blob: 2c495d8529049851ba403d7761eede6f06da5248 [file] [log] [blame]
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "macro-assembler.h"
31#include "mark-compact.h"
32#include "platform.h"
33
kasperl@chromium.org71affb52009-05-26 05:44:31 +000034namespace v8 {
35namespace internal {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000036
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000037// For contiguous spaces, top should be in the space (or at the end) and limit
38// should be the end of the space.
39#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +000040 ASSERT((space).low() <= (info).top \
41 && (info).top <= (space).high() \
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +000042 && (info).limit == (space).high())
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000043
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000044
45// ----------------------------------------------------------------------------
46// HeapObjectIterator
47
48HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
49 Initialize(space->bottom(), space->top(), NULL);
50}
51
52
53HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
54 HeapObjectCallback size_func) {
55 Initialize(space->bottom(), space->top(), size_func);
56}
57
58
59HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) {
60 Initialize(start, space->top(), NULL);
61}
62
63
64HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start,
65 HeapObjectCallback size_func) {
66 Initialize(start, space->top(), size_func);
67}
68
69
70void HeapObjectIterator::Initialize(Address cur, Address end,
71 HeapObjectCallback size_f) {
72 cur_addr_ = cur;
73 end_addr_ = end;
74 end_page_ = Page::FromAllocationTop(end);
75 size_func_ = size_f;
76 Page* p = Page::FromAllocationTop(cur_addr_);
77 cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop();
78
79#ifdef DEBUG
80 Verify();
81#endif
82}
83
84
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +000085HeapObject* HeapObjectIterator::FromNextPage() {
86 if (cur_addr_ == end_addr_) return NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000087
88 Page* cur_page = Page::FromAllocationTop(cur_addr_);
89 cur_page = cur_page->next_page();
90 ASSERT(cur_page->is_valid());
91
92 cur_addr_ = cur_page->ObjectAreaStart();
93 cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop();
94
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +000095 if (cur_addr_ == end_addr_) return NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000096 ASSERT(cur_addr_ < cur_limit_);
97#ifdef DEBUG
98 Verify();
99#endif
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000100 return FromCurrentPage();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000101}
102
103
104#ifdef DEBUG
105void HeapObjectIterator::Verify() {
106 Page* p = Page::FromAllocationTop(cur_addr_);
107 ASSERT(p == Page::FromAllocationTop(cur_limit_));
108 ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_));
109}
110#endif
111
112
113// -----------------------------------------------------------------------------
114// PageIterator
115
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000116PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) {
117 prev_page_ = NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000118 switch (mode) {
119 case PAGES_IN_USE:
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000120 stop_page_ = space->AllocationTopPage();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000121 break;
122 case PAGES_USED_BY_MC:
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000123 stop_page_ = space->MCRelocationTopPage();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000124 break;
125 case ALL_PAGES:
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000126#ifdef DEBUG
127 // Verify that the cached last page in the space is actually the
128 // last page.
129 for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) {
130 if (!p->next_page()->is_valid()) {
131 ASSERT(space->last_page_ == p);
132 }
133 }
134#endif
135 stop_page_ = space->last_page_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000136 break;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000137 }
138}
139
140
141// -----------------------------------------------------------------------------
142// Page
143
144#ifdef DEBUG
145Page::RSetState Page::rset_state_ = Page::IN_USE;
146#endif
147
148// -----------------------------------------------------------------------------
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000149// CodeRange
150
151List<CodeRange::FreeBlock> CodeRange::free_list_(0);
152List<CodeRange::FreeBlock> CodeRange::allocation_list_(0);
153int CodeRange::current_allocation_block_index_ = 0;
154VirtualMemory* CodeRange::code_range_ = NULL;
155
156
157bool CodeRange::Setup(const size_t requested) {
158 ASSERT(code_range_ == NULL);
159
160 code_range_ = new VirtualMemory(requested);
161 CHECK(code_range_ != NULL);
162 if (!code_range_->IsReserved()) {
163 delete code_range_;
164 code_range_ = NULL;
165 return false;
166 }
167
168 // We are sure that we have mapped a block of requested addresses.
169 ASSERT(code_range_->size() == requested);
170 LOG(NewEvent("CodeRange", code_range_->address(), requested));
171 allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size()));
172 current_allocation_block_index_ = 0;
173 return true;
174}
175
176
177int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
178 const FreeBlock* right) {
179 // The entire point of CodeRange is that the difference between two
180 // addresses in the range can be represented as a signed 32-bit int,
181 // so the cast is semantically correct.
182 return static_cast<int>(left->start - right->start);
183}
184
185
186void CodeRange::GetNextAllocationBlock(size_t requested) {
187 for (current_allocation_block_index_++;
188 current_allocation_block_index_ < allocation_list_.length();
189 current_allocation_block_index_++) {
190 if (requested <= allocation_list_[current_allocation_block_index_].size) {
191 return; // Found a large enough allocation block.
192 }
193 }
194
195 // Sort and merge the free blocks on the free list and the allocation list.
196 free_list_.AddAll(allocation_list_);
197 allocation_list_.Clear();
198 free_list_.Sort(&CompareFreeBlockAddress);
199 for (int i = 0; i < free_list_.length();) {
200 FreeBlock merged = free_list_[i];
201 i++;
202 // Add adjacent free blocks to the current merged block.
203 while (i < free_list_.length() &&
204 free_list_[i].start == merged.start + merged.size) {
205 merged.size += free_list_[i].size;
206 i++;
207 }
208 if (merged.size > 0) {
209 allocation_list_.Add(merged);
210 }
211 }
212 free_list_.Clear();
213
214 for (current_allocation_block_index_ = 0;
215 current_allocation_block_index_ < allocation_list_.length();
216 current_allocation_block_index_++) {
217 if (requested <= allocation_list_[current_allocation_block_index_].size) {
218 return; // Found a large enough allocation block.
219 }
220 }
221
222 // Code range is full or too fragmented.
223 V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
224}
225
226
227
228void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) {
229 ASSERT(current_allocation_block_index_ < allocation_list_.length());
230 if (requested > allocation_list_[current_allocation_block_index_].size) {
231 // Find an allocation block large enough. This function call may
232 // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
233 GetNextAllocationBlock(requested);
234 }
235 // Commit the requested memory at the start of the current allocation block.
236 *allocated = RoundUp(requested, Page::kPageSize);
237 FreeBlock current = allocation_list_[current_allocation_block_index_];
238 if (*allocated >= current.size - Page::kPageSize) {
239 // Don't leave a small free block, useless for a large object or chunk.
240 *allocated = current.size;
241 }
242 ASSERT(*allocated <= current.size);
243 if (!code_range_->Commit(current.start, *allocated, true)) {
244 *allocated = 0;
245 return NULL;
246 }
247 allocation_list_[current_allocation_block_index_].start += *allocated;
248 allocation_list_[current_allocation_block_index_].size -= *allocated;
249 if (*allocated == current.size) {
250 GetNextAllocationBlock(0); // This block is used up, get the next one.
251 }
252 return current.start;
253}
254
255
256void CodeRange::FreeRawMemory(void* address, size_t length) {
257 free_list_.Add(FreeBlock(address, length));
258 code_range_->Uncommit(address, length);
259}
260
261
262void CodeRange::TearDown() {
263 delete code_range_; // Frees all memory in the virtual memory range.
264 code_range_ = NULL;
265 free_list_.Free();
266 allocation_list_.Free();
267}
268
269
270// -----------------------------------------------------------------------------
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000271// MemoryAllocator
272//
273int MemoryAllocator::capacity_ = 0;
274int MemoryAllocator::size_ = 0;
275
276VirtualMemory* MemoryAllocator::initial_chunk_ = NULL;
277
278// 270 is an estimate based on the static default heap size of a pair of 256K
279// semispaces and a 64M old generation.
280const int kEstimatedNumberOfChunks = 270;
281List<MemoryAllocator::ChunkInfo> MemoryAllocator::chunks_(
282 kEstimatedNumberOfChunks);
283List<int> MemoryAllocator::free_chunk_ids_(kEstimatedNumberOfChunks);
284int MemoryAllocator::max_nof_chunks_ = 0;
285int MemoryAllocator::top_ = 0;
286
287
288void MemoryAllocator::Push(int free_chunk_id) {
289 ASSERT(max_nof_chunks_ > 0);
290 ASSERT(top_ < max_nof_chunks_);
291 free_chunk_ids_[top_++] = free_chunk_id;
292}
293
294
295int MemoryAllocator::Pop() {
296 ASSERT(top_ > 0);
297 return free_chunk_ids_[--top_];
298}
299
300
301bool MemoryAllocator::Setup(int capacity) {
302 capacity_ = RoundUp(capacity, Page::kPageSize);
303
304 // Over-estimate the size of chunks_ array. It assumes the expansion of old
305 // space is always in the unit of a chunk (kChunkSize) except the last
306 // expansion.
307 //
308 // Due to alignment, allocated space might be one page less than required
309 // number (kPagesPerChunk) of pages for old spaces.
310 //
kasper.lund7276f142008-07-30 08:49:36 +0000311 // Reserve two chunk ids for semispaces, one for map space, one for old
312 // space, and one for code space.
313 max_nof_chunks_ = (capacity_ / (kChunkSize - Page::kPageSize)) + 5;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000314 if (max_nof_chunks_ > kMaxNofChunks) return false;
315
316 size_ = 0;
317 ChunkInfo info; // uninitialized element.
318 for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
319 chunks_.Add(info);
320 free_chunk_ids_.Add(i);
321 }
322 top_ = max_nof_chunks_;
323 return true;
324}
325
326
327void MemoryAllocator::TearDown() {
328 for (int i = 0; i < max_nof_chunks_; i++) {
329 if (chunks_[i].address() != NULL) DeleteChunk(i);
330 }
331 chunks_.Clear();
332 free_chunk_ids_.Clear();
333
334 if (initial_chunk_ != NULL) {
335 LOG(DeleteEvent("InitialChunk", initial_chunk_->address()));
336 delete initial_chunk_;
337 initial_chunk_ = NULL;
338 }
339
340 ASSERT(top_ == max_nof_chunks_); // all chunks are free
341 top_ = 0;
342 capacity_ = 0;
343 size_ = 0;
344 max_nof_chunks_ = 0;
345}
346
347
348void* MemoryAllocator::AllocateRawMemory(const size_t requested,
kasper.lund7276f142008-07-30 08:49:36 +0000349 size_t* allocated,
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000350 Executability executable) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000351 if (size_ + static_cast<int>(requested) > capacity_) return NULL;
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000352 void* mem;
353 if (executable == EXECUTABLE && CodeRange::exists()) {
354 mem = CodeRange::AllocateRawMemory(requested, allocated);
355 } else {
356 mem = OS::Allocate(requested, allocated, (executable == EXECUTABLE));
357 }
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000358 int alloced = static_cast<int>(*allocated);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000359 size_ += alloced;
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000360#ifdef DEBUG
361 ZapBlock(reinterpret_cast<Address>(mem), alloced);
362#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000363 Counters::memory_allocated.Increment(alloced);
364 return mem;
365}
366
367
368void MemoryAllocator::FreeRawMemory(void* mem, size_t length) {
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000369#ifdef DEBUG
370 ZapBlock(reinterpret_cast<Address>(mem), length);
371#endif
sgjesse@chromium.orgc5145742009-10-07 09:00:33 +0000372 if (CodeRange::contains(static_cast<Address>(mem))) {
373 CodeRange::FreeRawMemory(mem, length);
374 } else {
375 OS::Free(mem, length);
376 }
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000377 Counters::memory_allocated.Decrement(static_cast<int>(length));
378 size_ -= static_cast<int>(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000379 ASSERT(size_ >= 0);
380}
381
382
383void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
384 ASSERT(initial_chunk_ == NULL);
385
386 initial_chunk_ = new VirtualMemory(requested);
387 CHECK(initial_chunk_ != NULL);
388 if (!initial_chunk_->IsReserved()) {
389 delete initial_chunk_;
390 initial_chunk_ = NULL;
391 return NULL;
392 }
393
394 // We are sure that we have mapped a block of requested addresses.
395 ASSERT(initial_chunk_->size() == requested);
396 LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested));
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000397 size_ += static_cast<int>(requested);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000398 return initial_chunk_->address();
399}
400
401
402static int PagesInChunk(Address start, size_t size) {
403 // The first page starts on the first page-aligned address from start onward
404 // and the last page ends on the last page-aligned address before
405 // start+size. Page::kPageSize is a power of two so we can divide by
406 // shifting.
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000407 return static_cast<int>((RoundDown(start + size, Page::kPageSize)
sgjesse@chromium.org846fb742009-12-18 08:56:33 +0000408 - RoundUp(start, Page::kPageSize)) >> kPageSizeBits);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000409}
410
411
412Page* MemoryAllocator::AllocatePages(int requested_pages, int* allocated_pages,
413 PagedSpace* owner) {
414 if (requested_pages <= 0) return Page::FromAddress(NULL);
415 size_t chunk_size = requested_pages * Page::kPageSize;
416
417 // There is not enough space to guarantee the desired number pages can be
418 // allocated.
419 if (size_ + static_cast<int>(chunk_size) > capacity_) {
420 // Request as many pages as we can.
421 chunk_size = capacity_ - size_;
sgjesse@chromium.org846fb742009-12-18 08:56:33 +0000422 requested_pages = static_cast<int>(chunk_size >> kPageSizeBits);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000423
424 if (requested_pages <= 0) return Page::FromAddress(NULL);
425 }
kasper.lund7276f142008-07-30 08:49:36 +0000426 void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000427 if (chunk == NULL) return Page::FromAddress(NULL);
428 LOG(NewEvent("PagedChunk", chunk, chunk_size));
429
430 *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size);
431 if (*allocated_pages == 0) {
432 FreeRawMemory(chunk, chunk_size);
433 LOG(DeleteEvent("PagedChunk", chunk));
434 return Page::FromAddress(NULL);
435 }
436
437 int chunk_id = Pop();
438 chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner);
439
440 return InitializePagesInChunk(chunk_id, *allocated_pages, owner);
441}
442
443
444Page* MemoryAllocator::CommitPages(Address start, size_t size,
445 PagedSpace* owner, int* num_pages) {
446 ASSERT(start != NULL);
447 *num_pages = PagesInChunk(start, size);
448 ASSERT(*num_pages > 0);
449 ASSERT(initial_chunk_ != NULL);
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000450 ASSERT(InInitialChunk(start));
451 ASSERT(InInitialChunk(start + size - 1));
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000452 if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000453 return Page::FromAddress(NULL);
454 }
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000455#ifdef DEBUG
456 ZapBlock(start, size);
457#endif
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000458 Counters::memory_allocated.Increment(static_cast<int>(size));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000459
460 // So long as we correctly overestimated the number of chunks we should not
461 // run out of chunk ids.
462 CHECK(!OutOfChunkIds());
463 int chunk_id = Pop();
464 chunks_[chunk_id].init(start, size, owner);
465 return InitializePagesInChunk(chunk_id, *num_pages, owner);
466}
467
468
kasper.lund7276f142008-07-30 08:49:36 +0000469bool MemoryAllocator::CommitBlock(Address start,
470 size_t size,
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000471 Executability executable) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000472 ASSERT(start != NULL);
473 ASSERT(size > 0);
474 ASSERT(initial_chunk_ != NULL);
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000475 ASSERT(InInitialChunk(start));
476 ASSERT(InInitialChunk(start + size - 1));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000477
kasper.lund7276f142008-07-30 08:49:36 +0000478 if (!initial_chunk_->Commit(start, size, executable)) return false;
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000479#ifdef DEBUG
480 ZapBlock(start, size);
481#endif
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000482 Counters::memory_allocated.Increment(static_cast<int>(size));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000483 return true;
484}
485
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000486
ager@chromium.orgadd848f2009-08-13 12:44:13 +0000487bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
488 ASSERT(start != NULL);
489 ASSERT(size > 0);
490 ASSERT(initial_chunk_ != NULL);
491 ASSERT(InInitialChunk(start));
492 ASSERT(InInitialChunk(start + size - 1));
493
494 if (!initial_chunk_->Uncommit(start, size)) return false;
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000495 Counters::memory_allocated.Decrement(static_cast<int>(size));
ager@chromium.orgadd848f2009-08-13 12:44:13 +0000496 return true;
497}
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000498
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +0000499
500void MemoryAllocator::ZapBlock(Address start, size_t size) {
501 for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
502 Memory::Address_at(start + s) = kZapValue;
503 }
504}
505
506
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000507Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk,
508 PagedSpace* owner) {
509 ASSERT(IsValidChunk(chunk_id));
510 ASSERT(pages_in_chunk > 0);
511
512 Address chunk_start = chunks_[chunk_id].address();
513
514 Address low = RoundUp(chunk_start, Page::kPageSize);
515
516#ifdef DEBUG
517 size_t chunk_size = chunks_[chunk_id].size();
518 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
519 ASSERT(pages_in_chunk <=
520 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize));
521#endif
522
523 Address page_addr = low;
524 for (int i = 0; i < pages_in_chunk; i++) {
525 Page* p = Page::FromAddress(page_addr);
526 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
527 p->is_normal_page = 1;
528 page_addr += Page::kPageSize;
529 }
530
531 // Set the next page of the last page to 0.
532 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
533 last_page->opaque_header = OffsetFrom(0) | chunk_id;
534
535 return Page::FromAddress(low);
536}
537
538
539Page* MemoryAllocator::FreePages(Page* p) {
540 if (!p->is_valid()) return p;
541
542 // Find the first page in the same chunk as 'p'
543 Page* first_page = FindFirstPageInSameChunk(p);
544 Page* page_to_return = Page::FromAddress(NULL);
545
546 if (p != first_page) {
547 // Find the last page in the same chunk as 'prev'.
548 Page* last_page = FindLastPageInSameChunk(p);
549 first_page = GetNextPage(last_page); // first page in next chunk
550
551 // set the next_page of last_page to NULL
552 SetNextPage(last_page, Page::FromAddress(NULL));
553 page_to_return = p; // return 'p' when exiting
554 }
555
556 while (first_page->is_valid()) {
557 int chunk_id = GetChunkId(first_page);
558 ASSERT(IsValidChunk(chunk_id));
559
560 // Find the first page of the next chunk before deleting this chunk.
561 first_page = GetNextPage(FindLastPageInSameChunk(first_page));
562
563 // Free the current chunk.
564 DeleteChunk(chunk_id);
565 }
566
567 return page_to_return;
568}
569
570
571void MemoryAllocator::DeleteChunk(int chunk_id) {
572 ASSERT(IsValidChunk(chunk_id));
573
574 ChunkInfo& c = chunks_[chunk_id];
575
576 // We cannot free a chunk contained in the initial chunk because it was not
577 // allocated with AllocateRawMemory. Instead we uncommit the virtual
578 // memory.
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000579 if (InInitialChunk(c.address())) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000580 // TODO(1240712): VirtualMemory::Uncommit has a return value which
581 // is ignored here.
582 initial_chunk_->Uncommit(c.address(), c.size());
ager@chromium.orgc4c92722009-11-18 14:12:51 +0000583 Counters::memory_allocated.Decrement(static_cast<int>(c.size()));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000584 } else {
585 LOG(DeleteEvent("PagedChunk", c.address()));
586 FreeRawMemory(c.address(), c.size());
587 }
588 c.init(NULL, 0, NULL);
589 Push(chunk_id);
590}
591
592
593Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) {
594 int chunk_id = GetChunkId(p);
595 ASSERT(IsValidChunk(chunk_id));
596
597 Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize);
598 return Page::FromAddress(low);
599}
600
601
602Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) {
603 int chunk_id = GetChunkId(p);
604 ASSERT(IsValidChunk(chunk_id));
605
606 Address chunk_start = chunks_[chunk_id].address();
607 size_t chunk_size = chunks_[chunk_id].size();
608
609 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
610 ASSERT(chunk_start <= p->address() && p->address() < high);
611
612 return Page::FromAddress(high - Page::kPageSize);
613}
614
615
616#ifdef DEBUG
617void MemoryAllocator::ReportStatistics() {
618 float pct = static_cast<float>(capacity_ - size_) / capacity_;
619 PrintF(" capacity: %d, used: %d, available: %%%d\n\n",
620 capacity_, size_, static_cast<int>(pct*100));
621}
622#endif
623
624
625// -----------------------------------------------------------------------------
626// PagedSpace implementation
627
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000628PagedSpace::PagedSpace(int max_capacity,
629 AllocationSpace id,
630 Executability executable)
kasper.lund7276f142008-07-30 08:49:36 +0000631 : Space(id, executable) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000632 max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
633 * Page::kObjectAreaSize;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000634 accounting_stats_.Clear();
635
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000636 allocation_info_.top = NULL;
637 allocation_info_.limit = NULL;
638
639 mc_forwarding_info_.top = NULL;
640 mc_forwarding_info_.limit = NULL;
641}
642
643
644bool PagedSpace::Setup(Address start, size_t size) {
645 if (HasBeenSetup()) return false;
646
647 int num_pages = 0;
648 // Try to use the virtual memory range passed to us. If it is too small to
649 // contain at least one page, ignore it and allocate instead.
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000650 int pages_in_chunk = PagesInChunk(start, size);
651 if (pages_in_chunk > 0) {
652 first_page_ = MemoryAllocator::CommitPages(RoundUp(start, Page::kPageSize),
653 Page::kPageSize * pages_in_chunk,
654 this, &num_pages);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000655 } else {
656 int requested_pages = Min(MemoryAllocator::kPagesPerChunk,
657 max_capacity_ / Page::kObjectAreaSize);
658 first_page_ =
659 MemoryAllocator::AllocatePages(requested_pages, &num_pages, this);
660 if (!first_page_->is_valid()) return false;
661 }
662
663 // We are sure that the first page is valid and that we have at least one
664 // page.
665 ASSERT(first_page_->is_valid());
666 ASSERT(num_pages > 0);
667 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
668 ASSERT(Capacity() <= max_capacity_);
669
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000670 // Sequentially initialize remembered sets in the newly allocated
671 // pages and cache the current last page in the space.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000672 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
673 p->ClearRSet();
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000674 last_page_ = p;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000675 }
676
677 // Use first_page_ for allocation.
678 SetAllocationInfo(&allocation_info_, first_page_);
679
680 return true;
681}
682
683
684bool PagedSpace::HasBeenSetup() {
685 return (Capacity() > 0);
686}
687
688
689void PagedSpace::TearDown() {
690 first_page_ = MemoryAllocator::FreePages(first_page_);
691 ASSERT(!first_page_->is_valid());
692
693 accounting_stats_.Clear();
694}
695
696
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +0000697#ifdef ENABLE_HEAP_PROTECTION
698
699void PagedSpace::Protect() {
700 Page* page = first_page_;
701 while (page->is_valid()) {
702 MemoryAllocator::ProtectChunkFromPage(page);
703 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
704 }
705}
706
707
708void PagedSpace::Unprotect() {
709 Page* page = first_page_;
710 while (page->is_valid()) {
711 MemoryAllocator::UnprotectChunkFromPage(page);
712 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
713 }
714}
715
716#endif
717
718
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000719void PagedSpace::ClearRSet() {
720 PageIterator it(this, PageIterator::ALL_PAGES);
721 while (it.has_next()) {
722 it.next()->ClearRSet();
723 }
724}
725
726
727Object* PagedSpace::FindObject(Address addr) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000728 // Note: this function can only be called before or after mark-compact GC
729 // because it accesses map pointers.
730 ASSERT(!MarkCompactCollector::in_use());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000731
732 if (!Contains(addr)) return Failure::Exception();
733
734 Page* p = Page::FromAddress(addr);
kasper.lund7276f142008-07-30 08:49:36 +0000735 ASSERT(IsUsed(p));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000736 Address cur = p->ObjectAreaStart();
737 Address end = p->AllocationTop();
738 while (cur < end) {
739 HeapObject* obj = HeapObject::FromAddress(cur);
740 Address next = cur + obj->Size();
741 if ((cur <= addr) && (addr < next)) return obj;
742 cur = next;
743 }
744
kasper.lund7276f142008-07-30 08:49:36 +0000745 UNREACHABLE();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000746 return Failure::Exception();
747}
748
749
kasper.lund7276f142008-07-30 08:49:36 +0000750bool PagedSpace::IsUsed(Page* page) {
751 PageIterator it(this, PageIterator::PAGES_IN_USE);
752 while (it.has_next()) {
753 if (page == it.next()) return true;
754 }
755 return false;
756}
757
758
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000759void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) {
760 alloc_info->top = p->ObjectAreaStart();
761 alloc_info->limit = p->ObjectAreaEnd();
kasper.lund7276f142008-07-30 08:49:36 +0000762 ASSERT(alloc_info->VerifyPagedAllocation());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000763}
764
765
766void PagedSpace::MCResetRelocationInfo() {
767 // Set page indexes.
768 int i = 0;
769 PageIterator it(this, PageIterator::ALL_PAGES);
770 while (it.has_next()) {
771 Page* p = it.next();
772 p->mc_page_index = i++;
773 }
774
775 // Set mc_forwarding_info_ to the first page in the space.
776 SetAllocationInfo(&mc_forwarding_info_, first_page_);
777 // All the bytes in the space are 'available'. We will rediscover
778 // allocated and wasted bytes during GC.
779 accounting_stats_.Reset();
780}
781
782
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000783int PagedSpace::MCSpaceOffsetForAddress(Address addr) {
784#ifdef DEBUG
785 // The Contains function considers the address at the beginning of a
786 // page in the page, MCSpaceOffsetForAddress considers it is in the
787 // previous page.
788 if (Page::IsAlignedToPageSize(addr)) {
789 ASSERT(Contains(addr - kPointerSize));
790 } else {
791 ASSERT(Contains(addr));
792 }
793#endif
794
795 // If addr is at the end of a page, it belongs to previous page
796 Page* p = Page::IsAlignedToPageSize(addr)
797 ? Page::FromAllocationTop(addr)
798 : Page::FromAddress(addr);
799 int index = p->mc_page_index;
800 return (index * Page::kPageSize) + p->Offset(addr);
801}
802
803
kasper.lund7276f142008-07-30 08:49:36 +0000804// Slow case for reallocating and promoting objects during a compacting
805// collection. This function is not space-specific.
806HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) {
807 Page* current_page = TopPageOf(mc_forwarding_info_);
808 if (!current_page->next_page()->is_valid()) {
809 if (!Expand(current_page)) {
810 return NULL;
811 }
812 }
813
814 // There are surely more pages in the space now.
815 ASSERT(current_page->next_page()->is_valid());
816 // We do not add the top of page block for current page to the space's
817 // free list---the block may contain live objects so we cannot write
818 // bookkeeping information to it. Instead, we will recover top of page
819 // blocks when we move objects to their new locations.
820 //
821 // We do however write the allocation pointer to the page. The encoding
822 // of forwarding addresses is as an offset in terms of live bytes, so we
823 // need quick access to the allocation top of each page to decode
824 // forwarding addresses.
825 current_page->mc_relocation_top = mc_forwarding_info_.top;
826 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page());
827 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
828}
829
830
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000831bool PagedSpace::Expand(Page* last_page) {
832 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
833 ASSERT(Capacity() % Page::kObjectAreaSize == 0);
834
835 if (Capacity() == max_capacity_) return false;
836
837 ASSERT(Capacity() < max_capacity_);
838 // Last page must be valid and its next page is invalid.
839 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid());
840
841 int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize;
842 if (available_pages <= 0) return false;
843
844 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk);
845 Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this);
846 if (!p->is_valid()) return false;
847
848 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize);
849 ASSERT(Capacity() <= max_capacity_);
850
851 MemoryAllocator::SetNextPage(last_page, p);
852
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000853 // Sequentially clear remembered set of new pages and and cache the
854 // new last page in the space.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000855 while (p->is_valid()) {
856 p->ClearRSet();
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000857 last_page_ = p;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000858 p = p->next_page();
859 }
860
861 return true;
862}
863
864
865#ifdef DEBUG
866int PagedSpace::CountTotalPages() {
867 int count = 0;
868 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
869 count++;
870 }
871 return count;
872}
873#endif
874
875
876void PagedSpace::Shrink() {
877 // Release half of free pages.
878 Page* top_page = AllocationTopPage();
879 ASSERT(top_page->is_valid());
880
sgjesse@chromium.org911335c2009-08-19 12:59:44 +0000881 // Count the number of pages we would like to free.
882 int pages_to_free = 0;
883 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
884 pages_to_free++;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000885 }
886
sgjesse@chromium.org911335c2009-08-19 12:59:44 +0000887 // Free pages after top_page.
888 Page* p = MemoryAllocator::FreePages(top_page->next_page());
889 MemoryAllocator::SetNextPage(top_page, p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000890
sgjesse@chromium.org911335c2009-08-19 12:59:44 +0000891 // Find out how many pages we failed to free and update last_page_.
892 // Please note pages can only be freed in whole chunks.
893 last_page_ = top_page;
894 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
895 pages_to_free--;
kasperl@chromium.orgb3284ad2009-05-18 06:12:45 +0000896 last_page_ = p;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000897 }
898
sgjesse@chromium.org911335c2009-08-19 12:59:44 +0000899 accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000900 ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize);
901}
902
903
904bool PagedSpace::EnsureCapacity(int capacity) {
905 if (Capacity() >= capacity) return true;
906
907 // Start from the allocation top and loop to the last page in the space.
908 Page* last_page = AllocationTopPage();
909 Page* next_page = last_page->next_page();
910 while (next_page->is_valid()) {
911 last_page = MemoryAllocator::FindLastPageInSameChunk(next_page);
912 next_page = last_page->next_page();
913 }
914
915 // Expand the space until it has the required capacity or expansion fails.
916 do {
917 if (!Expand(last_page)) return false;
918 ASSERT(last_page->next_page()->is_valid());
919 last_page =
920 MemoryAllocator::FindLastPageInSameChunk(last_page->next_page());
921 } while (Capacity() < capacity);
922
923 return true;
924}
925
926
927#ifdef DEBUG
928void PagedSpace::Print() { }
929#endif
930
931
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +0000932#ifdef DEBUG
933// We do not assume that the PageIterator works, because it depends on the
934// invariants we are checking during verification.
935void PagedSpace::Verify(ObjectVisitor* visitor) {
936 // The allocation pointer should be valid, and it should be in a page in the
937 // space.
938 ASSERT(allocation_info_.VerifyPagedAllocation());
939 Page* top_page = Page::FromAllocationTop(allocation_info_.top);
940 ASSERT(MemoryAllocator::IsPageInSpace(top_page, this));
941
942 // Loop over all the pages.
943 bool above_allocation_top = false;
944 Page* current_page = first_page_;
945 while (current_page->is_valid()) {
946 if (above_allocation_top) {
947 // We don't care what's above the allocation top.
948 } else {
949 // Unless this is the last page in the space containing allocated
950 // objects, the allocation top should be at a constant offset from the
951 // object area end.
952 Address top = current_page->AllocationTop();
953 if (current_page == top_page) {
954 ASSERT(top == allocation_info_.top);
955 // The next page will be above the allocation top.
956 above_allocation_top = true;
957 } else {
958 ASSERT(top == current_page->ObjectAreaEnd() - page_extra_);
959 }
960
961 // It should be packed with objects from the bottom to the top.
962 Address current = current_page->ObjectAreaStart();
963 while (current < top) {
964 HeapObject* object = HeapObject::FromAddress(current);
965
966 // The first word should be a map, and we expect all map pointers to
967 // be in map space.
968 Map* map = object->map();
969 ASSERT(map->IsMap());
970 ASSERT(Heap::map_space()->Contains(map));
971
972 // Perform space-specific object verification.
973 VerifyObject(object);
974
975 // The object itself should look OK.
976 object->Verify();
977
978 // All the interior pointers should be contained in the heap and
979 // have their remembered set bits set if required as determined
980 // by the visitor.
981 int size = object->Size();
christian.plesner.hansen@gmail.com2bc58ef2009-09-22 10:00:30 +0000982 object->IterateBody(map->instance_type(), size, visitor);
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +0000983
984 current += size;
985 }
986
987 // The allocation pointer should not be in the middle of an object.
988 ASSERT(current == top);
989 }
990
991 current_page = current_page->next_page();
992 }
993}
994#endif
995
996
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000997// -----------------------------------------------------------------------------
998// NewSpace implementation
999
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001000
1001bool NewSpace::Setup(Address start, int size) {
1002 // Setup new space based on the preallocated memory block defined by
1003 // start and size. The provided space is divided into two semi-spaces.
1004 // To support fast containment testing in the new space, the size of
1005 // this chunk must be a power of two and it must be aligned to its size.
1006 int initial_semispace_capacity = Heap::InitialSemiSpaceSize();
ager@chromium.org3811b432009-10-28 14:53:37 +00001007 int maximum_semispace_capacity = Heap::MaxSemiSpaceSize();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001008
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001009 ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
1010 ASSERT(IsPowerOf2(maximum_semispace_capacity));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001011
1012 // Allocate and setup the histogram arrays if necessary.
1013#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1014 allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1015 promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1016
1017#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
1018 promoted_histogram_[name].set_name(#name);
1019 INSTANCE_TYPE_LIST(SET_NAME)
1020#undef SET_NAME
1021#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001022
ager@chromium.org3811b432009-10-28 14:53:37 +00001023 ASSERT(size == 2 * Heap::ReservedSemiSpaceSize());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001024 ASSERT(IsAddressAligned(start, size, 0));
1025
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001026 if (!to_space_.Setup(start,
1027 initial_semispace_capacity,
1028 maximum_semispace_capacity)) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001029 return false;
1030 }
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001031 if (!from_space_.Setup(start + maximum_semispace_capacity,
1032 initial_semispace_capacity,
1033 maximum_semispace_capacity)) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001034 return false;
1035 }
1036
1037 start_ = start;
1038 address_mask_ = ~(size - 1);
1039 object_mask_ = address_mask_ | kHeapObjectTag;
ager@chromium.org9085a012009-05-11 19:22:57 +00001040 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001041
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001042 allocation_info_.top = to_space_.low();
1043 allocation_info_.limit = to_space_.high();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001044 mc_forwarding_info_.top = NULL;
1045 mc_forwarding_info_.limit = NULL;
1046
1047 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1048 return true;
1049}
1050
1051
1052void NewSpace::TearDown() {
1053#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1054 if (allocated_histogram_) {
1055 DeleteArray(allocated_histogram_);
1056 allocated_histogram_ = NULL;
1057 }
1058 if (promoted_histogram_) {
1059 DeleteArray(promoted_histogram_);
1060 promoted_histogram_ = NULL;
1061 }
1062#endif
1063
1064 start_ = NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001065 allocation_info_.top = NULL;
1066 allocation_info_.limit = NULL;
1067 mc_forwarding_info_.top = NULL;
1068 mc_forwarding_info_.limit = NULL;
1069
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001070 to_space_.TearDown();
1071 from_space_.TearDown();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001072}
1073
1074
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00001075#ifdef ENABLE_HEAP_PROTECTION
1076
1077void NewSpace::Protect() {
1078 MemoryAllocator::Protect(ToSpaceLow(), Capacity());
1079 MemoryAllocator::Protect(FromSpaceLow(), Capacity());
1080}
1081
1082
1083void NewSpace::Unprotect() {
1084 MemoryAllocator::Unprotect(ToSpaceLow(), Capacity(),
1085 to_space_.executable());
1086 MemoryAllocator::Unprotect(FromSpaceLow(), Capacity(),
1087 from_space_.executable());
1088}
1089
1090#endif
1091
1092
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001093void NewSpace::Flip() {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001094 SemiSpace tmp = from_space_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001095 from_space_ = to_space_;
1096 to_space_ = tmp;
1097}
1098
1099
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001100void NewSpace::Grow() {
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001101 ASSERT(Capacity() < MaximumCapacity());
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001102 if (to_space_.Grow()) {
1103 // Only grow from space if we managed to grow to space.
1104 if (!from_space_.Grow()) {
1105 // If we managed to grow to space but couldn't grow from space,
1106 // attempt to shrink to space.
1107 if (!to_space_.ShrinkTo(from_space_.Capacity())) {
1108 // We are in an inconsistent state because we could not
1109 // commit/uncommit memory from new space.
1110 V8::FatalProcessOutOfMemory("Failed to grow new space.");
1111 }
1112 }
1113 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001114 allocation_info_.limit = to_space_.high();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001115 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001116}
1117
1118
1119void NewSpace::Shrink() {
1120 int new_capacity = Max(InitialCapacity(), 2 * Size());
ager@chromium.orgc4c92722009-11-18 14:12:51 +00001121 int rounded_new_capacity =
1122 RoundUp(new_capacity, static_cast<int>(OS::AllocateAlignment()));
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001123 if (rounded_new_capacity < Capacity() &&
1124 to_space_.ShrinkTo(rounded_new_capacity)) {
1125 // Only shrink from space if we managed to shrink to space.
1126 if (!from_space_.ShrinkTo(rounded_new_capacity)) {
1127 // If we managed to shrink to space but couldn't shrink from
1128 // space, attempt to grow to space again.
1129 if (!to_space_.GrowTo(from_space_.Capacity())) {
1130 // We are in an inconsistent state because we could not
1131 // commit/uncommit memory from new space.
1132 V8::FatalProcessOutOfMemory("Failed to shrink new space.");
1133 }
1134 }
1135 }
1136 allocation_info_.limit = to_space_.high();
1137 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001138}
1139
1140
1141void NewSpace::ResetAllocationInfo() {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001142 allocation_info_.top = to_space_.low();
1143 allocation_info_.limit = to_space_.high();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001144 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1145}
1146
1147
1148void NewSpace::MCResetRelocationInfo() {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001149 mc_forwarding_info_.top = from_space_.low();
1150 mc_forwarding_info_.limit = from_space_.high();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001151 ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);
1152}
1153
1154
1155void NewSpace::MCCommitRelocationInfo() {
1156 // Assumes that the spaces have been flipped so that mc_forwarding_info_ is
1157 // valid allocation info for the to space.
1158 allocation_info_.top = mc_forwarding_info_.top;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001159 allocation_info_.limit = to_space_.high();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001160 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1161}
1162
1163
1164#ifdef DEBUG
1165// We do not use the SemispaceIterator because verification doesn't assume
1166// that it works (it depends on the invariants we are checking).
1167void NewSpace::Verify() {
1168 // The allocation pointer should be in the space or at the very end.
1169 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1170
1171 // There should be objects packed in from the low address up to the
1172 // allocation pointer.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001173 Address current = to_space_.low();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001174 while (current < top()) {
1175 HeapObject* object = HeapObject::FromAddress(current);
1176
1177 // The first word should be a map, and we expect all map pointers to
1178 // be in map space.
1179 Map* map = object->map();
1180 ASSERT(map->IsMap());
1181 ASSERT(Heap::map_space()->Contains(map));
1182
1183 // The object should not be code or a map.
1184 ASSERT(!object->IsMap());
1185 ASSERT(!object->IsCode());
1186
1187 // The object itself should look OK.
1188 object->Verify();
1189
1190 // All the interior pointers should be contained in the heap.
1191 VerifyPointersVisitor visitor;
1192 int size = object->Size();
1193 object->IterateBody(map->instance_type(), size, &visitor);
1194
1195 current += size;
1196 }
1197
1198 // The allocation pointer should not be in the middle of an object.
1199 ASSERT(current == top());
1200}
1201#endif
1202
1203
ager@chromium.orgadd848f2009-08-13 12:44:13 +00001204bool SemiSpace::Commit() {
1205 ASSERT(!is_committed());
1206 if (!MemoryAllocator::CommitBlock(start_, capacity_, executable())) {
1207 return false;
1208 }
1209 committed_ = true;
1210 return true;
1211}
1212
1213
1214bool SemiSpace::Uncommit() {
1215 ASSERT(is_committed());
1216 if (!MemoryAllocator::UncommitBlock(start_, capacity_)) {
1217 return false;
1218 }
1219 committed_ = false;
1220 return true;
1221}
1222
1223
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001224// -----------------------------------------------------------------------------
1225// SemiSpace implementation
1226
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001227bool SemiSpace::Setup(Address start,
1228 int initial_capacity,
1229 int maximum_capacity) {
1230 // Creates a space in the young generation. The constructor does not
1231 // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
1232 // memory of size 'capacity' when set up, and does not grow or shrink
1233 // otherwise. In the mark-compact collector, the memory region of the from
1234 // space is used as the marking stack. It requires contiguous memory
1235 // addresses.
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001236 initial_capacity_ = initial_capacity;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001237 capacity_ = initial_capacity;
1238 maximum_capacity_ = maximum_capacity;
ager@chromium.orgadd848f2009-08-13 12:44:13 +00001239 committed_ = false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001240
1241 start_ = start;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001242 address_mask_ = ~(maximum_capacity - 1);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001243 object_mask_ = address_mask_ | kHeapObjectTag;
ager@chromium.org9085a012009-05-11 19:22:57 +00001244 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001245 age_mark_ = start_;
ager@chromium.orgadd848f2009-08-13 12:44:13 +00001246
1247 return Commit();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001248}
1249
1250
1251void SemiSpace::TearDown() {
1252 start_ = NULL;
1253 capacity_ = 0;
1254}
1255
1256
christian.plesner.hansen@gmail.com5a6af922009-08-12 14:20:51 +00001257bool SemiSpace::Grow() {
sgjesse@chromium.orgc81c8942009-08-21 10:54:26 +00001258 // Double the semispace size but only up to maximum capacity.
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001259 int maximum_extra = maximum_capacity_ - capacity_;
ager@chromium.orgc4c92722009-11-18 14:12:51 +00001260 int extra = Min(RoundUp(capacity_, static_cast<int>(OS::AllocateAlignment())),
sgjesse@chromium.org911335c2009-08-19 12:59:44 +00001261 maximum_extra);
christian.plesner.hansen@gmail.com5a6af922009-08-12 14:20:51 +00001262 if (!MemoryAllocator::CommitBlock(high(), extra, executable())) {
kasper.lund7276f142008-07-30 08:49:36 +00001263 return false;
1264 }
christian.plesner.hansen@gmail.com5a6af922009-08-12 14:20:51 +00001265 capacity_ += extra;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001266 return true;
1267}
1268
1269
ager@chromium.orgab99eea2009-08-25 07:05:41 +00001270bool SemiSpace::GrowTo(int new_capacity) {
1271 ASSERT(new_capacity <= maximum_capacity_);
1272 ASSERT(new_capacity > capacity_);
1273 size_t delta = new_capacity - capacity_;
1274 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1275 if (!MemoryAllocator::CommitBlock(high(), delta, executable())) {
1276 return false;
1277 }
1278 capacity_ = new_capacity;
1279 return true;
1280}
1281
1282
1283bool SemiSpace::ShrinkTo(int new_capacity) {
1284 ASSERT(new_capacity >= initial_capacity_);
1285 ASSERT(new_capacity < capacity_);
1286 size_t delta = capacity_ - new_capacity;
1287 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1288 if (!MemoryAllocator::UncommitBlock(high() - delta, delta)) {
1289 return false;
1290 }
1291 capacity_ = new_capacity;
1292 return true;
1293}
1294
1295
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001296#ifdef DEBUG
1297void SemiSpace::Print() { }
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001298
1299
1300void SemiSpace::Verify() { }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001301#endif
1302
1303
1304// -----------------------------------------------------------------------------
1305// SemiSpaceIterator implementation.
1306SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
1307 Initialize(space, space->bottom(), space->top(), NULL);
1308}
1309
1310
1311SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
1312 HeapObjectCallback size_func) {
1313 Initialize(space, space->bottom(), space->top(), size_func);
1314}
1315
1316
1317SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
1318 Initialize(space, start, space->top(), NULL);
1319}
1320
1321
1322void SemiSpaceIterator::Initialize(NewSpace* space, Address start,
1323 Address end,
1324 HeapObjectCallback size_func) {
1325 ASSERT(space->ToSpaceContains(start));
1326 ASSERT(space->ToSpaceLow() <= end
1327 && end <= space->ToSpaceHigh());
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001328 space_ = &space->to_space_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001329 current_ = start;
1330 limit_ = end;
1331 size_func_ = size_func;
1332}
1333
1334
1335#ifdef DEBUG
1336// A static array of histogram info for each type.
1337static HistogramInfo heap_histograms[LAST_TYPE+1];
1338static JSObject::SpillInformation js_spill_information;
1339
1340// heap_histograms is shared, always clear it before using it.
1341static void ClearHistograms() {
1342 // We reset the name each time, though it hasn't changed.
1343#define DEF_TYPE_NAME(name) heap_histograms[name].set_name(#name);
1344 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
1345#undef DEF_TYPE_NAME
1346
1347#define CLEAR_HISTOGRAM(name) heap_histograms[name].clear();
1348 INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
1349#undef CLEAR_HISTOGRAM
1350
1351 js_spill_information.Clear();
1352}
1353
1354
1355static int code_kind_statistics[Code::NUMBER_OF_KINDS];
1356
1357
1358static void ClearCodeKindStatistics() {
1359 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1360 code_kind_statistics[i] = 0;
1361 }
1362}
1363
1364
1365static void ReportCodeKindStatistics() {
1366 const char* table[Code::NUMBER_OF_KINDS];
1367
1368#define CASE(name) \
1369 case Code::name: table[Code::name] = #name; \
1370 break
1371
1372 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1373 switch (static_cast<Code::Kind>(i)) {
1374 CASE(FUNCTION);
1375 CASE(STUB);
1376 CASE(BUILTIN);
1377 CASE(LOAD_IC);
1378 CASE(KEYED_LOAD_IC);
1379 CASE(STORE_IC);
1380 CASE(KEYED_STORE_IC);
1381 CASE(CALL_IC);
1382 }
1383 }
1384
1385#undef CASE
1386
1387 PrintF("\n Code kind histograms: \n");
1388 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1389 if (code_kind_statistics[i] > 0) {
1390 PrintF(" %-20s: %10d bytes\n", table[i], code_kind_statistics[i]);
1391 }
1392 }
1393 PrintF("\n");
1394}
1395
1396
1397static int CollectHistogramInfo(HeapObject* obj) {
1398 InstanceType type = obj->map()->instance_type();
1399 ASSERT(0 <= type && type <= LAST_TYPE);
1400 ASSERT(heap_histograms[type].name() != NULL);
1401 heap_histograms[type].increment_number(1);
1402 heap_histograms[type].increment_bytes(obj->Size());
1403
1404 if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
1405 JSObject::cast(obj)->IncrementSpillStatistics(&js_spill_information);
1406 }
1407
1408 return obj->Size();
1409}
1410
1411
1412static void ReportHistogram(bool print_spill) {
1413 PrintF("\n Object Histogram:\n");
1414 for (int i = 0; i <= LAST_TYPE; i++) {
1415 if (heap_histograms[i].number() > 0) {
1416 PrintF(" %-33s%10d (%10d bytes)\n",
1417 heap_histograms[i].name(),
1418 heap_histograms[i].number(),
1419 heap_histograms[i].bytes());
1420 }
1421 }
1422 PrintF("\n");
1423
1424 // Summarize string types.
1425 int string_number = 0;
1426 int string_bytes = 0;
kasperl@chromium.org68ac0092009-07-09 06:00:35 +00001427#define INCREMENT(type, size, name, camel_name) \
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001428 string_number += heap_histograms[type].number(); \
1429 string_bytes += heap_histograms[type].bytes();
1430 STRING_TYPE_LIST(INCREMENT)
1431#undef INCREMENT
1432 if (string_number > 0) {
1433 PrintF(" %-33s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
1434 string_bytes);
1435 }
1436
1437 if (FLAG_collect_heap_spill_statistics && print_spill) {
1438 js_spill_information.Print();
1439 }
1440}
1441#endif // DEBUG
1442
1443
1444// Support for statistics gathering for --heap-stats and --log-gc.
1445#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1446void NewSpace::ClearHistograms() {
1447 for (int i = 0; i <= LAST_TYPE; i++) {
1448 allocated_histogram_[i].clear();
1449 promoted_histogram_[i].clear();
1450 }
1451}
1452
1453// Because the copying collector does not touch garbage objects, we iterate
1454// the new space before a collection to get a histogram of allocated objects.
1455// This only happens (1) when compiled with DEBUG and the --heap-stats flag is
1456// set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc
1457// flag is set.
1458void NewSpace::CollectStatistics() {
1459 ClearHistograms();
1460 SemiSpaceIterator it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00001461 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
1462 RecordAllocation(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001463}
1464
1465
1466#ifdef ENABLE_LOGGING_AND_PROFILING
1467static void DoReportStatistics(HistogramInfo* info, const char* description) {
1468 LOG(HeapSampleBeginEvent("NewSpace", description));
1469 // Lump all the string types together.
1470 int string_number = 0;
1471 int string_bytes = 0;
kasperl@chromium.org68ac0092009-07-09 06:00:35 +00001472#define INCREMENT(type, size, name, camel_name) \
1473 string_number += info[type].number(); \
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001474 string_bytes += info[type].bytes();
1475 STRING_TYPE_LIST(INCREMENT)
1476#undef INCREMENT
1477 if (string_number > 0) {
1478 LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
1479 }
1480
1481 // Then do the other types.
1482 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
1483 if (info[i].number() > 0) {
1484 LOG(HeapSampleItemEvent(info[i].name(), info[i].number(),
1485 info[i].bytes()));
1486 }
1487 }
1488 LOG(HeapSampleEndEvent("NewSpace", description));
1489}
1490#endif // ENABLE_LOGGING_AND_PROFILING
1491
1492
1493void NewSpace::ReportStatistics() {
1494#ifdef DEBUG
1495 if (FLAG_heap_stats) {
1496 float pct = static_cast<float>(Available()) / Capacity();
1497 PrintF(" capacity: %d, available: %d, %%%d\n",
1498 Capacity(), Available(), static_cast<int>(pct*100));
1499 PrintF("\n Object Histogram:\n");
1500 for (int i = 0; i <= LAST_TYPE; i++) {
1501 if (allocated_histogram_[i].number() > 0) {
1502 PrintF(" %-33s%10d (%10d bytes)\n",
1503 allocated_histogram_[i].name(),
1504 allocated_histogram_[i].number(),
1505 allocated_histogram_[i].bytes());
1506 }
1507 }
1508 PrintF("\n");
1509 }
1510#endif // DEBUG
1511
1512#ifdef ENABLE_LOGGING_AND_PROFILING
1513 if (FLAG_log_gc) {
1514 DoReportStatistics(allocated_histogram_, "allocated");
1515 DoReportStatistics(promoted_histogram_, "promoted");
1516 }
1517#endif // ENABLE_LOGGING_AND_PROFILING
1518}
1519
1520
1521void NewSpace::RecordAllocation(HeapObject* obj) {
1522 InstanceType type = obj->map()->instance_type();
1523 ASSERT(0 <= type && type <= LAST_TYPE);
1524 allocated_histogram_[type].increment_number(1);
1525 allocated_histogram_[type].increment_bytes(obj->Size());
1526}
1527
1528
1529void NewSpace::RecordPromotion(HeapObject* obj) {
1530 InstanceType type = obj->map()->instance_type();
1531 ASSERT(0 <= type && type <= LAST_TYPE);
1532 promoted_histogram_[type].increment_number(1);
1533 promoted_histogram_[type].increment_bytes(obj->Size());
1534}
1535#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1536
1537
1538// -----------------------------------------------------------------------------
1539// Free lists for old object spaces implementation
1540
1541void FreeListNode::set_size(int size_in_bytes) {
1542 ASSERT(size_in_bytes > 0);
1543 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1544
1545 // We write a map and possibly size information to the block. If the block
1546 // is big enough to be a ByteArray with at least one extra word (the next
1547 // pointer), we set its map to be the byte array map and its size to an
1548 // appropriate array length for the desired size from HeapObject::Size().
1549 // If the block is too small (eg, one or two words), to hold both a size
1550 // field and a next pointer, we give it a filler map that gives it the
1551 // correct size.
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001552 if (size_in_bytes > ByteArray::kAlignedSize) {
kasperl@chromium.org68ac0092009-07-09 06:00:35 +00001553 set_map(Heap::raw_unchecked_byte_array_map());
ager@chromium.org3811b432009-10-28 14:53:37 +00001554 // Can't use ByteArray::cast because it fails during deserialization.
1555 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this);
1556 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001557 } else if (size_in_bytes == kPointerSize) {
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001558 set_map(Heap::raw_unchecked_one_pointer_filler_map());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001559 } else if (size_in_bytes == 2 * kPointerSize) {
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001560 set_map(Heap::raw_unchecked_two_pointer_filler_map());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001561 } else {
1562 UNREACHABLE();
1563 }
ager@chromium.org3811b432009-10-28 14:53:37 +00001564 // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
1565 // deserialization because the byte array map is not done yet.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001566}
1567
1568
1569Address FreeListNode::next() {
ager@chromium.org3811b432009-10-28 14:53:37 +00001570 ASSERT(IsFreeListNode(this));
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001571 if (map() == Heap::raw_unchecked_byte_array_map()) {
1572 ASSERT(Size() >= kNextOffset + kPointerSize);
1573 return Memory::Address_at(address() + kNextOffset);
1574 } else {
1575 return Memory::Address_at(address() + kPointerSize);
1576 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001577}
1578
1579
1580void FreeListNode::set_next(Address next) {
ager@chromium.org3811b432009-10-28 14:53:37 +00001581 ASSERT(IsFreeListNode(this));
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001582 if (map() == Heap::raw_unchecked_byte_array_map()) {
1583 ASSERT(Size() >= kNextOffset + kPointerSize);
1584 Memory::Address_at(address() + kNextOffset) = next;
1585 } else {
1586 Memory::Address_at(address() + kPointerSize) = next;
1587 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001588}
1589
1590
1591OldSpaceFreeList::OldSpaceFreeList(AllocationSpace owner) : owner_(owner) {
1592 Reset();
1593}
1594
1595
1596void OldSpaceFreeList::Reset() {
1597 available_ = 0;
1598 for (int i = 0; i < kFreeListsLength; i++) {
1599 free_[i].head_node_ = NULL;
1600 }
1601 needs_rebuild_ = false;
1602 finger_ = kHead;
1603 free_[kHead].next_size_ = kEnd;
1604}
1605
1606
1607void OldSpaceFreeList::RebuildSizeList() {
1608 ASSERT(needs_rebuild_);
1609 int cur = kHead;
1610 for (int i = cur + 1; i < kFreeListsLength; i++) {
1611 if (free_[i].head_node_ != NULL) {
1612 free_[cur].next_size_ = i;
1613 cur = i;
1614 }
1615 }
1616 free_[cur].next_size_ = kEnd;
1617 needs_rebuild_ = false;
1618}
1619
1620
1621int OldSpaceFreeList::Free(Address start, int size_in_bytes) {
1622#ifdef DEBUG
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00001623 MemoryAllocator::ZapBlock(start, size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001624#endif
1625 FreeListNode* node = FreeListNode::FromAddress(start);
1626 node->set_size(size_in_bytes);
1627
sgjesse@chromium.org755c5b12009-05-29 11:04:38 +00001628 // We don't use the freelists in compacting mode. This makes it more like a
1629 // GC that only has mark-sweep-compact and doesn't have a mark-sweep
1630 // collector.
1631 if (FLAG_always_compact) {
1632 return size_in_bytes;
1633 }
1634
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001635 // Early return to drop too-small blocks on the floor (one or two word
1636 // blocks cannot hold a map pointer, a size field, and a pointer to the
1637 // next block in the free list).
1638 if (size_in_bytes < kMinBlockSize) {
1639 return size_in_bytes;
1640 }
1641
1642 // Insert other blocks at the head of an exact free list.
1643 int index = size_in_bytes >> kPointerSizeLog2;
1644 node->set_next(free_[index].head_node_);
1645 free_[index].head_node_ = node->address();
1646 available_ += size_in_bytes;
1647 needs_rebuild_ = true;
1648 return 0;
1649}
1650
1651
1652Object* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) {
1653 ASSERT(0 < size_in_bytes);
1654 ASSERT(size_in_bytes <= kMaxBlockSize);
1655 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1656
1657 if (needs_rebuild_) RebuildSizeList();
1658 int index = size_in_bytes >> kPointerSizeLog2;
1659 // Check for a perfect fit.
1660 if (free_[index].head_node_ != NULL) {
1661 FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_);
1662 // If this was the last block of its size, remove the size.
1663 if ((free_[index].head_node_ = node->next()) == NULL) RemoveSize(index);
1664 available_ -= size_in_bytes;
1665 *wasted_bytes = 0;
sgjesse@chromium.org755c5b12009-05-29 11:04:38 +00001666 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001667 return node;
1668 }
1669 // Search the size list for the best fit.
1670 int prev = finger_ < index ? finger_ : kHead;
1671 int cur = FindSize(index, &prev);
1672 ASSERT(index < cur);
1673 if (cur == kEnd) {
1674 // No large enough size in list.
1675 *wasted_bytes = 0;
1676 return Failure::RetryAfterGC(size_in_bytes, owner_);
1677 }
sgjesse@chromium.org755c5b12009-05-29 11:04:38 +00001678 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001679 int rem = cur - index;
1680 int rem_bytes = rem << kPointerSizeLog2;
1681 FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_);
kasper.lund7276f142008-07-30 08:49:36 +00001682 ASSERT(cur_node->Size() == (cur << kPointerSizeLog2));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001683 FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ +
1684 size_in_bytes);
1685 // Distinguish the cases prev < rem < cur and rem <= prev < cur
1686 // to avoid many redundant tests and calls to Insert/RemoveSize.
1687 if (prev < rem) {
1688 // Simple case: insert rem between prev and cur.
1689 finger_ = prev;
1690 free_[prev].next_size_ = rem;
1691 // If this was the last block of size cur, remove the size.
1692 if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
1693 free_[rem].next_size_ = free_[cur].next_size_;
1694 } else {
1695 free_[rem].next_size_ = cur;
1696 }
1697 // Add the remainder block.
1698 rem_node->set_size(rem_bytes);
1699 rem_node->set_next(free_[rem].head_node_);
1700 free_[rem].head_node_ = rem_node->address();
1701 } else {
1702 // If this was the last block of size cur, remove the size.
1703 if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
1704 finger_ = prev;
1705 free_[prev].next_size_ = free_[cur].next_size_;
1706 }
1707 if (rem_bytes < kMinBlockSize) {
1708 // Too-small remainder is wasted.
1709 rem_node->set_size(rem_bytes);
1710 available_ -= size_in_bytes + rem_bytes;
1711 *wasted_bytes = rem_bytes;
1712 return cur_node;
1713 }
1714 // Add the remainder block and, if needed, insert its size.
1715 rem_node->set_size(rem_bytes);
1716 rem_node->set_next(free_[rem].head_node_);
1717 free_[rem].head_node_ = rem_node->address();
1718 if (rem_node->next() == NULL) InsertSize(rem);
1719 }
1720 available_ -= size_in_bytes;
1721 *wasted_bytes = 0;
1722 return cur_node;
1723}
1724
1725
kasper.lund7276f142008-07-30 08:49:36 +00001726#ifdef DEBUG
1727bool OldSpaceFreeList::Contains(FreeListNode* node) {
1728 for (int i = 0; i < kFreeListsLength; i++) {
1729 Address cur_addr = free_[i].head_node_;
1730 while (cur_addr != NULL) {
1731 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
1732 if (cur_node == node) return true;
1733 cur_addr = cur_node->next();
1734 }
1735 }
1736 return false;
1737}
1738#endif
1739
1740
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001741FixedSizeFreeList::FixedSizeFreeList(AllocationSpace owner, int object_size)
1742 : owner_(owner), object_size_(object_size) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001743 Reset();
1744}
1745
1746
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001747void FixedSizeFreeList::Reset() {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001748 available_ = 0;
1749 head_ = NULL;
1750}
1751
1752
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001753void FixedSizeFreeList::Free(Address start) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001754#ifdef DEBUG
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00001755 MemoryAllocator::ZapBlock(start, object_size_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001756#endif
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001757 // We only use the freelists with mark-sweep.
1758 ASSERT(!MarkCompactCollector::IsCompacting());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001759 FreeListNode* node = FreeListNode::FromAddress(start);
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001760 node->set_size(object_size_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001761 node->set_next(head_);
1762 head_ = node->address();
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001763 available_ += object_size_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001764}
1765
1766
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001767Object* FixedSizeFreeList::Allocate() {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001768 if (head_ == NULL) {
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001769 return Failure::RetryAfterGC(object_size_, owner_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001770 }
1771
sgjesse@chromium.org755c5b12009-05-29 11:04:38 +00001772 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001773 FreeListNode* node = FreeListNode::FromAddress(head_);
1774 head_ = node->next();
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00001775 available_ -= object_size_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001776 return node;
1777}
1778
1779
1780// -----------------------------------------------------------------------------
1781// OldSpace implementation
1782
1783void OldSpace::PrepareForMarkCompact(bool will_compact) {
1784 if (will_compact) {
1785 // Reset relocation info. During a compacting collection, everything in
1786 // the space is considered 'available' and we will rediscover live data
1787 // and waste during the collection.
1788 MCResetRelocationInfo();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001789 ASSERT(Available() == Capacity());
1790 } else {
1791 // During a non-compacting collection, everything below the linear
1792 // allocation pointer is considered allocated (everything above is
1793 // available) and we will rediscover available and wasted bytes during
1794 // the collection.
1795 accounting_stats_.AllocateBytes(free_list_.available());
1796 accounting_stats_.FillWastedBytes(Waste());
1797 }
1798
kasper.lund7276f142008-07-30 08:49:36 +00001799 // Clear the free list before a full GC---it will be rebuilt afterward.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001800 free_list_.Reset();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001801}
1802
1803
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001804void OldSpace::MCCommitRelocationInfo() {
1805 // Update fast allocation info.
1806 allocation_info_.top = mc_forwarding_info_.top;
1807 allocation_info_.limit = mc_forwarding_info_.limit;
kasper.lund7276f142008-07-30 08:49:36 +00001808 ASSERT(allocation_info_.VerifyPagedAllocation());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001809
1810 // The space is compacted and we haven't yet built free lists or
1811 // wasted any space.
1812 ASSERT(Waste() == 0);
1813 ASSERT(AvailableFree() == 0);
1814
1815 // Build the free list for the space.
1816 int computed_size = 0;
1817 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
1818 while (it.has_next()) {
1819 Page* p = it.next();
1820 // Space below the relocation pointer is allocated.
ager@chromium.orgc4c92722009-11-18 14:12:51 +00001821 computed_size +=
1822 static_cast<int>(p->mc_relocation_top - p->ObjectAreaStart());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001823 if (it.has_next()) {
1824 // Free the space at the top of the page. We cannot use
1825 // p->mc_relocation_top after the call to Free (because Free will clear
1826 // remembered set bits).
ager@chromium.orgc4c92722009-11-18 14:12:51 +00001827 int extra_size =
1828 static_cast<int>(p->ObjectAreaEnd() - p->mc_relocation_top);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001829 if (extra_size > 0) {
1830 int wasted_bytes = free_list_.Free(p->mc_relocation_top, extra_size);
1831 // The bytes we have just "freed" to add to the free list were
1832 // already accounted as available.
1833 accounting_stats_.WasteBytes(wasted_bytes);
1834 }
1835 }
1836 }
1837
1838 // Make sure the computed size - based on the used portion of the pages in
1839 // use - matches the size obtained while computing forwarding addresses.
1840 ASSERT(computed_size == Size());
1841}
1842
1843
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001844bool NewSpace::ReserveSpace(int bytes) {
1845 // We can't reliably unpack a partial snapshot that needs more new space
1846 // space than the minimum NewSpace size.
1847 ASSERT(bytes <= InitialCapacity());
1848 Address limit = allocation_info_.limit;
1849 Address top = allocation_info_.top;
1850 return limit - top >= bytes;
1851}
1852
1853
1854bool PagedSpace::ReserveSpace(int bytes) {
1855 Address limit = allocation_info_.limit;
1856 Address top = allocation_info_.top;
1857 if (limit - top >= bytes) return true;
1858
1859 // There wasn't enough space in the current page. Lets put the rest
1860 // of the page on the free list and start a fresh page.
1861 PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_));
1862
1863 Page* reserved_page = TopPageOf(allocation_info_);
1864 int bytes_left_to_reserve = bytes;
1865 while (bytes_left_to_reserve > 0) {
1866 if (!reserved_page->next_page()->is_valid()) {
1867 if (Heap::OldGenerationAllocationLimitReached()) return false;
1868 Expand(reserved_page);
1869 }
1870 bytes_left_to_reserve -= Page::kPageSize;
1871 reserved_page = reserved_page->next_page();
1872 if (!reserved_page->is_valid()) return false;
1873 }
1874 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid());
1875 SetAllocationInfo(&allocation_info_,
1876 TopPageOf(allocation_info_)->next_page());
1877 return true;
1878}
1879
1880
1881// You have to call this last, since the implementation from PagedSpace
1882// doesn't know that memory was 'promised' to large object space.
1883bool LargeObjectSpace::ReserveSpace(int bytes) {
1884 return Heap::OldGenerationSpaceAvailable() >= bytes;
1885}
1886
1887
kasper.lund7276f142008-07-30 08:49:36 +00001888// Slow case for normal allocation. Try in order: (1) allocate in the next
1889// page in the space, (2) allocate off the space's free list, (3) expand the
1890// space, (4) fail.
1891HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) {
1892 // Linear allocation in this space has failed. If there is another page
1893 // in the space, move to that page and allocate there. This allocation
1894 // should succeed (size_in_bytes should not be greater than a page's
1895 // object area size).
1896 Page* current_page = TopPageOf(allocation_info_);
1897 if (current_page->next_page()->is_valid()) {
1898 return AllocateInNextPage(current_page, size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001899 }
kasper.lund7276f142008-07-30 08:49:36 +00001900
ager@chromium.org3811b432009-10-28 14:53:37 +00001901 // There is no next page in this space. Try free list allocation unless that
1902 // is currently forbidden.
1903 if (!Heap::linear_allocation()) {
1904 int wasted_bytes;
1905 Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes);
1906 accounting_stats_.WasteBytes(wasted_bytes);
1907 if (!result->IsFailure()) {
1908 accounting_stats_.AllocateBytes(size_in_bytes);
1909 return HeapObject::cast(result);
1910 }
kasper.lund7276f142008-07-30 08:49:36 +00001911 }
1912
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001913 // Free list allocation failed and there is no next page. Fail if we have
1914 // hit the old generation size limit that should cause a garbage
1915 // collection.
1916 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
1917 return NULL;
1918 }
1919
1920 // Try to expand the space and allocate in the new next page.
kasper.lund7276f142008-07-30 08:49:36 +00001921 ASSERT(!current_page->next_page()->is_valid());
1922 if (Expand(current_page)) {
1923 return AllocateInNextPage(current_page, size_in_bytes);
1924 }
1925
1926 // Finally, fail.
1927 return NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001928}
1929
1930
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001931void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
ager@chromium.orgc4c92722009-11-18 14:12:51 +00001932 int free_size =
1933 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
kasper.lund7276f142008-07-30 08:49:36 +00001934 if (free_size > 0) {
1935 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
1936 accounting_stats_.WasteBytes(wasted_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001937 }
fschneider@chromium.org0c20e672010-01-14 15:28:53 +00001938}
1939
1940
1941void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
1942 int free_size =
1943 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
1944 // In the fixed space free list all the free list items have the right size.
1945 // We use up the rest of the page while preserving this invariant.
1946 while (free_size >= object_size_in_bytes_) {
1947 free_list_.Free(allocation_info_.top);
1948 allocation_info_.top += object_size_in_bytes_;
1949 free_size -= object_size_in_bytes_;
1950 accounting_stats_.WasteBytes(object_size_in_bytes_);
1951 }
1952}
1953
1954
1955// Add the block at the top of the page to the space's free list, set the
1956// allocation info to the next page (assumed to be one), and allocate
1957// linearly there.
1958HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
1959 int size_in_bytes) {
1960 ASSERT(current_page->next_page()->is_valid());
1961 PutRestOfCurrentPageOnFreeList(current_page);
kasper.lund7276f142008-07-30 08:49:36 +00001962 SetAllocationInfo(&allocation_info_, current_page->next_page());
1963 return AllocateLinearly(&allocation_info_, size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001964}
1965
1966
1967#ifdef DEBUG
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001968struct CommentStatistic {
1969 const char* comment;
1970 int size;
1971 int count;
1972 void Clear() {
1973 comment = NULL;
1974 size = 0;
1975 count = 0;
1976 }
1977};
1978
1979
1980// must be small, since an iteration is used for lookup
1981const int kMaxComments = 64;
1982static CommentStatistic comments_statistics[kMaxComments+1];
1983
1984
1985void PagedSpace::ReportCodeStatistics() {
1986 ReportCodeKindStatistics();
1987 PrintF("Code comment statistics (\" [ comment-txt : size/ "
1988 "count (average)\"):\n");
1989 for (int i = 0; i <= kMaxComments; i++) {
1990 const CommentStatistic& cs = comments_statistics[i];
1991 if (cs.size > 0) {
1992 PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
1993 cs.size/cs.count);
1994 }
1995 }
1996 PrintF("\n");
1997}
1998
1999
2000void PagedSpace::ResetCodeStatistics() {
2001 ClearCodeKindStatistics();
2002 for (int i = 0; i < kMaxComments; i++) comments_statistics[i].Clear();
2003 comments_statistics[kMaxComments].comment = "Unknown";
2004 comments_statistics[kMaxComments].size = 0;
2005 comments_statistics[kMaxComments].count = 0;
2006}
2007
2008
2009// Adds comment to 'comment_statistics' table. Performance OK sa long as
2010// 'kMaxComments' is small
2011static void EnterComment(const char* comment, int delta) {
2012 // Do not count empty comments
2013 if (delta <= 0) return;
2014 CommentStatistic* cs = &comments_statistics[kMaxComments];
2015 // Search for a free or matching entry in 'comments_statistics': 'cs'
2016 // points to result.
2017 for (int i = 0; i < kMaxComments; i++) {
2018 if (comments_statistics[i].comment == NULL) {
2019 cs = &comments_statistics[i];
2020 cs->comment = comment;
2021 break;
2022 } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
2023 cs = &comments_statistics[i];
2024 break;
2025 }
2026 }
2027 // Update entry for 'comment'
2028 cs->size += delta;
2029 cs->count += 1;
2030}
2031
2032
2033// Call for each nested comment start (start marked with '[ xxx', end marked
2034// with ']'. RelocIterator 'it' must point to a comment reloc info.
2035static void CollectCommentStatistics(RelocIterator* it) {
2036 ASSERT(!it->done());
ager@chromium.org236ad962008-09-25 09:45:57 +00002037 ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002038 const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
2039 if (tmp[0] != '[') {
2040 // Not a nested comment; skip
2041 return;
2042 }
2043
2044 // Search for end of nested comment or a new nested comment
2045 const char* const comment_txt =
2046 reinterpret_cast<const char*>(it->rinfo()->data());
2047 const byte* prev_pc = it->rinfo()->pc();
2048 int flat_delta = 0;
2049 it->next();
2050 while (true) {
2051 // All nested comments must be terminated properly, and therefore exit
2052 // from loop.
2053 ASSERT(!it->done());
ager@chromium.org236ad962008-09-25 09:45:57 +00002054 if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002055 const char* const txt =
2056 reinterpret_cast<const char*>(it->rinfo()->data());
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002057 flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002058 if (txt[0] == ']') break; // End of nested comment
2059 // A new comment
2060 CollectCommentStatistics(it);
2061 // Skip code that was covered with previous comment
2062 prev_pc = it->rinfo()->pc();
2063 }
2064 it->next();
2065 }
2066 EnterComment(comment_txt, flat_delta);
2067}
2068
2069
2070// Collects code size statistics:
2071// - by code kind
2072// - by code comment
2073void PagedSpace::CollectCodeStatistics() {
2074 HeapObjectIterator obj_it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002075 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002076 if (obj->IsCode()) {
2077 Code* code = Code::cast(obj);
2078 code_kind_statistics[code->kind()] += code->Size();
2079 RelocIterator it(code);
2080 int delta = 0;
2081 const byte* prev_pc = code->instruction_start();
2082 while (!it.done()) {
ager@chromium.org236ad962008-09-25 09:45:57 +00002083 if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002084 delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002085 CollectCommentStatistics(&it);
2086 prev_pc = it.rinfo()->pc();
2087 }
2088 it.next();
2089 }
2090
2091 ASSERT(code->instruction_start() <= prev_pc &&
2092 prev_pc <= code->relocation_start());
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002093 delta += static_cast<int>(code->relocation_start() - prev_pc);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002094 EnterComment("NoComment", delta);
2095 }
2096 }
2097}
2098
2099
2100void OldSpace::ReportStatistics() {
2101 int pct = Available() * 100 / Capacity();
2102 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
2103 Capacity(), Waste(), Available(), pct);
2104
2105 // Report remembered set statistics.
2106 int rset_marked_pointers = 0;
2107 int rset_marked_arrays = 0;
2108 int rset_marked_array_elements = 0;
2109 int cross_gen_pointers = 0;
2110 int cross_gen_array_elements = 0;
2111
2112 PageIterator page_it(this, PageIterator::PAGES_IN_USE);
2113 while (page_it.has_next()) {
2114 Page* p = page_it.next();
2115
2116 for (Address rset_addr = p->RSetStart();
2117 rset_addr < p->RSetEnd();
2118 rset_addr += kIntSize) {
2119 int rset = Memory::int_at(rset_addr);
2120 if (rset != 0) {
2121 // Bits were set
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002122 int intoff =
2123 static_cast<int>(rset_addr - p->address() - Page::kRSetOffset);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002124 int bitoff = 0;
2125 for (; bitoff < kBitsPerInt; ++bitoff) {
2126 if ((rset & (1 << bitoff)) != 0) {
2127 int bitpos = intoff*kBitsPerByte + bitoff;
2128 Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits);
2129 Object** obj = reinterpret_cast<Object**>(slot);
kasperl@chromium.org68ac0092009-07-09 06:00:35 +00002130 if (*obj == Heap::raw_unchecked_fixed_array_map()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002131 rset_marked_arrays++;
2132 FixedArray* fa = FixedArray::cast(HeapObject::FromAddress(slot));
2133
2134 rset_marked_array_elements += fa->length();
2135 // Manually inline FixedArray::IterateBody
2136 Address elm_start = slot + FixedArray::kHeaderSize;
2137 Address elm_stop = elm_start + fa->length() * kPointerSize;
2138 for (Address elm_addr = elm_start;
2139 elm_addr < elm_stop; elm_addr += kPointerSize) {
2140 // Filter non-heap-object pointers
2141 Object** elm_p = reinterpret_cast<Object**>(elm_addr);
2142 if (Heap::InNewSpace(*elm_p))
2143 cross_gen_array_elements++;
2144 }
2145 } else {
2146 rset_marked_pointers++;
2147 if (Heap::InNewSpace(*obj))
2148 cross_gen_pointers++;
2149 }
2150 }
2151 }
2152 }
2153 }
2154 }
2155
2156 pct = rset_marked_pointers == 0 ?
2157 0 : cross_gen_pointers * 100 / rset_marked_pointers;
2158 PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n",
2159 rset_marked_pointers, cross_gen_pointers, pct);
2160 PrintF(" rset_marked arrays %d, ", rset_marked_arrays);
2161 PrintF(" elements %d, ", rset_marked_array_elements);
2162 pct = rset_marked_array_elements == 0 ? 0
2163 : cross_gen_array_elements * 100 / rset_marked_array_elements;
2164 PrintF(" pointers to new space %d (%%%d)\n", cross_gen_array_elements, pct);
2165 PrintF(" total rset-marked bits %d\n",
2166 (rset_marked_pointers + rset_marked_arrays));
2167 pct = (rset_marked_pointers + rset_marked_array_elements) == 0 ? 0
2168 : (cross_gen_pointers + cross_gen_array_elements) * 100 /
2169 (rset_marked_pointers + rset_marked_array_elements);
2170 PrintF(" total rset pointers %d, true cross generation ones %d (%%%d)\n",
2171 (rset_marked_pointers + rset_marked_array_elements),
2172 (cross_gen_pointers + cross_gen_array_elements),
2173 pct);
2174
2175 ClearHistograms();
2176 HeapObjectIterator obj_it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002177 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2178 CollectHistogramInfo(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002179 ReportHistogram(true);
2180}
2181
2182
2183// Dump the range of remembered set words between [start, end) corresponding
2184// to the pointers starting at object_p. The allocation_top is an object
2185// pointer which should not be read past. This is important for large object
2186// pages, where some bits in the remembered set range do not correspond to
2187// allocated addresses.
2188static void PrintRSetRange(Address start, Address end, Object** object_p,
2189 Address allocation_top) {
2190 Address rset_address = start;
2191
2192 // If the range starts on on odd numbered word (eg, for large object extra
2193 // remembered set ranges), print some spaces.
ager@chromium.org9085a012009-05-11 19:22:57 +00002194 if ((reinterpret_cast<uintptr_t>(start) / kIntSize) % 2 == 1) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002195 PrintF(" ");
2196 }
2197
2198 // Loop over all the words in the range.
2199 while (rset_address < end) {
2200 uint32_t rset_word = Memory::uint32_at(rset_address);
2201 int bit_position = 0;
2202
2203 // Loop over all the bits in the word.
2204 while (bit_position < kBitsPerInt) {
2205 if (object_p == reinterpret_cast<Object**>(allocation_top)) {
2206 // Print a bar at the allocation pointer.
2207 PrintF("|");
2208 } else if (object_p > reinterpret_cast<Object**>(allocation_top)) {
2209 // Do not dereference object_p past the allocation pointer.
2210 PrintF("#");
2211 } else if ((rset_word & (1 << bit_position)) == 0) {
2212 // Print a dot for zero bits.
2213 PrintF(".");
2214 } else if (Heap::InNewSpace(*object_p)) {
2215 // Print an X for one bits for pointers to new space.
2216 PrintF("X");
2217 } else {
2218 // Print a circle for one bits for pointers to old space.
2219 PrintF("o");
2220 }
2221
2222 // Print a space after every 8th bit except the last.
2223 if (bit_position % 8 == 7 && bit_position != (kBitsPerInt - 1)) {
2224 PrintF(" ");
2225 }
2226
2227 // Advance to next bit.
2228 bit_position++;
2229 object_p++;
2230 }
2231
2232 // Print a newline after every odd numbered word, otherwise a space.
ager@chromium.org9085a012009-05-11 19:22:57 +00002233 if ((reinterpret_cast<uintptr_t>(rset_address) / kIntSize) % 2 == 1) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002234 PrintF("\n");
2235 } else {
2236 PrintF(" ");
2237 }
2238
2239 // Advance to next remembered set word.
2240 rset_address += kIntSize;
2241 }
2242}
2243
2244
2245void PagedSpace::DoPrintRSet(const char* space_name) {
2246 PageIterator it(this, PageIterator::PAGES_IN_USE);
2247 while (it.has_next()) {
2248 Page* p = it.next();
2249 PrintF("%s page 0x%x:\n", space_name, p);
2250 PrintRSetRange(p->RSetStart(), p->RSetEnd(),
2251 reinterpret_cast<Object**>(p->ObjectAreaStart()),
2252 p->AllocationTop());
2253 PrintF("\n");
2254 }
2255}
2256
2257
2258void OldSpace::PrintRSet() { DoPrintRSet("old"); }
2259#endif
2260
2261// -----------------------------------------------------------------------------
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002262// FixedSpace implementation
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002263
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002264void FixedSpace::PrepareForMarkCompact(bool will_compact) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002265 if (will_compact) {
2266 // Reset relocation info.
2267 MCResetRelocationInfo();
2268
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002269 // During a compacting collection, everything in the space is considered
2270 // 'available' (set by the call to MCResetRelocationInfo) and we will
2271 // rediscover live and wasted bytes during the collection.
2272 ASSERT(Available() == Capacity());
2273 } else {
2274 // During a non-compacting collection, everything below the linear
2275 // allocation pointer except wasted top-of-page blocks is considered
2276 // allocated and we will rediscover available bytes during the
2277 // collection.
2278 accounting_stats_.AllocateBytes(free_list_.available());
2279 }
2280
kasper.lund7276f142008-07-30 08:49:36 +00002281 // Clear the free list before a full GC---it will be rebuilt afterward.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002282 free_list_.Reset();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002283}
2284
2285
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002286void FixedSpace::MCCommitRelocationInfo() {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002287 // Update fast allocation info.
2288 allocation_info_.top = mc_forwarding_info_.top;
2289 allocation_info_.limit = mc_forwarding_info_.limit;
kasper.lund7276f142008-07-30 08:49:36 +00002290 ASSERT(allocation_info_.VerifyPagedAllocation());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002291
2292 // The space is compacted and we haven't yet wasted any space.
2293 ASSERT(Waste() == 0);
2294
2295 // Update allocation_top of each page in use and compute waste.
2296 int computed_size = 0;
2297 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
2298 while (it.has_next()) {
2299 Page* page = it.next();
2300 Address page_top = page->AllocationTop();
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002301 computed_size += static_cast<int>(page_top - page->ObjectAreaStart());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002302 if (it.has_next()) {
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002303 accounting_stats_.WasteBytes(
2304 static_cast<int>(page->ObjectAreaEnd() - page_top));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002305 }
2306 }
2307
2308 // Make sure the computed size - based on the used portion of the
2309 // pages in use - matches the size we adjust during allocation.
2310 ASSERT(computed_size == Size());
2311}
2312
2313
kasper.lund7276f142008-07-30 08:49:36 +00002314// Slow case for normal allocation. Try in order: (1) allocate in the next
2315// page in the space, (2) allocate off the space's free list, (3) expand the
2316// space, (4) fail.
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002317HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
2318 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
kasper.lund7276f142008-07-30 08:49:36 +00002319 // Linear allocation in this space has failed. If there is another page
2320 // in the space, move to that page and allocate there. This allocation
2321 // should succeed.
2322 Page* current_page = TopPageOf(allocation_info_);
2323 if (current_page->next_page()->is_valid()) {
2324 return AllocateInNextPage(current_page, size_in_bytes);
2325 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002326
ager@chromium.org3811b432009-10-28 14:53:37 +00002327 // There is no next page in this space. Try free list allocation unless
2328 // that is currently forbidden. The fixed space free list implicitly assumes
2329 // that all free blocks are of the fixed size.
2330 if (!Heap::linear_allocation()) {
kasper.lund7276f142008-07-30 08:49:36 +00002331 Object* result = free_list_.Allocate();
2332 if (!result->IsFailure()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002333 accounting_stats_.AllocateBytes(size_in_bytes);
kasper.lund7276f142008-07-30 08:49:36 +00002334 return HeapObject::cast(result);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002335 }
2336 }
kasper.lund7276f142008-07-30 08:49:36 +00002337
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002338 // Free list allocation failed and there is no next page. Fail if we have
2339 // hit the old generation size limit that should cause a garbage
2340 // collection.
2341 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2342 return NULL;
2343 }
2344
2345 // Try to expand the space and allocate in the new next page.
kasper.lund7276f142008-07-30 08:49:36 +00002346 ASSERT(!current_page->next_page()->is_valid());
2347 if (Expand(current_page)) {
2348 return AllocateInNextPage(current_page, size_in_bytes);
2349 }
2350
2351 // Finally, fail.
2352 return NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002353}
2354
2355
kasper.lund7276f142008-07-30 08:49:36 +00002356// Move to the next page (there is assumed to be one) and allocate there.
2357// The top of page block is always wasted, because it is too small to hold a
2358// map.
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002359HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
2360 int size_in_bytes) {
kasper.lund7276f142008-07-30 08:49:36 +00002361 ASSERT(current_page->next_page()->is_valid());
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002362 ASSERT(current_page->ObjectAreaEnd() - allocation_info_.top == page_extra_);
2363 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2364 accounting_stats_.WasteBytes(page_extra_);
kasper.lund7276f142008-07-30 08:49:36 +00002365 SetAllocationInfo(&allocation_info_, current_page->next_page());
2366 return AllocateLinearly(&allocation_info_, size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002367}
2368
2369
2370#ifdef DEBUG
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002371void FixedSpace::ReportStatistics() {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002372 int pct = Available() * 100 / Capacity();
2373 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
2374 Capacity(), Waste(), Available(), pct);
2375
2376 // Report remembered set statistics.
2377 int rset_marked_pointers = 0;
2378 int cross_gen_pointers = 0;
2379
2380 PageIterator page_it(this, PageIterator::PAGES_IN_USE);
2381 while (page_it.has_next()) {
2382 Page* p = page_it.next();
2383
2384 for (Address rset_addr = p->RSetStart();
2385 rset_addr < p->RSetEnd();
2386 rset_addr += kIntSize) {
2387 int rset = Memory::int_at(rset_addr);
2388 if (rset != 0) {
2389 // Bits were set
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002390 int intoff =
2391 static_cast<int>(rset_addr - p->address() - Page::kRSetOffset);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002392 int bitoff = 0;
2393 for (; bitoff < kBitsPerInt; ++bitoff) {
2394 if ((rset & (1 << bitoff)) != 0) {
2395 int bitpos = intoff*kBitsPerByte + bitoff;
2396 Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits);
2397 Object** obj = reinterpret_cast<Object**>(slot);
2398 rset_marked_pointers++;
2399 if (Heap::InNewSpace(*obj))
2400 cross_gen_pointers++;
2401 }
2402 }
2403 }
2404 }
2405 }
2406
2407 pct = rset_marked_pointers == 0 ?
2408 0 : cross_gen_pointers * 100 / rset_marked_pointers;
2409 PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n",
2410 rset_marked_pointers, cross_gen_pointers, pct);
2411
2412 ClearHistograms();
2413 HeapObjectIterator obj_it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002414 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2415 CollectHistogramInfo(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002416 ReportHistogram(false);
2417}
2418
2419
kasperl@chromium.orgdefbd102009-07-13 14:04:26 +00002420void FixedSpace::PrintRSet() { DoPrintRSet(name_); }
2421#endif
2422
2423
2424// -----------------------------------------------------------------------------
2425// MapSpace implementation
2426
2427void MapSpace::PrepareForMarkCompact(bool will_compact) {
2428 // Call prepare of the super class.
2429 FixedSpace::PrepareForMarkCompact(will_compact);
2430
2431 if (will_compact) {
2432 // Initialize map index entry.
2433 int page_count = 0;
2434 PageIterator it(this, PageIterator::ALL_PAGES);
2435 while (it.has_next()) {
2436 ASSERT_MAP_PAGE_INDEX(page_count);
2437
2438 Page* p = it.next();
2439 ASSERT(p->mc_page_index == page_count);
2440
2441 page_addresses_[page_count++] = p->address();
2442 }
2443 }
2444}
2445
2446
2447#ifdef DEBUG
2448void MapSpace::VerifyObject(HeapObject* object) {
2449 // The object should be a map or a free-list node.
2450 ASSERT(object->IsMap() || object->IsByteArray());
2451}
2452#endif
2453
2454
2455// -----------------------------------------------------------------------------
2456// GlobalPropertyCellSpace implementation
2457
2458#ifdef DEBUG
2459void CellSpace::VerifyObject(HeapObject* object) {
2460 // The object should be a global object property cell or a free-list node.
2461 ASSERT(object->IsJSGlobalPropertyCell() ||
2462 object->map() == Heap::two_pointer_filler_map());
2463}
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002464#endif
2465
2466
2467// -----------------------------------------------------------------------------
2468// LargeObjectIterator
2469
2470LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
2471 current_ = space->first_chunk_;
2472 size_func_ = NULL;
2473}
2474
2475
2476LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
2477 HeapObjectCallback size_func) {
2478 current_ = space->first_chunk_;
2479 size_func_ = size_func;
2480}
2481
2482
2483HeapObject* LargeObjectIterator::next() {
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002484 if (current_ == NULL) return NULL;
2485
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002486 HeapObject* object = current_->GetObject();
2487 current_ = current_->next();
2488 return object;
2489}
2490
2491
2492// -----------------------------------------------------------------------------
2493// LargeObjectChunk
2494
2495LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes,
kasper.lund7276f142008-07-30 08:49:36 +00002496 size_t* chunk_size,
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002497 Executability executable) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002498 size_t requested = ChunkSizeFor(size_in_bytes);
kasper.lund7276f142008-07-30 08:49:36 +00002499 void* mem = MemoryAllocator::AllocateRawMemory(requested,
2500 chunk_size,
2501 executable);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002502 if (mem == NULL) return NULL;
2503 LOG(NewEvent("LargeObjectChunk", mem, *chunk_size));
2504 if (*chunk_size < requested) {
2505 MemoryAllocator::FreeRawMemory(mem, *chunk_size);
2506 LOG(DeleteEvent("LargeObjectChunk", mem));
2507 return NULL;
2508 }
2509 return reinterpret_cast<LargeObjectChunk*>(mem);
2510}
2511
2512
2513int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) {
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002514 int os_alignment = static_cast<int>(OS::AllocateAlignment());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002515 if (os_alignment < Page::kPageSize)
2516 size_in_bytes += (Page::kPageSize - os_alignment);
2517 return size_in_bytes + Page::kObjectStartOffset;
2518}
2519
2520// -----------------------------------------------------------------------------
2521// LargeObjectSpace
2522
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002523LargeObjectSpace::LargeObjectSpace(AllocationSpace id)
2524 : Space(id, NOT_EXECUTABLE), // Managed on a per-allocation basis
kasper.lund7276f142008-07-30 08:49:36 +00002525 first_chunk_(NULL),
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002526 size_(0),
2527 page_count_(0) {}
2528
2529
2530bool LargeObjectSpace::Setup() {
2531 first_chunk_ = NULL;
2532 size_ = 0;
2533 page_count_ = 0;
2534 return true;
2535}
2536
2537
2538void LargeObjectSpace::TearDown() {
2539 while (first_chunk_ != NULL) {
2540 LargeObjectChunk* chunk = first_chunk_;
2541 first_chunk_ = first_chunk_->next();
2542 LOG(DeleteEvent("LargeObjectChunk", chunk->address()));
2543 MemoryAllocator::FreeRawMemory(chunk->address(), chunk->size());
2544 }
2545
2546 size_ = 0;
2547 page_count_ = 0;
2548}
2549
2550
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00002551#ifdef ENABLE_HEAP_PROTECTION
2552
2553void LargeObjectSpace::Protect() {
2554 LargeObjectChunk* chunk = first_chunk_;
2555 while (chunk != NULL) {
2556 MemoryAllocator::Protect(chunk->address(), chunk->size());
2557 chunk = chunk->next();
2558 }
2559}
2560
2561
2562void LargeObjectSpace::Unprotect() {
2563 LargeObjectChunk* chunk = first_chunk_;
2564 while (chunk != NULL) {
2565 bool is_code = chunk->GetObject()->IsCode();
2566 MemoryAllocator::Unprotect(chunk->address(), chunk->size(),
2567 is_code ? EXECUTABLE : NOT_EXECUTABLE);
2568 chunk = chunk->next();
2569 }
2570}
2571
2572#endif
2573
2574
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002575Object* LargeObjectSpace::AllocateRawInternal(int requested_size,
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002576 int object_size,
2577 Executability executable) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002578 ASSERT(0 < object_size && object_size <= requested_size);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002579
2580 // Check if we want to force a GC before growing the old space further.
2581 // If so, fail the allocation.
2582 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2583 return Failure::RetryAfterGC(requested_size, identity());
2584 }
2585
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002586 size_t chunk_size;
2587 LargeObjectChunk* chunk =
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002588 LargeObjectChunk::New(requested_size, &chunk_size, executable);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002589 if (chunk == NULL) {
kasper.lund7276f142008-07-30 08:49:36 +00002590 return Failure::RetryAfterGC(requested_size, identity());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002591 }
2592
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002593 size_ += static_cast<int>(chunk_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002594 page_count_++;
2595 chunk->set_next(first_chunk_);
2596 chunk->set_size(chunk_size);
2597 first_chunk_ = chunk;
2598
2599 // Set the object address and size in the page header and clear its
2600 // remembered set.
2601 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2602 Address object_address = page->ObjectAreaStart();
2603 // Clear the low order bit of the second word in the page to flag it as a
2604 // large object page. If the chunk_size happened to be written there, its
2605 // low order bit should already be clear.
2606 ASSERT((chunk_size & 0x1) == 0);
2607 page->is_normal_page &= ~0x1;
2608 page->ClearRSet();
2609 int extra_bytes = requested_size - object_size;
2610 if (extra_bytes > 0) {
2611 // The extra memory for the remembered set should be cleared.
2612 memset(object_address + object_size, 0, extra_bytes);
2613 }
2614
2615 return HeapObject::FromAddress(object_address);
2616}
2617
2618
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002619Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002620 ASSERT(0 < size_in_bytes);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002621 return AllocateRawInternal(size_in_bytes,
2622 size_in_bytes,
2623 EXECUTABLE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002624}
2625
2626
2627Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002628 ASSERT(0 < size_in_bytes);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002629 int extra_rset_bytes = ExtraRSetBytesFor(size_in_bytes);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002630 return AllocateRawInternal(size_in_bytes + extra_rset_bytes,
2631 size_in_bytes,
2632 NOT_EXECUTABLE);
2633}
2634
2635
2636Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) {
2637 ASSERT(0 < size_in_bytes);
2638 return AllocateRawInternal(size_in_bytes,
2639 size_in_bytes,
2640 NOT_EXECUTABLE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002641}
2642
2643
2644// GC support
2645Object* LargeObjectSpace::FindObject(Address a) {
2646 for (LargeObjectChunk* chunk = first_chunk_;
2647 chunk != NULL;
2648 chunk = chunk->next()) {
2649 Address chunk_address = chunk->address();
2650 if (chunk_address <= a && a < chunk_address + chunk->size()) {
2651 return chunk->GetObject();
2652 }
2653 }
2654 return Failure::Exception();
2655}
2656
2657
2658void LargeObjectSpace::ClearRSet() {
2659 ASSERT(Page::is_rset_in_use());
2660
2661 LargeObjectIterator it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002662 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002663 // We only have code, sequential strings, or fixed arrays in large
2664 // object space, and only fixed arrays need remembered set support.
2665 if (object->IsFixedArray()) {
2666 // Clear the normal remembered set region of the page;
2667 Page* page = Page::FromAddress(object->address());
2668 page->ClearRSet();
2669
2670 // Clear the extra remembered set.
2671 int size = object->Size();
2672 int extra_rset_bytes = ExtraRSetBytesFor(size);
2673 memset(object->address() + size, 0, extra_rset_bytes);
2674 }
2675 }
2676}
2677
2678
2679void LargeObjectSpace::IterateRSet(ObjectSlotCallback copy_object_func) {
2680 ASSERT(Page::is_rset_in_use());
2681
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002682 static void* lo_rset_histogram = StatsTable::CreateHistogram(
2683 "V8.RSetLO",
2684 0,
2685 // Keeping this histogram's buckets the same as the paged space histogram.
2686 Page::kObjectAreaSize / kPointerSize,
2687 30);
2688
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002689 LargeObjectIterator it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002690 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002691 // We only have code, sequential strings, or fixed arrays in large
2692 // object space, and only fixed arrays can possibly contain pointers to
2693 // the young generation.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002694 if (object->IsFixedArray()) {
2695 // Iterate the normal page remembered set range.
2696 Page* page = Page::FromAddress(object->address());
2697 Address object_end = object->address() + object->Size();
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002698 int count = Heap::IterateRSetRange(page->ObjectAreaStart(),
2699 Min(page->ObjectAreaEnd(), object_end),
2700 page->RSetStart(),
2701 copy_object_func);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002702
2703 // Iterate the extra array elements.
2704 if (object_end > page->ObjectAreaEnd()) {
kasperl@chromium.org71affb52009-05-26 05:44:31 +00002705 count += Heap::IterateRSetRange(page->ObjectAreaEnd(), object_end,
2706 object_end, copy_object_func);
2707 }
2708 if (lo_rset_histogram != NULL) {
2709 StatsTable::AddHistogramSample(lo_rset_histogram, count);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002710 }
2711 }
2712 }
2713}
2714
2715
2716void LargeObjectSpace::FreeUnmarkedObjects() {
2717 LargeObjectChunk* previous = NULL;
2718 LargeObjectChunk* current = first_chunk_;
2719 while (current != NULL) {
2720 HeapObject* object = current->GetObject();
kasper.lund7276f142008-07-30 08:49:36 +00002721 if (object->IsMarked()) {
2722 object->ClearMark();
2723 MarkCompactCollector::tracer()->decrement_marked_count();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002724 previous = current;
2725 current = current->next();
2726 } else {
2727 Address chunk_address = current->address();
2728 size_t chunk_size = current->size();
2729
2730 // Cut the chunk out from the chunk list.
2731 current = current->next();
2732 if (previous == NULL) {
2733 first_chunk_ = current;
2734 } else {
2735 previous->set_next(current);
2736 }
2737
2738 // Free the chunk.
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002739 MarkCompactCollector::ReportDeleteIfNeeded(object);
ager@chromium.orgc4c92722009-11-18 14:12:51 +00002740 size_ -= static_cast<int>(chunk_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002741 page_count_--;
2742 MemoryAllocator::FreeRawMemory(chunk_address, chunk_size);
2743 LOG(DeleteEvent("LargeObjectChunk", chunk_address));
2744 }
2745 }
2746}
2747
2748
2749bool LargeObjectSpace::Contains(HeapObject* object) {
2750 Address address = object->address();
2751 Page* page = Page::FromAddress(address);
2752
2753 SLOW_ASSERT(!page->IsLargeObjectPage()
2754 || !FindObject(address)->IsFailure());
2755
2756 return page->IsLargeObjectPage();
2757}
2758
2759
2760#ifdef DEBUG
2761// We do not assume that the large object iterator works, because it depends
2762// on the invariants we are checking during verification.
2763void LargeObjectSpace::Verify() {
2764 for (LargeObjectChunk* chunk = first_chunk_;
2765 chunk != NULL;
2766 chunk = chunk->next()) {
2767 // Each chunk contains an object that starts at the large object page's
2768 // object area start.
2769 HeapObject* object = chunk->GetObject();
2770 Page* page = Page::FromAddress(object->address());
2771 ASSERT(object->address() == page->ObjectAreaStart());
2772
2773 // The first word should be a map, and we expect all map pointers to be
2774 // in map space.
2775 Map* map = object->map();
2776 ASSERT(map->IsMap());
2777 ASSERT(Heap::map_space()->Contains(map));
2778
ager@chromium.orga1645e22009-09-09 19:27:10 +00002779 // We have only code, sequential strings, external strings
2780 // (sequential strings that have been morphed into external
2781 // strings), fixed arrays, and byte arrays in large object space.
2782 ASSERT(object->IsCode() || object->IsSeqString() ||
2783 object->IsExternalString() || object->IsFixedArray() ||
2784 object->IsByteArray());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002785
2786 // The object itself should look OK.
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00002787 object->Verify();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002788
2789 // Byte arrays and strings don't have interior pointers.
2790 if (object->IsCode()) {
2791 VerifyPointersVisitor code_visitor;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002792 object->IterateBody(map->instance_type(),
2793 object->Size(),
2794 &code_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002795 } else if (object->IsFixedArray()) {
2796 // We loop over fixed arrays ourselves, rather then using the visitor,
2797 // because the visitor doesn't support the start/offset iteration
2798 // needed for IsRSetSet.
2799 FixedArray* array = FixedArray::cast(object);
2800 for (int j = 0; j < array->length(); j++) {
2801 Object* element = array->get(j);
2802 if (element->IsHeapObject()) {
2803 HeapObject* element_object = HeapObject::cast(element);
2804 ASSERT(Heap::Contains(element_object));
2805 ASSERT(element_object->map()->IsMap());
2806 if (Heap::InNewSpace(element_object)) {
2807 ASSERT(Page::IsRSetSet(object->address(),
2808 FixedArray::kHeaderSize + j * kPointerSize));
2809 }
2810 }
2811 }
2812 }
2813 }
2814}
2815
2816
2817void LargeObjectSpace::Print() {
2818 LargeObjectIterator it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002819 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
2820 obj->Print();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002821 }
2822}
2823
2824
2825void LargeObjectSpace::ReportStatistics() {
2826 PrintF(" size: %d\n", size_);
2827 int num_objects = 0;
2828 ClearHistograms();
2829 LargeObjectIterator it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002830 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002831 num_objects++;
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002832 CollectHistogramInfo(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002833 }
2834
2835 PrintF(" number of objects %d\n", num_objects);
2836 if (num_objects > 0) ReportHistogram(false);
2837}
2838
2839
2840void LargeObjectSpace::CollectCodeStatistics() {
2841 LargeObjectIterator obj_it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002842 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002843 if (obj->IsCode()) {
2844 Code* code = Code::cast(obj);
2845 code_kind_statistics[code->kind()] += code->Size();
2846 }
2847 }
2848}
2849
2850
2851void LargeObjectSpace::PrintRSet() {
2852 LargeObjectIterator it(this);
sgjesse@chromium.orgb302e562010-02-03 11:26:59 +00002853 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002854 if (object->IsFixedArray()) {
2855 Page* page = Page::FromAddress(object->address());
2856
2857 Address allocation_top = object->address() + object->Size();
2858 PrintF("large page 0x%x:\n", page);
2859 PrintRSetRange(page->RSetStart(), page->RSetEnd(),
2860 reinterpret_cast<Object**>(object->address()),
2861 allocation_top);
2862 int extra_array_bytes = object->Size() - Page::kObjectAreaSize;
2863 int extra_rset_bits = RoundUp(extra_array_bytes / kPointerSize,
2864 kBitsPerInt);
2865 PrintF("------------------------------------------------------------"
2866 "-----------\n");
2867 PrintRSetRange(allocation_top,
2868 allocation_top + extra_rset_bits / kBitsPerByte,
2869 reinterpret_cast<Object**>(object->address()
2870 + Page::kObjectAreaSize),
2871 allocation_top);
2872 PrintF("\n");
2873 }
2874 }
2875}
2876#endif // DEBUG
2877
2878} } // namespace v8::internal