accessors
157 MacroAssembler* masm() { return masm_; }
158
159 CodeGenState* state() { return state_; }
160 void set_state(CodeGenState* state) { state_ = state; }
161
162 void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
163
164 private:
165 // Construction/Destruction
166 CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval);
167 virtual ~CodeGenerator() { delete masm_; }
168
169 // Accessors
170 Scope* scope() const { return scope_; }
171
172 void ProcessDeferred();
173
174 bool is_eval() { return is_eval_; }
175
176 // State
177 bool has_cc() const { return cc_reg_ != al; }
178 TypeofState typeof_state() const { return state_->typeof_state(); }
179 Label* true_target() const { return state_->true_target(); }
180 Label* false_target() const { return state_->false_target(); }
181
182
183 // Node visitors.
184#define DEF_VISIT(type) \
185 void Visit##type(type* node);
186 NODE_LIST(DEF_VISIT)
187#undef DEF_VISIT
188
189 // Main code generation function
190 void GenCode(FunctionLiteral* fun);
191
192 // The following are used by class Reference.
193 void LoadReference(Reference* ref);
194 void UnloadReference(Reference* ref);
195
196 // Support functions for accessing parameters and other operands.
197 MemOperand ParameterOperand(int index) const {
198 int num_parameters = scope()->num_parameters();
199 // index -2 corresponds to the activated closure, -1 corresponds
200 // to the receiver
201 ASSERT(-2 <= index && index < num_parameters);
202 int offset = (1 + num_parameters - index) * kPointerSize;
203 return MemOperand(fp, offset);
204 }
205
206 MemOperand FunctionOperand() const {
207 return MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset);
208 }
209
210 MemOperand ContextOperand(Register context, int index) const {
211 return MemOperand(context, Context::SlotOffset(index));
212 }
213
214 MemOperand SlotOperand(Slot* slot, Register tmp);
215
216 // Expressions
217 MemOperand GlobalObject() const {
218 return ContextOperand(cp, Context::GLOBAL_INDEX);
219 }
220
221 void LoadCondition(Expression* x,
222 TypeofState typeof_state,
223 Label* true_target,
224 Label* false_target,
225 bool force_cc);
226 void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF);
227 void LoadGlobal();
228
229 // Read a value from a slot and leave it on top of the expression stack.
230 void LoadFromSlot(Slot* slot, TypeofState typeof_state);
231
232 // Special code for typeof expressions: Unfortunately, we must
233 // be careful when loading the expression in 'typeof'
234 // expressions. We are not allowed to throw reference errors for
235 // non-existing properties of the global object, so we must make it
236 // look like an explicit property access, instead of an access
237 // through the context chain.
238 void LoadTypeofExpression(Expression* x);
239
240 void ToBoolean(Label* true_target, Label* false_target);
241
242 void GenericBinaryOperation(Token::Value op);
243 void Comparison(Condition cc, bool strict = false);
244
245 void SmiOperation(Token::Value op, Handle<Object> value, bool reversed);
246
247 void CallWithArguments(ZoneList<Expression*>* arguments, int position);
248
249 // Control flow
250 void Branch(bool if_true, Label* L);
251 void CheckStack();
252 void CleanStack(int num_bytes);
253
254 bool CheckForInlineRuntimeCall(CallRuntime* node);
255 Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node);
256 void ProcessDeclarations(ZoneList<Declaration*>* declarations);
257
258 Handle<Code> ComputeCallInitialize(int argc);
259
260 // Declare global variables and functions in the given array of
261 // name/value pairs.
262 void DeclareGlobals(Handle<FixedArray> pairs);
263
264 // Instantiate the function boilerplate.
265 void InstantiateBoilerplate(Handle<JSFunction> boilerplate);
266
267 // Support for type checks.
268 void GenerateIsSmi(ZoneList<Expression*>* args);
269 void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
270 void GenerateIsArray(ZoneList<Expression*>* args);
271
272 // Support for arguments.length and arguments[?].
273 void GenerateArgumentsLength(ZoneList<Expression*>* args);
274 void GenerateArgumentsAccess(ZoneList<Expression*>* args);
275
276 // Support for accessing the value field of an object (used by Date).
277 void GenerateValueOf(ZoneList<Expression*>* args);
278 void GenerateSetValueOf(ZoneList<Expression*>* args);
279
280 // Fast support for charCodeAt(n).
281 void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
282
283 // Fast support for object equality testing.
284 void GenerateObjectEquals(ZoneList<Expression*>* args);
285
286 // Methods and constants for fast case switch statement support.
287 //
288 // Only allow fast-case switch if the range of labels is at most
289 // this factor times the number of case labels.
290 // Value is derived from comparing the size of code generated by the normal
291 // switch code for Smi-labels to the size of a single pointer. If code
292 // quality increases this number should be decreased to match.
293 static const int kFastSwitchMaxOverheadFactor = 10;
294
295 // Minimal number of switch cases required before we allow jump-table
296 // optimization.
297 static const int kFastSwitchMinCaseCount = 5;
298
299 // The limit of the range of a fast-case switch, as a factor of the number
300 // of cases of the switch. Each platform should return a value that
301 // is optimal compared to the default code generated for a switch statement
302 // on that platform.
303 int FastCaseSwitchMaxOverheadFactor();
304
305 // The minimal number of cases in a switch before the fast-case switch
306 // optimization is enabled. Each platform should return a value that
307 // is optimal compared to the default code generated for a switch statement
308 // on that platform.
309 int FastCaseSwitchMinCaseCount();
310
311 // Allocate a jump table and create code to jump through it.
312 // Should call GenerateFastCaseSwitchCases to generate the code for
313 // all the cases at the appropriate point.
314 void GenerateFastCaseSwitchJumpTable(SwitchStatement* node, int min_index,
315 int range, Label *fail_label,
316 SmartPointer<Label*> &case_targets,
317 SmartPointer<Label>& case_labels);
318
319 // Generate the code for cases for the fast case switch.
320 // Called by GenerateFastCaseSwitchJumpTable.
321 void GenerateFastCaseSwitchCases(SwitchStatement* node,
322 SmartPointer<Label> &case_labels);
323
324 // Fast support for constant-Smi switches.
325 void GenerateFastCaseSwitchStatement(SwitchStatement *node, int min_index,
326 int range, int default_index);
327
328 // Fast support for constant-Smi switches. Tests whether switch statement
329 // permits optimization and calls GenerateFastCaseSwitch if it does.
330 // Returns true if the fast-case switch was generated, and false if not.
331 bool TryGenerateFastCaseSwitchStatement(SwitchStatement *node);
332
333
334 // Bottle-neck interface to call the Assembler to generate the statement
335 // position. This allows us to easily control whether statement positions
336 // should be generated or not.
337 void RecordStatementPosition(Node* node);
338
339 // Activation frames.
340 void EnterJSFrame();
341 void ExitJSFrame();
342
343
344 bool is_eval_; // Tells whether code is generated for eval.
345 Handle<Script> script_;
346 List<DeferredCode*> deferred_;
347
348 // Assembler
349 MacroAssembler* masm_; // to generate code
350
351 // Code generation state
352 Scope* scope_;
353 Condition cc_reg_;
354 CodeGenState* state_;
355 bool is_inside_try_;
356 int break_stack_height_;
357
358 // Labels
359 Label function_return_;
360
361 friend class Reference;
362 friend class Property;
363 friend class VariableProxy;
364 friend class Slot;
365
366 DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
367};
368
369} } // namespace v8::internal
370
371#endif // V8_CODEGEN_ARM_H_