blob: 747f0a467f3cbaaa5eb8ef5a3e0c30756d216257 [file] [log] [blame]
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Win32.
29#ifndef WIN32_LEAN_AND_MEAN
30// WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
31#define WIN32_LEAN_AND_MEAN
32#endif
33#ifndef NOMINMAX
34#define NOMINMAX
35#endif
36#ifndef NOKERNEL
37#define NOKERNEL
38#endif
39#ifndef NOUSER
40#define NOUSER
41#endif
42#ifndef NOSERVICE
43#define NOSERVICE
44#endif
45#ifndef NOSOUND
46#define NOSOUND
47#endif
48#ifndef NOMCX
49#define NOMCX
50#endif
51
52#include <windows.h>
53
54#include <mmsystem.h> // For timeGetTime().
55#include <dbghelp.h> // For SymLoadModule64 and al.
56#include <tlhelp32.h> // For Module32First and al.
57
58// These aditional WIN32 includes have to be right here as the #undef's below
59// makes it impossible to have them elsewhere.
60#include <winsock2.h>
61#include <process.h> // for _beginthreadex()
62#include <stdlib.h>
63
64#pragma comment(lib, "winmm.lib") // force linkage with winmm.
65
66#undef VOID
67#undef DELETE
68#undef IN
69#undef THIS
70#undef CONST
71#undef NAN
72#undef GetObject
73#undef CreateMutex
74#undef CreateSemaphore
75
76#include "v8.h"
77
78#include "platform.h"
79
80// Extra POSIX/ANSI routines for Win32. Please refer to The Open Group Base
81// Specification for specification of the correct semantics for these
82// functions.
83// (http://www.opengroup.org/onlinepubs/000095399/)
84
85// Test for finite value - usually defined in math.h
86namespace v8 {
87namespace internal {
88
89int isfinite(double x) {
90 return _finite(x);
91}
92
93} // namespace v8
94} // namespace internal
95
96// Test for a NaN (not a number) value - usually defined in math.h
97int isnan(double x) {
98 return _isnan(x);
99}
100
101
102// Test for infinity - usually defined in math.h
103int isinf(double x) {
104 return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
105}
106
107
108// Test if x is less than y and both nominal - usually defined in math.h
109int isless(double x, double y) {
110 return isnan(x) || isnan(y) ? 0 : x < y;
111}
112
113
114// Test if x is greater than y and both nominal - usually defined in math.h
115int isgreater(double x, double y) {
116 return isnan(x) || isnan(y) ? 0 : x > y;
117}
118
119
120// Classify floating point number - usually defined in math.h
121int fpclassify(double x) {
122 // Use the MS-specific _fpclass() for classification.
123 int flags = _fpclass(x);
124
125 // Determine class. We cannot use a switch statement because
126 // the _FPCLASS_ constants are defined as flags.
127 if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
128 if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
129 if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
130 if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
131
132 // All cases should be covered by the code above.
133 ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
134 return FP_NAN;
135}
136
137
138// Test sign - usually defined in math.h
139int signbit(double x) {
140 // We need to take care of the special case of both positive
141 // and negative versions of zero.
142 if (x == 0)
143 return _fpclass(x) & _FPCLASS_NZ;
144 else
145 return x < 0;
146}
147
148
149// Generate a pseudo-random number in the range 0-2^31-1. Usually
150// defined in stdlib.h
151int random() {
152 return rand();
153}
154
155
156// Case-insensitive string comparisons. Use stricmp() on Win32. Usually defined
157// in strings.h.
158int strcasecmp(const char* s1, const char* s2) {
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000159 return _stricmp(s1, s2);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000160}
161
162
163// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
164// defined in strings.h.
165int strncasecmp(const char* s1, const char* s2, int n) {
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000166 return _strnicmp(s1, s2, n);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000167}
168
169namespace v8 { namespace internal {
170
171double ceiling(double x) {
172 return ceil(x);
173}
174
175// ----------------------------------------------------------------------------
176// The Time class represents time on win32. A timestamp is represented as
177// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
178// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
179// January 1, 1970.
180
181class Time {
182 public:
183 // Constructors.
184 Time();
185 explicit Time(double jstime);
186 Time(int year, int mon, int day, int hour, int min, int sec);
187
188 // Convert timestamp to JavaScript representation.
189 double ToJSTime();
190
191 // Set timestamp to current time.
192 void SetToCurrentTime();
193
194 // Returns the local timezone offset in milliseconds east of UTC. This is
195 // the number of milliseconds you must add to UTC to get local time, i.e.
196 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
197 // routine also takes into account whether daylight saving is effect
198 // at the time.
199 int64_t LocalOffset();
200
201 // Returns the daylight savings time offset for the time in milliseconds.
202 int64_t DaylightSavingsOffset();
203
204 // Returns a string identifying the current timezone for the
205 // timestamp taking into account daylight saving.
206 char* LocalTimezone();
207
208 private:
209 // Constants for time conversion.
210 static const int64_t kTimeEpoc = 116444736000000000;
211 static const int64_t kTimeScaler = 10000;
212 static const int64_t kMsPerMinute = 60000;
213
214 // Constants for timezone information.
215 static const int kTzNameSize = 128;
216 static const bool kShortTzNames = false;
217
218 // Timezone information. We need to have static buffers for the
219 // timezone names because we return pointers to these in
220 // LocalTimezone().
221 static bool tz_initialized_;
222 static TIME_ZONE_INFORMATION tzinfo_;
223 static char std_tz_name_[kTzNameSize];
224 static char dst_tz_name_[kTzNameSize];
225
226 // Initialize the timezone information (if not already done).
227 static void TzSet();
228
229 // Guess the name of the timezone from the bias.
230 static const char* GuessTimezoneNameFromBias(int bias);
231
232 // Return whether or not daylight savings time is in effect at this time.
233 bool InDST();
234
235 // Return the difference (in milliseconds) between this timestamp and
236 // another timestamp.
237 int64_t Diff(Time* other);
238
239 // Accessor for FILETIME representation.
240 FILETIME& ft() { return time_.ft_; }
241
242 // Accessor for integer representation.
243 int64_t& t() { return time_.t_; }
244
245 // Although win32 uses 64-bit integers for representing timestamps,
246 // these are packed into a FILETIME structure. The FILETIME structure
247 // is just a struct representing a 64-bit integer. The TimeStamp union
248 // allows access to both a FILETIME and an integer representation of
249 // the timestamp.
250 union TimeStamp {
251 FILETIME ft_;
252 int64_t t_;
253 };
254
255 TimeStamp time_;
256};
257
258// Static variables.
259bool Time::tz_initialized_ = false;
260TIME_ZONE_INFORMATION Time::tzinfo_;
261char Time::std_tz_name_[kTzNameSize];
262char Time::dst_tz_name_[kTzNameSize];
263
264
265// Initialize timestamp to start of epoc.
266Time::Time() {
267 t() = 0;
268}
269
270
271// Initialize timestamp from a JavaScript timestamp.
272Time::Time(double jstime) {
273 t() = static_cast<uint64_t>(jstime) * kTimeScaler + kTimeEpoc;
274}
275
276
277// Initialize timestamp from date/time components.
278Time::Time(int year, int mon, int day, int hour, int min, int sec) {
279 SYSTEMTIME st;
280 st.wYear = year;
281 st.wMonth = mon;
282 st.wDay = day;
283 st.wHour = hour;
284 st.wMinute = min;
285 st.wSecond = sec;
286 st.wMilliseconds = 0;
287 SystemTimeToFileTime(&st, &ft());
288}
289
290
291// Convert timestamp to JavaScript timestamp.
292double Time::ToJSTime() {
293 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
294}
295
296
297// Guess the name of the timezone from the bias.
298// The guess is very biased towards the northern hemisphere.
299const char* Time::GuessTimezoneNameFromBias(int bias) {
300 static const int kHour = 60;
301 switch (-bias) {
302 case -9*kHour: return "Alaska";
303 case -8*kHour: return "Pacific";
304 case -7*kHour: return "Mountain";
305 case -6*kHour: return "Central";
306 case -5*kHour: return "Eastern";
307 case -4*kHour: return "Atlantic";
308 case 0*kHour: return "GMT";
309 case +1*kHour: return "Central Europe";
310 case +2*kHour: return "Eastern Europe";
311 case +3*kHour: return "Russia";
312 case +5*kHour + 30: return "India";
313 case +8*kHour: return "China";
314 case +9*kHour: return "Japan";
315 case +12*kHour: return "New Zealand";
316 default: return "Local";
317 }
318}
319
320
321// Initialize timezone information. The timezone information is obtained from
322// windows. If we cannot get the timezone information we fall back to CET.
323// Please notice that this code is not thread-safe.
324void Time::TzSet() {
325 // Just return if timezone information has already been initialized.
326 if (tz_initialized_) return;
327
328 // Obtain timezone information from operating system.
329 memset(&tzinfo_, 0, sizeof(tzinfo_));
330 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
331 // If we cannot get timezone information we fall back to CET.
332 tzinfo_.Bias = -60;
333 tzinfo_.StandardDate.wMonth = 10;
334 tzinfo_.StandardDate.wDay = 5;
335 tzinfo_.StandardDate.wHour = 3;
336 tzinfo_.StandardBias = 0;
337 tzinfo_.DaylightDate.wMonth = 3;
338 tzinfo_.DaylightDate.wDay = 5;
339 tzinfo_.DaylightDate.wHour = 2;
340 tzinfo_.DaylightBias = -60;
341 }
342
343 // Make standard and DST timezone names.
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000344 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
345 "%S",
346 tzinfo_.StandardName);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000347 std_tz_name_[kTzNameSize - 1] = '\0';
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000348 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
349 "%S",
350 tzinfo_.DaylightName);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000351 dst_tz_name_[kTzNameSize - 1] = '\0';
352
353 // If OS returned empty string or resource id (like "@tzres.dll,-211")
354 // simply guess the name from the UTC bias of the timezone.
355 // To properly resolve the resource identifier requires a library load,
356 // which is not possible in a sandbox.
357 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000358 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
359 "%s Standard Time",
360 GuessTimezoneNameFromBias(tzinfo_.Bias));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000361 }
362 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000363 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
364 "%s Daylight Time",
365 GuessTimezoneNameFromBias(tzinfo_.Bias));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000366 }
367
368 // Timezone information initialized.
369 tz_initialized_ = true;
370}
371
372
373// Return the difference in milliseconds between this and another timestamp.
374int64_t Time::Diff(Time* other) {
375 return (t() - other->t()) / kTimeScaler;
376}
377
378
379// Set timestamp to current time.
380void Time::SetToCurrentTime() {
381 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
382 // Because we're fast, we like fast timers which have at least a
383 // 1ms resolution.
384 //
385 // timeGetTime() provides 1ms granularity when combined with
386 // timeBeginPeriod(). If the host application for v8 wants fast
387 // timers, it can use timeBeginPeriod to increase the resolution.
388 //
389 // Using timeGetTime() has a drawback because it is a 32bit value
390 // and hence rolls-over every ~49days.
391 //
392 // To use the clock, we use GetSystemTimeAsFileTime as our base;
393 // and then use timeGetTime to extrapolate current time from the
394 // start time. To deal with rollovers, we resync the clock
395 // any time when more than kMaxClockElapsedTime has passed or
396 // whenever timeGetTime creates a rollover.
397
398 static bool initialized = false;
399 static TimeStamp init_time;
400 static DWORD init_ticks;
401 static const int kHundredNanosecondsPerSecond = 10000;
402 static const int kMaxClockElapsedTime =
403 60*60*24*kHundredNanosecondsPerSecond; // 1 day
404
405 // If we are uninitialized, we need to resync the clock.
406 bool needs_resync = !initialized;
407
408 // Get the current time.
409 TimeStamp time_now;
410 GetSystemTimeAsFileTime(&time_now.ft_);
411 DWORD ticks_now = timeGetTime();
412
413 // Check if we need to resync due to clock rollover.
414 needs_resync |= ticks_now < init_ticks;
415
416 // Check if we need to resync due to elapsed time.
417 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
418
419 // Resync the clock if necessary.
420 if (needs_resync) {
421 GetSystemTimeAsFileTime(&init_time.ft_);
422 init_ticks = ticks_now = timeGetTime();
423 initialized = true;
424 }
425
426 // Finally, compute the actual time. Why is this so hard.
427 DWORD elapsed = ticks_now - init_ticks;
428 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
429}
430
431
432// Return the local timezone offset in milliseconds east of UTC. This
433// takes into account whether daylight saving is in effect at the time.
434int64_t Time::LocalOffset() {
435 // Initialize timezone information, if needed.
436 TzSet();
437
438 // Convert timestamp to date/time components. These are now in UTC
439 // format. NB: Please do not replace the following three calls with one
440 // call to FileTimeToLocalFileTime(), because it does not handle
441 // daylight saving correctly.
442 SYSTEMTIME utc;
443 FileTimeToSystemTime(&ft(), &utc);
444
445 // Convert to local time, using timezone information.
446 SYSTEMTIME local;
447 SystemTimeToTzSpecificLocalTime(&tzinfo_, &utc, &local);
448
449 // Convert local time back to a timestamp. This timestamp now
450 // has a bias similar to the local timezone bias in effect
451 // at the time of the original timestamp.
452 Time localtime;
453 SystemTimeToFileTime(&local, &localtime.ft());
454
455 // The difference between the new local timestamp and the original
456 // timestamp and is the local timezone offset.
457 return localtime.Diff(this);
458}
459
460
461// Return whether or not daylight savings time is in effect at this time.
462bool Time::InDST() {
463 // Initialize timezone information, if needed.
464 TzSet();
465
466 // Determine if DST is in effect at the specified time.
467 bool in_dst = false;
468 if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
469 // Get the local timezone offset for the timestamp in milliseconds.
470 int64_t offset = LocalOffset();
471
472 // Compute the offset for DST. The bias parameters in the timezone info
473 // are specified in minutes. These must be converted to milliseconds.
474 int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
475
476 // If the local time offset equals the timezone bias plus the daylight
477 // bias then DST is in effect.
478 in_dst = offset == dstofs;
479 }
480
481 return in_dst;
482}
483
484
485// Return the dalight savings time offset for this time.
486int64_t Time::DaylightSavingsOffset() {
487 return InDST() ? 60 * kMsPerMinute : 0;
488}
489
490
491// Returns a string identifying the current timezone for the
492// timestamp taking into account daylight saving.
493char* Time::LocalTimezone() {
494 // Return the standard or DST time zone name based on whether daylight
495 // saving is in effect at the given time.
496 return InDST() ? dst_tz_name_ : std_tz_name_;
497}
498
499
500void OS::Setup() {
501 // Seed the random number generator.
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000502 // Convert the current time to a 64-bit integer first, before converting it
503 // to an unsigned. Going directly can cause an overflow and the seed to be
504 // set to all ones. The seed will be identical for different instances that
505 // call this setup code within the same millisecond.
506 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
507 srand(static_cast<unsigned int>(seed));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000508}
509
510
511// Returns the accumulated user time for thread.
512int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
513 FILETIME dummy;
514 uint64_t usertime;
515
516 // Get the amount of time that the thread has executed in user mode.
517 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
518 reinterpret_cast<FILETIME*>(&usertime))) return -1;
519
520 // Adjust the resolution to micro-seconds.
521 usertime /= 10;
522
523 // Convert to seconds and microseconds
524 *secs = static_cast<uint32_t>(usertime / 1000000);
525 *usecs = static_cast<uint32_t>(usertime % 1000000);
526 return 0;
527}
528
529
530// Returns current time as the number of milliseconds since
531// 00:00:00 UTC, January 1, 1970.
532double OS::TimeCurrentMillis() {
533 Time t;
534 t.SetToCurrentTime();
535 return t.ToJSTime();
536}
537
538// Returns the tickcounter based on timeGetTime.
539int64_t OS::Ticks() {
540 return timeGetTime() * 1000; // Convert to microseconds.
541}
542
543
544// Returns a string identifying the current timezone taking into
545// account daylight saving.
546char* OS::LocalTimezone(double time) {
547 return Time(time).LocalTimezone();
548}
549
550
kasper.lund7276f142008-07-30 08:49:36 +0000551// Returns the local time offset in milliseconds east of UTC without
552// taking daylight savings time into account.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000553double OS::LocalTimeOffset() {
kasper.lund7276f142008-07-30 08:49:36 +0000554 // Use current time, rounded to the millisecond.
555 Time t(TimeCurrentMillis());
556 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
557 return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000558}
559
560
561// Returns the daylight savings offset in milliseconds for the given
562// time.
563double OS::DaylightSavingsOffset(double time) {
564 int64_t offset = Time(time).DaylightSavingsOffset();
565 return static_cast<double>(offset);
566}
567
568
569// ----------------------------------------------------------------------------
570// Win32 console output.
571//
572// If a Win32 application is linked as a console application it has a normal
573// standard output and standard error. In this case normal printf works fine
574// for output. However, if the application is linked as a GUI application,
575// the process doesn't have a console, and therefore (debugging) output is lost.
576// This is the case if we are embedded in a windows program (like a browser).
577// In order to be able to get debug output in this case the the debugging
578// facility using OutputDebugString. This output goes to the active debugger
579// for the process (if any). Else the output can be monitored using DBMON.EXE.
580
581enum OutputMode {
582 UNKNOWN, // Output method has not yet been determined.
583 CONSOLE, // Output is written to stdout.
584 ODS // Output is written to debug facility.
585};
586
587static OutputMode output_mode = UNKNOWN; // Current output mode.
588
589
590// Determine if the process has a console for output.
591static bool HasConsole() {
592 // Only check the first time. Eventual race conditions are not a problem,
593 // because all threads will eventually determine the same mode.
594 if (output_mode == UNKNOWN) {
595 // We cannot just check that the standard output is attached to a console
596 // because this would fail if output is redirected to a file. Therefore we
597 // say that a process does not have an output console if either the
598 // standard output handle is invalid or its file type is unknown.
599 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
600 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
601 output_mode = CONSOLE;
602 else
603 output_mode = ODS;
604 }
605 return output_mode == CONSOLE;
606}
607
608
609static void VPrintHelper(FILE* stream, const char* format, va_list args) {
610 if (HasConsole()) {
611 vfprintf(stream, format, args);
612 } else {
613 // It is important to use safe print here in order to avoid
614 // overflowing the buffer. We might truncate the output, but this
615 // does not crash.
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000616 EmbeddedVector<char, 4096> buffer;
617 OS::VSNPrintF(buffer, format, args);
618 OutputDebugStringA(buffer.start());
619 }
620}
621
622
623FILE* OS::FOpen(const char* path, const char* mode) {
624 FILE* result;
625 if (fopen_s(&result, path, mode) == 0) {
626 return result;
627 } else {
628 return NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000629 }
630}
631
632
633// Print (debug) message to console.
634void OS::Print(const char* format, ...) {
635 va_list args;
636 va_start(args, format);
637 VPrint(format, args);
638 va_end(args);
639}
640
641
642void OS::VPrint(const char* format, va_list args) {
643 VPrintHelper(stdout, format, args);
644}
645
646
647// Print error message to console.
648void OS::PrintError(const char* format, ...) {
649 va_list args;
650 va_start(args, format);
651 VPrintError(format, args);
652 va_end(args);
653}
654
655
656void OS::VPrintError(const char* format, va_list args) {
657 VPrintHelper(stderr, format, args);
658}
659
660
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000661int OS::SNPrintF(Vector<char> str, const char* format, ...) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000662 va_list args;
663 va_start(args, format);
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000664 int result = VSNPrintF(str, format, args);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000665 va_end(args);
666 return result;
667}
668
669
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000670int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
671 int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000672 // Make sure to zero-terminate the string if the output was
673 // truncated or if there was an error.
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000674 if (n < 0 || n >= str.length()) {
675 str[str.length() - 1] = '\0';
kasper.lund7276f142008-07-30 08:49:36 +0000676 return -1;
677 } else {
678 return n;
679 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000680}
681
682
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000683void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
684 int result = strncpy_s(dest.start(), dest.length(), src, n);
685 USE(result);
686 ASSERT(result == 0);
687}
688
689
690void OS::WcsCpy(Vector<wchar_t> dest, const wchar_t* src) {
691 int result = wcscpy_s(dest.start(), dest.length(), src);
692 USE(result);
693 ASSERT(result == 0);
694}
695
696
697char *OS::StrDup(const char* str) {
698 return _strdup(str);
699}
700
701
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000702// We keep the lowest and highest addresses mapped as a quick way of
703// determining that pointers are outside the heap (used mostly in assertions
704// and verification). The estimate is conservative, ie, not all addresses in
705// 'allocated' space are actually allocated to our heap. The range is
706// [lowest, highest), inclusive on the low and and exclusive on the high end.
707static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
708static void* highest_ever_allocated = reinterpret_cast<void*>(0);
709
710
711static void UpdateAllocatedSpaceLimits(void* address, int size) {
712 lowest_ever_allocated = Min(lowest_ever_allocated, address);
713 highest_ever_allocated =
714 Max(highest_ever_allocated,
715 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
716}
717
718
719bool OS::IsOutsideAllocatedSpace(void* pointer) {
720 if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
721 return true;
722 // Ask the Windows API
723 if (IsBadWritePtr(pointer, 1))
724 return true;
725 return false;
726}
727
728
mads.s.ager@gmail.com769cc962008-08-06 10:02:49 +0000729// Get the system's page size used by VirtualAlloc() or the next power
730// of two. The reason for always returning a power of two is that the
731// rounding up in OS::Allocate expects that.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000732static size_t GetPageSize() {
733 static size_t page_size = 0;
734 if (page_size == 0) {
735 SYSTEM_INFO info;
736 GetSystemInfo(&info);
mads.s.ager@gmail.com769cc962008-08-06 10:02:49 +0000737 page_size = RoundUpToPowerOf2(info.dwPageSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000738 }
739 return page_size;
740}
741
742
mads.s.ager@gmail.com769cc962008-08-06 10:02:49 +0000743// The allocation alignment is the guaranteed alignment for
744// VirtualAlloc'ed blocks of memory.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000745size_t OS::AllocateAlignment() {
mads.s.ager@gmail.com769cc962008-08-06 10:02:49 +0000746 static size_t allocate_alignment = 0;
747 if (allocate_alignment == 0) {
748 SYSTEM_INFO info;
749 GetSystemInfo(&info);
750 allocate_alignment = info.dwAllocationGranularity;
751 }
752 return allocate_alignment;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000753}
754
755
kasper.lund7276f142008-07-30 08:49:36 +0000756void* OS::Allocate(const size_t requested,
757 size_t* allocated,
758 bool executable) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000759 // VirtualAlloc rounds allocated size to page size automatically.
760 size_t msize = RoundUp(requested, GetPageSize());
761
762 // Windows XP SP2 allows Data Excution Prevention (DEP).
kasper.lund7276f142008-07-30 08:49:36 +0000763 int prot = executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
mads.s.ager@gmail.com769cc962008-08-06 10:02:49 +0000764 LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000765 if (mbase == NULL) {
766 LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
767 return NULL;
768 }
769
770 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
771
772 *allocated = msize;
773 UpdateAllocatedSpaceLimits(mbase, msize);
774 return mbase;
775}
776
777
778void OS::Free(void* buf, const size_t length) {
779 // TODO(1240712): VirtualFree has a return value which is ignored here.
780 VirtualFree(buf, 0, MEM_RELEASE);
781 USE(length);
782}
783
784
785void OS::Sleep(int milliseconds) {
786 ::Sleep(milliseconds);
787}
788
789
790void OS::Abort() {
791 // Redirect to windows specific abort to ensure
792 // collaboration with sandboxing.
793 __debugbreak();
794}
795
796
kasper.lund7276f142008-07-30 08:49:36 +0000797void OS::DebugBreak() {
798 __debugbreak();
799}
800
801
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000802class Win32MemoryMappedFile : public OS::MemoryMappedFile {
803 public:
804 Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
805 : file_(file), file_mapping_(file_mapping), memory_(memory) { }
806 virtual ~Win32MemoryMappedFile();
807 virtual void* memory() { return memory_; }
808 private:
809 HANDLE file_;
810 HANDLE file_mapping_;
811 void* memory_;
812};
813
814
815OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
816 void* initial) {
817 // Open a physical file
818 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
819 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
820 if (file == NULL) return NULL;
821 // Create a file mapping for the physical file
822 HANDLE file_mapping = CreateFileMapping(file, NULL,
823 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
824 if (file_mapping == NULL) return NULL;
825 // Map a view of the file into memory
826 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
827 if (memory) memmove(memory, initial, size);
828 return new Win32MemoryMappedFile(file, file_mapping, memory);
829}
830
831
832Win32MemoryMappedFile::~Win32MemoryMappedFile() {
833 if (memory_ != NULL)
834 UnmapViewOfFile(memory_);
835 CloseHandle(file_mapping_);
836 CloseHandle(file_);
837}
838
839
840// The following code loads functions defined in DbhHelp.h and TlHelp32.h
841// dynamically. This is to avoid beeing depending on dbghelp.dll and
842// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
843// kernel32.dll at some point so loading functions defines in TlHelp32.h
844// dynamically might not be necessary any more - for some versions of Windows?).
845
846// Function pointers to functions dynamically loaded from dbghelp.dll.
847#define DBGHELP_FUNCTION_LIST(V) \
848 V(SymInitialize) \
849 V(SymGetOptions) \
850 V(SymSetOptions) \
851 V(SymGetSearchPath) \
852 V(SymLoadModule64) \
853 V(StackWalk64) \
854 V(SymGetSymFromAddr64) \
855 V(SymGetLineFromAddr64) \
856 V(SymFunctionTableAccess64) \
857 V(SymGetModuleBase64)
858
859// Function pointers to functions dynamically loaded from dbghelp.dll.
860#define TLHELP32_FUNCTION_LIST(V) \
861 V(CreateToolhelp32Snapshot) \
862 V(Module32FirstW) \
863 V(Module32NextW)
864
865// Define the decoration to use for the type and variable name used for
866// dynamically loaded DLL function..
867#define DLL_FUNC_TYPE(name) _##name##_
868#define DLL_FUNC_VAR(name) _##name
869
870// Define the type for each dynamically loaded DLL function. The function
871// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
872// from the Windows include files are redefined here to have the function
873// definitions to be as close to the ones in the original .h files as possible.
874#ifndef IN
875#define IN
876#endif
877#ifndef VOID
878#define VOID void
879#endif
880
881// DbgHelp.h functions.
882typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
883 IN PSTR UserSearchPath,
884 IN BOOL fInvadeProcess);
885typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
886typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
887typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
888 IN HANDLE hProcess,
889 OUT PSTR SearchPath,
890 IN DWORD SearchPathLength);
891typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
892 IN HANDLE hProcess,
893 IN HANDLE hFile,
894 IN PSTR ImageName,
895 IN PSTR ModuleName,
896 IN DWORD64 BaseOfDll,
897 IN DWORD SizeOfDll);
898typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
899 DWORD MachineType,
900 HANDLE hProcess,
901 HANDLE hThread,
902 LPSTACKFRAME64 StackFrame,
903 PVOID ContextRecord,
904 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
905 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
906 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
907 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
908typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
909 IN HANDLE hProcess,
910 IN DWORD64 qwAddr,
911 OUT PDWORD64 pdwDisplacement,
912 OUT PIMAGEHLP_SYMBOL64 Symbol);
913typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
914 IN HANDLE hProcess,
915 IN DWORD64 qwAddr,
916 OUT PDWORD pdwDisplacement,
917 OUT PIMAGEHLP_LINE64 Line64);
918// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
919typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
920 HANDLE hProcess,
921 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
922typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
923 HANDLE hProcess,
924 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
925
926// TlHelp32.h functions.
927typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
928 DWORD dwFlags,
929 DWORD th32ProcessID);
930typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
931 LPMODULEENTRY32W lpme);
932typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
933 LPMODULEENTRY32W lpme);
934
935#undef IN
936#undef VOID
937
938// Declare a variable for each dynamically loaded DLL function.
939#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
940DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
941TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
942#undef DEF_DLL_FUNCTION
943
944// Load the functions. This function has a lot of "ugly" macros in order to
945// keep down code duplication.
946
947static bool LoadDbgHelpAndTlHelp32() {
948 static bool dbghelp_loaded = false;
949
950 if (dbghelp_loaded) return true;
951
952 HMODULE module;
953
954 // Load functions from the dbghelp.dll module.
955 module = LoadLibrary(TEXT("dbghelp.dll"));
956 if (module == NULL) {
957 return false;
958 }
959
960#define LOAD_DLL_FUNC(name) \
961 DLL_FUNC_VAR(name) = \
962 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
963
964DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
965
966#undef LOAD_DLL_FUNC
967
968 // Load functions from the kernel32.dll module (the TlHelp32.h function used
969 // to be in tlhelp32.dll but are now moved to kernel32.dll).
970 module = LoadLibrary(TEXT("kernel32.dll"));
971 if (module == NULL) {
972 return false;
973 }
974
975#define LOAD_DLL_FUNC(name) \
976 DLL_FUNC_VAR(name) = \
977 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
978
979TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
980
981#undef LOAD_DLL_FUNC
982
983 // Check that all functions where loaded.
984 bool result =
985#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
986
987DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
988TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
989
990#undef DLL_FUNC_LOADED
991 true;
992
993 dbghelp_loaded = result;
994 return result;
995 // NOTE: The modules are never unloaded and will stay arround until the
996 // application is closed.
997}
998
999
1000// Load the symbols for generating stack traces.
1001static bool LoadSymbols(HANDLE process_handle) {
1002 static bool symbols_loaded = false;
1003
1004 if (symbols_loaded) return true;
1005
1006 BOOL ok;
1007
1008 // Initialize the symbol engine.
1009 ok = _SymInitialize(process_handle, // hProcess
1010 NULL, // UserSearchPath
1011 FALSE); // fInvadeProcess
1012 if (!ok) return false;
1013
1014 DWORD options = _SymGetOptions();
1015 options |= SYMOPT_LOAD_LINES;
1016 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1017 options = _SymSetOptions(options);
1018
1019 char buf[OS::kStackWalkMaxNameLen] = {0};
1020 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1021 if (!ok) {
1022 int err = GetLastError();
1023 PrintF("%d\n", err);
1024 return false;
1025 }
1026
1027 HANDLE snapshot = _CreateToolhelp32Snapshot(
1028 TH32CS_SNAPMODULE, // dwFlags
1029 GetCurrentProcessId()); // th32ProcessId
1030 if (snapshot == INVALID_HANDLE_VALUE) return false;
1031 MODULEENTRY32W module_entry;
1032 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1033 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1034 while (cont) {
1035 DWORD64 base;
1036 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1037 // both unicode and ASCII strings even though the parameter is PSTR.
1038 base = _SymLoadModule64(
1039 process_handle, // hProcess
1040 0, // hFile
1041 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1042 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1043 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1044 module_entry.modBaseSize); // SizeOfDll
1045 if (base == 0) {
1046 int err = GetLastError();
1047 if (err != ERROR_MOD_NOT_FOUND &&
1048 err != ERROR_INVALID_HANDLE) return false;
1049 }
1050 LOG(SharedLibraryEvent(
1051 module_entry.szExePath,
1052 reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1053 reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1054 module_entry.modBaseSize)));
1055 cont = _Module32NextW(snapshot, &module_entry);
1056 }
1057 CloseHandle(snapshot);
1058
1059 symbols_loaded = true;
1060 return true;
1061}
1062
1063
1064void OS::LogSharedLibraryAddresses() {
1065 // SharedLibraryEvents are logged when loading symbol information.
1066 // Only the shared libraries loaded at the time of the call to
1067 // LogSharedLibraryAddresses are logged. DLLs loaded after
1068 // initialization are not accounted for.
1069 if (!LoadDbgHelpAndTlHelp32()) return;
1070 HANDLE process_handle = GetCurrentProcess();
1071 LoadSymbols(process_handle);
1072}
1073
1074
1075// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1076
1077// Switch off warning 4748 (/GS can not protect parameters and local variables
1078// from local buffer overrun because optimizations are disabled in function) as
1079// it is triggered by the use of inline assembler.
1080#pragma warning(push)
1081#pragma warning(disable : 4748)
1082int OS::StackWalk(OS::StackFrame* frames, int frames_size) {
1083 BOOL ok;
1084
1085 // Load the required functions from DLL's.
1086 if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1087
1088 // Get the process and thread handles.
1089 HANDLE process_handle = GetCurrentProcess();
1090 HANDLE thread_handle = GetCurrentThread();
1091
1092 // Read the symbols.
1093 if (!LoadSymbols(process_handle)) return kStackWalkError;
1094
1095 // Capture current context.
1096 CONTEXT context;
1097 memset(&context, 0, sizeof(context));
1098 context.ContextFlags = CONTEXT_CONTROL;
1099 context.ContextFlags = CONTEXT_CONTROL;
1100 __asm call x
1101 __asm x: pop eax
1102 __asm mov context.Eip, eax
1103 __asm mov context.Ebp, ebp
1104 __asm mov context.Esp, esp
1105 // NOTE: At some point, we could use RtlCaptureContext(&context) to
1106 // capture the context instead of inline assembler. However it is
1107 // only available on XP, Vista, Server 2003 and Server 2008 which
1108 // might not be sufficient.
1109
1110 // Initialize the stack walking
1111 STACKFRAME64 stack_frame;
1112 memset(&stack_frame, 0, sizeof(stack_frame));
1113 stack_frame.AddrPC.Offset = context.Eip;
1114 stack_frame.AddrPC.Mode = AddrModeFlat;
1115 stack_frame.AddrFrame.Offset = context.Ebp;
1116 stack_frame.AddrFrame.Mode = AddrModeFlat;
1117 stack_frame.AddrStack.Offset = context.Esp;
1118 stack_frame.AddrStack.Mode = AddrModeFlat;
1119 int frames_count = 0;
1120
1121 // Collect stack frames.
1122 while (frames_count < frames_size) {
1123 ok = _StackWalk64(
1124 IMAGE_FILE_MACHINE_I386, // MachineType
1125 process_handle, // hProcess
1126 thread_handle, // hThread
1127 &stack_frame, // StackFrame
1128 &context, // ContextRecord
1129 NULL, // ReadMemoryRoutine
1130 _SymFunctionTableAccess64, // FunctionTableAccessRoutine
1131 _SymGetModuleBase64, // GetModuleBaseRoutine
1132 NULL); // TranslateAddress
1133 if (!ok) break;
1134
1135 // Store the address.
1136 ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
1137 frames[frames_count].address =
1138 reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1139
1140 // Try to locate a symbol for this frame.
1141 DWORD64 symbol_displacement;
1142 IMAGEHLP_SYMBOL64* symbol = NULL;
1143 symbol = NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen);
1144 if (!symbol) return kStackWalkError; // Out of memory.
1145 memset(symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1146 symbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1147 symbol->MaxNameLength = kStackWalkMaxNameLen;
1148 ok = _SymGetSymFromAddr64(process_handle, // hProcess
1149 stack_frame.AddrPC.Offset, // Address
1150 &symbol_displacement, // Displacement
1151 symbol); // Symbol
1152 if (ok) {
1153 // Try to locate more source information for the symbol.
1154 IMAGEHLP_LINE64 Line;
1155 memset(&Line, 0, sizeof(Line));
1156 Line.SizeOfStruct = sizeof(Line);
1157 DWORD line_displacement;
1158 ok = _SymGetLineFromAddr64(
1159 process_handle, // hProcess
1160 stack_frame.AddrPC.Offset, // dwAddr
1161 &line_displacement, // pdwDisplacement
1162 &Line); // Line
1163 // Format a text representation of the frame based on the information
1164 // available.
1165 if (ok) {
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00001166 SNPrintF(MutableCStrVector(frames[frames_count].text,
1167 kStackWalkMaxTextLen),
1168 "%s %s:%d:%d",
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001169 symbol->Name, Line.FileName, Line.LineNumber,
1170 line_displacement);
1171 } else {
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00001172 SNPrintF(MutableCStrVector(frames[frames_count].text,
1173 kStackWalkMaxTextLen),
1174 "%s",
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001175 symbol->Name);
1176 }
1177 // Make sure line termination is in place.
1178 frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1179 } else {
1180 // No text representation of this frame
1181 frames[frames_count].text[0] = '\0';
1182
1183 // Continue if we are just missing a module (for non C/C++ frames a
1184 // module will never be found).
1185 int err = GetLastError();
1186 if (err != ERROR_MOD_NOT_FOUND) {
1187 DeleteArray(symbol);
1188 break;
1189 }
1190 }
1191 DeleteArray(symbol);
1192
1193 frames_count++;
1194 }
1195
1196 // Return the number of frames filled in.
1197 return frames_count;
1198}
1199
1200// Restore warnings to previous settings.
1201#pragma warning(pop)
1202
1203
1204double OS::nan_value() {
1205 static const __int64 nanval = 0xfff8000000000000;
1206 return *reinterpret_cast<const double*>(&nanval);
1207}
1208
1209bool VirtualMemory::IsReserved() {
1210 return address_ != NULL;
1211}
1212
1213
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001214VirtualMemory::VirtualMemory(size_t size) {
1215 address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001216 size_ = size;
1217}
1218
1219
1220VirtualMemory::~VirtualMemory() {
1221 if (IsReserved()) {
1222 if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
1223 }
1224}
1225
1226
kasper.lund7276f142008-07-30 08:49:36 +00001227bool VirtualMemory::Commit(void* address, size_t size, bool executable) {
1228 int prot = executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1229 if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001230 return false;
1231 }
1232
1233 UpdateAllocatedSpaceLimits(address, size);
1234 return true;
1235}
1236
1237
1238bool VirtualMemory::Uncommit(void* address, size_t size) {
1239 ASSERT(IsReserved());
1240 return VirtualFree(address, size, MEM_DECOMMIT) != NULL;
1241}
1242
1243
1244// ----------------------------------------------------------------------------
1245// Win32 thread support.
1246
1247// Definition of invalid thread handle and id.
1248static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1249static const DWORD kNoThreadId = 0;
1250
1251
1252class ThreadHandle::PlatformData : public Malloced {
1253 public:
1254 explicit PlatformData(ThreadHandle::Kind kind) {
1255 Initialize(kind);
1256 }
1257
1258 void Initialize(ThreadHandle::Kind kind) {
1259 switch (kind) {
1260 case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
1261 case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
1262 }
1263 }
1264 DWORD tid_; // Win32 thread identifier.
1265};
1266
1267
1268// Entry point for threads. The supplied argument is a pointer to the thread
1269// object. The entry function dispatches to the run method in the thread
1270// object. It is important that this function has __stdcall calling
1271// convention.
1272static unsigned int __stdcall ThreadEntry(void* arg) {
1273 Thread* thread = reinterpret_cast<Thread*>(arg);
1274 // This is also initialized by the last parameter to _beginthreadex() but we
1275 // don't know which thread will run first (the original thread or the new
1276 // one) so we initialize it here too.
1277 thread->thread_handle_data()->tid_ = GetCurrentThreadId();
1278 thread->Run();
1279 return 0;
1280}
1281
1282
1283// Initialize thread handle to invalid handle.
1284ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
1285 data_ = new PlatformData(kind);
1286}
1287
1288
1289ThreadHandle::~ThreadHandle() {
1290 delete data_;
1291}
1292
1293
1294// The thread is running if it has the same id as the current thread.
1295bool ThreadHandle::IsSelf() const {
1296 return GetCurrentThreadId() == data_->tid_;
1297}
1298
1299
1300// Test for invalid thread handle.
1301bool ThreadHandle::IsValid() const {
1302 return data_->tid_ != kNoThreadId;
1303}
1304
1305
1306void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
1307 data_->Initialize(kind);
1308}
1309
1310
1311class Thread::PlatformData : public Malloced {
1312 public:
1313 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1314 HANDLE thread_;
1315};
1316
1317
1318// Initialize a Win32 thread object. The thread has an invalid thread
1319// handle until it is started.
1320
1321Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
1322 data_ = new PlatformData(kNoThread);
1323}
1324
1325
1326// Close our own handle for the thread.
1327Thread::~Thread() {
1328 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1329 delete data_;
1330}
1331
1332
1333// Create a new thread. It is important to use _beginthreadex() instead of
1334// the Win32 function CreateThread(), because the CreateThread() does not
1335// initialize thread specific structures in the C runtime library.
1336void Thread::Start() {
1337 data_->thread_ = reinterpret_cast<HANDLE>(
1338 _beginthreadex(NULL,
1339 0,
1340 ThreadEntry,
1341 this,
1342 0,
1343 reinterpret_cast<unsigned int*>(
1344 &thread_handle_data()->tid_)));
1345 ASSERT(IsValid());
1346}
1347
1348
1349// Wait for thread to terminate.
1350void Thread::Join() {
1351 WaitForSingleObject(data_->thread_, INFINITE);
1352}
1353
1354
1355Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1356 DWORD result = TlsAlloc();
1357 ASSERT(result != TLS_OUT_OF_INDEXES);
1358 return static_cast<LocalStorageKey>(result);
1359}
1360
1361
1362void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1363 BOOL result = TlsFree(static_cast<DWORD>(key));
1364 USE(result);
1365 ASSERT(result);
1366}
1367
1368
1369void* Thread::GetThreadLocal(LocalStorageKey key) {
1370 return TlsGetValue(static_cast<DWORD>(key));
1371}
1372
1373
1374void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1375 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1376 USE(result);
1377 ASSERT(result);
1378}
1379
1380
1381
1382void Thread::YieldCPU() {
1383 Sleep(0);
1384}
1385
1386
1387// ----------------------------------------------------------------------------
1388// Win32 mutex support.
1389//
1390// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1391// faster than Win32 Mutex objects because they are implemented using user mode
1392// atomic instructions. Therefore we only do ring transitions if there is lock
1393// contention.
1394
1395class Win32Mutex : public Mutex {
1396 public:
1397
1398 Win32Mutex() { InitializeCriticalSection(&cs_); }
1399
1400 ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1401
1402 int Lock() {
1403 EnterCriticalSection(&cs_);
1404 return 0;
1405 }
1406
1407 int Unlock() {
1408 LeaveCriticalSection(&cs_);
1409 return 0;
1410 }
1411
1412 private:
1413 CRITICAL_SECTION cs_; // Critical section used for mutex
1414};
1415
1416
1417Mutex* OS::CreateMutex() {
1418 return new Win32Mutex();
1419}
1420
1421
1422// ----------------------------------------------------------------------------
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001423// Win32 semaphore support.
1424//
1425// On Win32 semaphores are implemented using Win32 Semaphore objects. The
1426// semaphores are anonymous. Also, the semaphores are initialized to have
1427// no upper limit on count.
1428
1429
1430class Win32Semaphore : public Semaphore {
1431 public:
1432 explicit Win32Semaphore(int count) {
1433 sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1434 }
1435
1436 ~Win32Semaphore() {
1437 CloseHandle(sem);
1438 }
1439
1440 void Wait() {
1441 WaitForSingleObject(sem, INFINITE);
1442 }
1443
1444 void Signal() {
1445 LONG dummy;
1446 ReleaseSemaphore(sem, 1, &dummy);
1447 }
1448
1449 private:
1450 HANDLE sem;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001451};
1452
1453
1454Semaphore* OS::CreateSemaphore(int count) {
1455 return new Win32Semaphore(count);
1456}
1457
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001458#ifdef ENABLE_LOGGING_AND_PROFILING
1459
1460// ----------------------------------------------------------------------------
1461// Win32 profiler support.
1462//
1463// On win32 we use a sampler thread with high priority to sample the program
1464// counter for the profiled thread.
1465
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001466class Sampler::PlatformData : public Malloced {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001467 public:
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001468 explicit PlatformData(Sampler* sampler) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001469 sampler_ = sampler;
1470 sampler_thread_ = INVALID_HANDLE_VALUE;
1471 profiled_thread_ = INVALID_HANDLE_VALUE;
1472 }
1473
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001474 Sampler* sampler_;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001475 HANDLE sampler_thread_;
1476 HANDLE profiled_thread_;
1477
1478 // Sampler thread handler.
1479 void Runner() {
1480 // Context used for sampling the register state of the profiled thread.
1481 CONTEXT context;
1482 memset(&context, 0, sizeof(context));
1483 // Loop until the sampler is disengaged.
1484 while (sampler_->IsActive()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001485 TickSample sample;
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001486
1487 // If profiling, we record the pc and sp of the profiled thread.
1488 if (sampler_->IsProfiling()) {
1489 // Pause the profiled thread and get its context.
1490 SuspendThread(profiled_thread_);
1491 context.ContextFlags = CONTEXT_FULL;
1492 GetThreadContext(profiled_thread_, &context);
1493 ResumeThread(profiled_thread_);
1494 // Invoke tick handler with program counter and stack pointer.
1495 sample.pc = context.Eip;
1496 sample.sp = context.Esp;
1497 }
1498
1499 // We always sample the VM state.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001500 sample.state = Logger::state();
1501 sampler_->Tick(&sample);
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001502
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001503 // Wait until next sampling.
1504 Sleep(sampler_->interval_);
1505 }
1506 }
1507};
1508
1509
1510// Entry point for sampler thread.
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001511static unsigned int __stdcall SamplerEntry(void* arg) {
1512 Sampler::PlatformData* data =
1513 reinterpret_cast<Sampler::PlatformData*>(arg);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001514 data->Runner();
1515 return 0;
1516}
1517
1518
1519// Initialize a profile sampler.
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001520Sampler::Sampler(int interval, bool profiling)
1521 : interval_(interval), profiling_(profiling), active_(false) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001522 data_ = new PlatformData(this);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001523}
1524
1525
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001526Sampler::~Sampler() {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001527 delete data_;
1528}
1529
1530
1531// Start profiling.
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001532void Sampler::Start() {
1533 // If we are profiling, we need to be able to access the calling
1534 // thread.
1535 if (IsProfiling()) {
1536 // Get a handle to the calling thread. This is the thread that we are
1537 // going to profile. We need to duplicate the handle because we are
1538 // going to use it in the sampler thread. using GetThreadHandle() will
1539 // not work in this case.
1540 BOOL ok = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1541 GetCurrentProcess(), &data_->profiled_thread_,
1542 THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME |
1543 THREAD_QUERY_INFORMATION, FALSE, 0);
1544 if (!ok) return;
1545 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001546
1547 // Start sampler thread.
1548 unsigned int tid;
1549 active_ = true;
1550 data_->sampler_thread_ = reinterpret_cast<HANDLE>(
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001551 _beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001552 // Set thread to high priority to increase sampling accuracy.
1553 SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
1554}
1555
1556
1557// Stop profiling.
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001558void Sampler::Stop() {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001559 // Seting active to false triggers termination of the sampler
1560 // thread.
1561 active_ = false;
1562
1563 // Wait for sampler thread to terminate.
1564 WaitForSingleObject(data_->sampler_thread_, INFINITE);
1565
1566 // Release the thread handles
1567 CloseHandle(data_->sampler_thread_);
1568 CloseHandle(data_->profiled_thread_);
1569}
1570
1571
1572#endif // ENABLE_LOGGING_AND_PROFILING
1573
1574} } // namespace v8::internal