blob: de12d3fa9a7f4380f805f6f2bc94a2a5395293a6 [file] [log] [blame]
ager@chromium.org71daaf62009-04-01 07:22:49 +00001// Copyright 2009 the V8 project authors. All rights reserved.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "bootstrapper.h"
33#include "codegen-inl.h"
kasperl@chromium.orgb9123622008-09-17 14:05:56 +000034#include "compilation-cache.h"
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000035#include "debug.h"
36#include "global-handles.h"
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000037#include "mark-compact.h"
38#include "natives.h"
39#include "scanner.h"
40#include "scopeinfo.h"
41#include "v8threads.h"
42
43namespace v8 { namespace internal {
44
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000045#define ROOT_ALLOCATION(type, name) type* Heap::name##_;
46 ROOT_LIST(ROOT_ALLOCATION)
47#undef ROOT_ALLOCATION
48
49
50#define STRUCT_ALLOCATION(NAME, Name, name) Map* Heap::name##_map_;
51 STRUCT_LIST(STRUCT_ALLOCATION)
52#undef STRUCT_ALLOCATION
53
54
55#define SYMBOL_ALLOCATION(name, string) String* Heap::name##_;
56 SYMBOL_LIST(SYMBOL_ALLOCATION)
57#undef SYMBOL_ALLOCATION
58
ager@chromium.org3b45ab52009-03-19 22:21:34 +000059String* Heap::hidden_symbol_;
60
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +000061NewSpace Heap::new_space_;
ager@chromium.org9258b6b2008-09-11 09:11:10 +000062OldSpace* Heap::old_pointer_space_ = NULL;
63OldSpace* Heap::old_data_space_ = NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000064OldSpace* Heap::code_space_ = NULL;
65MapSpace* Heap::map_space_ = NULL;
66LargeObjectSpace* Heap::lo_space_ = NULL;
67
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +000068static const int kMinimumPromotionLimit = 2*MB;
69static const int kMinimumAllocationLimit = 8*MB;
70
71int Heap::old_gen_promotion_limit_ = kMinimumPromotionLimit;
72int Heap::old_gen_allocation_limit_ = kMinimumAllocationLimit;
73
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000074int Heap::old_gen_exhausted_ = false;
75
kasper.lund7276f142008-07-30 08:49:36 +000076int Heap::amount_of_external_allocated_memory_ = 0;
77int Heap::amount_of_external_allocated_memory_at_last_global_gc_ = 0;
78
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000079// semispace_size_ should be a power of 2 and old_generation_size_ should be
80// a multiple of Page::kPageSize.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +000081int Heap::semispace_size_ = 2*MB;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000082int Heap::old_generation_size_ = 512*MB;
83int Heap::initial_semispace_size_ = 256*KB;
84
85GCCallback Heap::global_gc_prologue_callback_ = NULL;
86GCCallback Heap::global_gc_epilogue_callback_ = NULL;
87
88// Variables set based on semispace_size_ and old_generation_size_ in
89// ConfigureHeap.
90int Heap::young_generation_size_ = 0; // Will be 2 * semispace_size_.
91
92// Double the new space after this many scavenge collections.
93int Heap::new_space_growth_limit_ = 8;
94int Heap::scavenge_count_ = 0;
95Heap::HeapState Heap::gc_state_ = NOT_IN_GC;
96
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000097int Heap::mc_count_ = 0;
98int Heap::gc_count_ = 0;
99
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000100int Heap::always_allocate_scope_depth_ = 0;
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000101bool Heap::context_disposed_pending_ = false;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000102
kasper.lund7276f142008-07-30 08:49:36 +0000103#ifdef DEBUG
104bool Heap::allocation_allowed_ = true;
105
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000106int Heap::allocation_timeout_ = 0;
107bool Heap::disallow_allocation_failure_ = false;
108#endif // DEBUG
109
110
111int Heap::Capacity() {
112 if (!HasBeenSetup()) return 0;
113
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000114 return new_space_.Capacity() +
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000115 old_pointer_space_->Capacity() +
116 old_data_space_->Capacity() +
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000117 code_space_->Capacity() +
118 map_space_->Capacity();
119}
120
121
122int Heap::Available() {
123 if (!HasBeenSetup()) return 0;
124
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000125 return new_space_.Available() +
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000126 old_pointer_space_->Available() +
127 old_data_space_->Available() +
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000128 code_space_->Available() +
129 map_space_->Available();
130}
131
132
133bool Heap::HasBeenSetup() {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000134 return old_pointer_space_ != NULL &&
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000135 old_data_space_ != NULL &&
136 code_space_ != NULL &&
137 map_space_ != NULL &&
138 lo_space_ != NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000139}
140
141
142GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space) {
143 // Is global GC requested?
144 if (space != NEW_SPACE || FLAG_gc_global) {
145 Counters::gc_compactor_caused_by_request.Increment();
146 return MARK_COMPACTOR;
147 }
148
149 // Is enough data promoted to justify a global GC?
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000150 if (OldGenerationPromotionLimitReached()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000151 Counters::gc_compactor_caused_by_promoted_data.Increment();
152 return MARK_COMPACTOR;
153 }
154
155 // Have allocation in OLD and LO failed?
156 if (old_gen_exhausted_) {
157 Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment();
158 return MARK_COMPACTOR;
159 }
160
161 // Is there enough space left in OLD to guarantee that a scavenge can
162 // succeed?
163 //
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000164 // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000165 // for object promotion. It counts only the bytes that the memory
166 // allocator has not yet allocated from the OS and assigned to any space,
167 // and does not count available bytes already in the old space or code
168 // space. Undercounting is safe---we may get an unrequested full GC when
169 // a scavenge would have succeeded.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000170 if (MemoryAllocator::MaxAvailable() <= new_space_.Size()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000171 Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment();
172 return MARK_COMPACTOR;
173 }
174
175 // Default
176 return SCAVENGER;
177}
178
179
180// TODO(1238405): Combine the infrastructure for --heap-stats and
181// --log-gc to avoid the complicated preprocessor and flag testing.
182#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
183void Heap::ReportStatisticsBeforeGC() {
184 // Heap::ReportHeapStatistics will also log NewSpace statistics when
185 // compiled with ENABLE_LOGGING_AND_PROFILING and --log-gc is set. The
186 // following logic is used to avoid double logging.
187#if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000188 if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000189 if (FLAG_heap_stats) {
190 ReportHeapStatistics("Before GC");
191 } else if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000192 new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000193 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000194 if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000195#elif defined(DEBUG)
196 if (FLAG_heap_stats) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000197 new_space_.CollectStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000198 ReportHeapStatistics("Before GC");
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000199 new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000200 }
201#elif defined(ENABLE_LOGGING_AND_PROFILING)
202 if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000203 new_space_.CollectStatistics();
204 new_space_.ReportStatistics();
205 new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000206 }
207#endif
208}
209
210
211// TODO(1238405): Combine the infrastructure for --heap-stats and
212// --log-gc to avoid the complicated preprocessor and flag testing.
213void Heap::ReportStatisticsAfterGC() {
214 // Similar to the before GC, we use some complicated logic to ensure that
215 // NewSpace statistics are logged exactly once when --log-gc is turned on.
216#if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
217 if (FLAG_heap_stats) {
218 ReportHeapStatistics("After GC");
219 } else if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000220 new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000221 }
222#elif defined(DEBUG)
223 if (FLAG_heap_stats) ReportHeapStatistics("After GC");
224#elif defined(ENABLE_LOGGING_AND_PROFILING)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000225 if (FLAG_log_gc) new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000226#endif
227}
228#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
229
230
231void Heap::GarbageCollectionPrologue() {
kasper.lund7276f142008-07-30 08:49:36 +0000232 gc_count_++;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000233#ifdef DEBUG
234 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
235 allow_allocation(false);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000236
237 if (FLAG_verify_heap) {
238 Verify();
239 }
240
241 if (FLAG_gc_verbose) Print();
242
243 if (FLAG_print_rset) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000244 // Not all spaces have remembered set bits that we care about.
245 old_pointer_space_->PrintRSet();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000246 map_space_->PrintRSet();
247 lo_space_->PrintRSet();
248 }
249#endif
250
251#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
252 ReportStatisticsBeforeGC();
253#endif
254}
255
256int Heap::SizeOfObjects() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000257 int total = 0;
258 AllSpaces spaces;
259 while (Space* space = spaces.next()) total += space->Size();
260 return total;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000261}
262
263void Heap::GarbageCollectionEpilogue() {
264#ifdef DEBUG
265 allow_allocation(true);
266 ZapFromSpace();
267
268 if (FLAG_verify_heap) {
269 Verify();
270 }
271
272 if (FLAG_print_global_handles) GlobalHandles::Print();
273 if (FLAG_print_handles) PrintHandles();
274 if (FLAG_gc_verbose) Print();
275 if (FLAG_code_stats) ReportCodeStatistics("After GC");
276#endif
277
278 Counters::alive_after_last_gc.Set(SizeOfObjects());
279
280 SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table_);
281 Counters::symbol_table_capacity.Set(symbol_table->Capacity());
282 Counters::number_of_symbols.Set(symbol_table->NumberOfElements());
283#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
284 ReportStatisticsAfterGC();
285#endif
286}
287
288
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000289void Heap::CollectAllGarbage() {
290 // Since we are ignoring the return value, the exact choice of space does
291 // not matter, so long as we do not specify NEW_SPACE, which would not
292 // cause a full GC.
293 CollectGarbage(0, OLD_POINTER_SPACE);
294}
295
296
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000297void Heap::CollectAllGarbageIfContextDisposed() {
kasperl@chromium.orgd55d36b2009-03-05 08:03:28 +0000298 // If the garbage collector interface is exposed through the global
299 // gc() function, we avoid being clever about forcing GCs when
300 // contexts are disposed and leave it to the embedder to make
301 // informed decisions about when to force a collection.
302 if (!FLAG_expose_gc && context_disposed_pending_) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +0000303 HistogramTimerScope scope(&Counters::gc_context);
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000304 CollectAllGarbage();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000305 }
kasperl@chromium.orgd55d36b2009-03-05 08:03:28 +0000306 context_disposed_pending_ = false;
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000307}
308
309
310void Heap::NotifyContextDisposed() {
311 context_disposed_pending_ = true;
312}
313
314
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000315bool Heap::CollectGarbage(int requested_size, AllocationSpace space) {
316 // The VM is in the GC state until exiting this function.
317 VMState state(GC);
318
319#ifdef DEBUG
320 // Reset the allocation timeout to the GC interval, but make sure to
321 // allow at least a few allocations after a collection. The reason
322 // for this is that we have a lot of allocation sequences and we
323 // assume that a garbage collection will allow the subsequent
324 // allocation attempts to go through.
325 allocation_timeout_ = Max(6, FLAG_gc_interval);
326#endif
327
328 { GCTracer tracer;
329 GarbageCollectionPrologue();
kasper.lund7276f142008-07-30 08:49:36 +0000330 // The GC count was incremented in the prologue. Tell the tracer about
331 // it.
332 tracer.set_gc_count(gc_count_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000333
334 GarbageCollector collector = SelectGarbageCollector(space);
kasper.lund7276f142008-07-30 08:49:36 +0000335 // Tell the tracer which collector we've selected.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000336 tracer.set_collector(collector);
337
ager@chromium.orgbb29dc92009-03-24 13:25:23 +0000338 HistogramTimer* rate = (collector == SCAVENGER)
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000339 ? &Counters::gc_scavenger
340 : &Counters::gc_compactor;
341 rate->Start();
kasper.lund7276f142008-07-30 08:49:36 +0000342 PerformGarbageCollection(space, collector, &tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000343 rate->Stop();
344
345 GarbageCollectionEpilogue();
346 }
347
348
349#ifdef ENABLE_LOGGING_AND_PROFILING
350 if (FLAG_log_gc) HeapProfiler::WriteSample();
351#endif
352
353 switch (space) {
354 case NEW_SPACE:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000355 return new_space_.Available() >= requested_size;
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000356 case OLD_POINTER_SPACE:
357 return old_pointer_space_->Available() >= requested_size;
358 case OLD_DATA_SPACE:
359 return old_data_space_->Available() >= requested_size;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000360 case CODE_SPACE:
361 return code_space_->Available() >= requested_size;
362 case MAP_SPACE:
363 return map_space_->Available() >= requested_size;
364 case LO_SPACE:
365 return lo_space_->Available() >= requested_size;
366 }
367 return false;
368}
369
370
kasper.lund7276f142008-07-30 08:49:36 +0000371void Heap::PerformScavenge() {
372 GCTracer tracer;
373 PerformGarbageCollection(NEW_SPACE, SCAVENGER, &tracer);
374}
375
376
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000377static void VerifySymbolTable() {
378#ifdef DEBUG
379 // Helper class for verifying the symbol table.
380 class SymbolTableVerifier : public ObjectVisitor {
381 public:
382 SymbolTableVerifier() { }
383 void VisitPointers(Object** start, Object** end) {
384 // Visit all HeapObject pointers in [start, end).
385 for (Object** p = start; p < end; p++) {
386 if ((*p)->IsHeapObject()) {
387 // Check that the symbol is actually a symbol.
388 ASSERT((*p)->IsNull() || (*p)->IsUndefined() || (*p)->IsSymbol());
389 }
390 }
391 }
392 };
393
394 SymbolTableVerifier verifier;
395 SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table());
396 symbol_table->IterateElements(&verifier);
397#endif // DEBUG
398}
399
400
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000401void Heap::PerformGarbageCollection(AllocationSpace space,
kasper.lund7276f142008-07-30 08:49:36 +0000402 GarbageCollector collector,
403 GCTracer* tracer) {
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000404 VerifySymbolTable();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000405 if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
406 ASSERT(!allocation_allowed_);
407 global_gc_prologue_callback_();
408 }
409
410 if (collector == MARK_COMPACTOR) {
kasper.lund7276f142008-07-30 08:49:36 +0000411 MarkCompact(tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000412
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000413 int old_gen_size = PromotedSpaceSize();
414 old_gen_promotion_limit_ =
415 old_gen_size + Max(kMinimumPromotionLimit, old_gen_size / 3);
416 old_gen_allocation_limit_ =
417 old_gen_size + Max(kMinimumAllocationLimit, old_gen_size / 3);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000418 old_gen_exhausted_ = false;
419
420 // If we have used the mark-compact collector to collect the new
421 // space, and it has not compacted the new space, we force a
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000422 // separate scavenge collection. This is a hack. It covers the
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000423 // case where (1) a new space collection was requested, (2) the
424 // collector selection policy selected the mark-compact collector,
425 // and (3) the mark-compact collector policy selected not to
426 // compact the new space. In that case, there is no more (usable)
427 // free space in the new space after the collection compared to
428 // before.
429 if (space == NEW_SPACE && !MarkCompactCollector::HasCompacted()) {
430 Scavenge();
431 }
432 } else {
433 Scavenge();
434 }
435 Counters::objs_since_last_young.Set(0);
436
ager@chromium.orga74f0da2008-12-03 16:05:52 +0000437 PostGarbageCollectionProcessing();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000438
kasper.lund7276f142008-07-30 08:49:36 +0000439 if (collector == MARK_COMPACTOR) {
440 // Register the amount of external allocated memory.
441 amount_of_external_allocated_memory_at_last_global_gc_ =
442 amount_of_external_allocated_memory_;
443 }
444
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000445 if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
446 ASSERT(!allocation_allowed_);
447 global_gc_epilogue_callback_();
448 }
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000449 VerifySymbolTable();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000450}
451
452
ager@chromium.orga74f0da2008-12-03 16:05:52 +0000453void Heap::PostGarbageCollectionProcessing() {
454 // Process weak handles post gc.
455 GlobalHandles::PostGarbageCollectionProcessing();
456 // Update flat string readers.
457 FlatStringReader::PostGarbageCollectionProcessing();
458}
459
460
kasper.lund7276f142008-07-30 08:49:36 +0000461void Heap::MarkCompact(GCTracer* tracer) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000462 gc_state_ = MARK_COMPACT;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000463 mc_count_++;
kasper.lund7276f142008-07-30 08:49:36 +0000464 tracer->set_full_gc_count(mc_count_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000465 LOG(ResourceEvent("markcompact", "begin"));
466
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000467 MarkCompactCollector::Prepare(tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000468
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000469 bool is_compacting = MarkCompactCollector::IsCompacting();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000470
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000471 MarkCompactPrologue(is_compacting);
472
473 MarkCompactCollector::CollectGarbage();
474
475 MarkCompactEpilogue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000476
477 LOG(ResourceEvent("markcompact", "end"));
478
479 gc_state_ = NOT_IN_GC;
480
481 Shrink();
482
483 Counters::objs_since_last_full.Set(0);
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000484 context_disposed_pending_ = false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000485}
486
487
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000488void Heap::MarkCompactPrologue(bool is_compacting) {
489 // At any old GC clear the keyed lookup cache to enable collection of unused
490 // maps.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000491 ClearKeyedLookupCache();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000492
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000493 CompilationCache::MarkCompactPrologue();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000494
495 Top::MarkCompactPrologue(is_compacting);
496 ThreadManager::MarkCompactPrologue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000497}
498
499
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000500void Heap::MarkCompactEpilogue(bool is_compacting) {
501 Top::MarkCompactEpilogue(is_compacting);
502 ThreadManager::MarkCompactEpilogue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000503}
504
505
506Object* Heap::FindCodeObject(Address a) {
507 Object* obj = code_space_->FindObject(a);
508 if (obj->IsFailure()) {
509 obj = lo_space_->FindObject(a);
510 }
kasper.lund7276f142008-07-30 08:49:36 +0000511 ASSERT(!obj->IsFailure());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000512 return obj;
513}
514
515
516// Helper class for copying HeapObjects
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000517class ScavengeVisitor: public ObjectVisitor {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000518 public:
519
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000520 void VisitPointer(Object** p) { ScavengePointer(p); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000521
522 void VisitPointers(Object** start, Object** end) {
523 // Copy all HeapObject pointers in [start, end)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000524 for (Object** p = start; p < end; p++) ScavengePointer(p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000525 }
526
527 private:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000528 void ScavengePointer(Object** p) {
529 Object* object = *p;
530 if (!Heap::InNewSpace(object)) return;
531 Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
532 reinterpret_cast<HeapObject*>(object));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000533 }
534};
535
536
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000537// Shared state read by the scavenge collector and set by ScavengeObject.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000538static Address promoted_top = NULL;
539
540
541#ifdef DEBUG
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000542// Visitor class to verify pointers in code or data space do not point into
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000543// new space.
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000544class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000545 public:
546 void VisitPointers(Object** start, Object**end) {
547 for (Object** current = start; current < end; current++) {
548 if ((*current)->IsHeapObject()) {
549 ASSERT(!Heap::InNewSpace(HeapObject::cast(*current)));
550 }
551 }
552 }
553};
554#endif
555
556void Heap::Scavenge() {
557#ifdef DEBUG
558 if (FLAG_enable_slow_asserts) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000559 VerifyNonPointerSpacePointersVisitor v;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000560 HeapObjectIterator it(code_space_);
561 while (it.has_next()) {
562 HeapObject* object = it.next();
563 if (object->IsCode()) {
564 Code::cast(object)->ConvertICTargetsFromAddressToObject();
565 }
566 object->Iterate(&v);
567 if (object->IsCode()) {
568 Code::cast(object)->ConvertICTargetsFromObjectToAddress();
569 }
570 }
571 }
572#endif
573
574 gc_state_ = SCAVENGE;
575
576 // Implements Cheney's copying algorithm
577 LOG(ResourceEvent("scavenge", "begin"));
578
579 scavenge_count_++;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000580 if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000581 scavenge_count_ > new_space_growth_limit_) {
582 // Double the size of the new space, and double the limit. The next
583 // doubling attempt will occur after the current new_space_growth_limit_
584 // more collections.
585 // TODO(1240712): NewSpace::Double has a return value which is
586 // ignored here.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000587 new_space_.Double();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000588 new_space_growth_limit_ *= 2;
589 }
590
591 // Flip the semispaces. After flipping, to space is empty, from space has
592 // live objects.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000593 new_space_.Flip();
594 new_space_.ResetAllocationInfo();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000595
596 // We need to sweep newly copied objects which can be in either the to space
597 // or the old space. For to space objects, we use a mark. Newly copied
598 // objects lie between the mark and the allocation top. For objects
599 // promoted to old space, we write their addresses downward from the top of
600 // the new space. Sweeping newly promoted objects requires an allocation
601 // pointer and a mark. Note that the allocation pointer 'top' actually
602 // moves downward from the high address in the to space.
603 //
604 // There is guaranteed to be enough room at the top of the to space for the
605 // addresses of promoted objects: every object promoted frees up its size in
606 // bytes from the top of the new space, and objects are at least one pointer
607 // in size. Using the new space to record promoted addresses makes the
608 // scavenge collector agnostic to the allocation strategy (eg, linear or
609 // free-list) used in old space.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000610 Address new_mark = new_space_.ToSpaceLow();
611 Address promoted_mark = new_space_.ToSpaceHigh();
612 promoted_top = new_space_.ToSpaceHigh();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000613
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000614 ScavengeVisitor scavenge_visitor;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000615 // Copy roots.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000616 IterateRoots(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000617
618 // Copy objects reachable from the old generation. By definition, there
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000619 // are no intergenerational pointers in code or data spaces.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000620 IterateRSet(old_pointer_space_, &ScavengePointer);
621 IterateRSet(map_space_, &ScavengePointer);
622 lo_space_->IterateRSet(&ScavengePointer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000623
624 bool has_processed_weak_pointers = false;
625
626 while (true) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000627 ASSERT(new_mark <= new_space_.top());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000628 ASSERT(promoted_mark >= promoted_top);
629
630 // Copy objects reachable from newly copied objects.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000631 while (new_mark < new_space_.top() || promoted_mark > promoted_top) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000632 // Sweep newly copied objects in the to space. The allocation pointer
633 // can change during sweeping.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000634 Address previous_top = new_space_.top();
635 SemiSpaceIterator new_it(new_space(), new_mark);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000636 while (new_it.has_next()) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000637 new_it.next()->Iterate(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000638 }
639 new_mark = previous_top;
640
641 // Sweep newly copied objects in the old space. The promotion 'top'
642 // pointer could change during sweeping.
643 previous_top = promoted_top;
644 for (Address current = promoted_mark - kPointerSize;
645 current >= previous_top;
646 current -= kPointerSize) {
647 HeapObject* object = HeapObject::cast(Memory::Object_at(current));
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000648 object->Iterate(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000649 UpdateRSet(object);
650 }
651 promoted_mark = previous_top;
652 }
653
654 if (has_processed_weak_pointers) break; // We are done.
655 // Copy objects reachable from weak pointers.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000656 GlobalHandles::IterateWeakRoots(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000657 has_processed_weak_pointers = true;
658 }
659
660 // Set age mark.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000661 new_space_.set_age_mark(new_mark);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000662
663 LOG(ResourceEvent("scavenge", "end"));
664
665 gc_state_ = NOT_IN_GC;
666}
667
668
669void Heap::ClearRSetRange(Address start, int size_in_bytes) {
670 uint32_t start_bit;
671 Address start_word_address =
672 Page::ComputeRSetBitPosition(start, 0, &start_bit);
673 uint32_t end_bit;
674 Address end_word_address =
675 Page::ComputeRSetBitPosition(start + size_in_bytes - kIntSize,
676 0,
677 &end_bit);
678
679 // We want to clear the bits in the starting word starting with the
680 // first bit, and in the ending word up to and including the last
681 // bit. Build a pair of bitmasks to do that.
682 uint32_t start_bitmask = start_bit - 1;
683 uint32_t end_bitmask = ~((end_bit << 1) - 1);
684
685 // If the start address and end address are the same, we mask that
686 // word once, otherwise mask the starting and ending word
687 // separately and all the ones in between.
688 if (start_word_address == end_word_address) {
689 Memory::uint32_at(start_word_address) &= (start_bitmask | end_bitmask);
690 } else {
691 Memory::uint32_at(start_word_address) &= start_bitmask;
692 Memory::uint32_at(end_word_address) &= end_bitmask;
693 start_word_address += kIntSize;
694 memset(start_word_address, 0, end_word_address - start_word_address);
695 }
696}
697
698
699class UpdateRSetVisitor: public ObjectVisitor {
700 public:
701
702 void VisitPointer(Object** p) {
703 UpdateRSet(p);
704 }
705
706 void VisitPointers(Object** start, Object** end) {
707 // Update a store into slots [start, end), used (a) to update remembered
708 // set when promoting a young object to old space or (b) to rebuild
709 // remembered sets after a mark-compact collection.
710 for (Object** p = start; p < end; p++) UpdateRSet(p);
711 }
712 private:
713
714 void UpdateRSet(Object** p) {
715 // The remembered set should not be set. It should be clear for objects
716 // newly copied to old space, and it is cleared before rebuilding in the
717 // mark-compact collector.
718 ASSERT(!Page::IsRSetSet(reinterpret_cast<Address>(p), 0));
719 if (Heap::InNewSpace(*p)) {
720 Page::SetRSet(reinterpret_cast<Address>(p), 0);
721 }
722 }
723};
724
725
726int Heap::UpdateRSet(HeapObject* obj) {
727 ASSERT(!InNewSpace(obj));
728 // Special handling of fixed arrays to iterate the body based on the start
729 // address and offset. Just iterating the pointers as in UpdateRSetVisitor
730 // will not work because Page::SetRSet needs to have the start of the
731 // object.
732 if (obj->IsFixedArray()) {
733 FixedArray* array = FixedArray::cast(obj);
734 int length = array->length();
735 for (int i = 0; i < length; i++) {
736 int offset = FixedArray::kHeaderSize + i * kPointerSize;
737 ASSERT(!Page::IsRSetSet(obj->address(), offset));
738 if (Heap::InNewSpace(array->get(i))) {
739 Page::SetRSet(obj->address(), offset);
740 }
741 }
742 } else if (!obj->IsCode()) {
743 // Skip code object, we know it does not contain inter-generational
744 // pointers.
745 UpdateRSetVisitor v;
746 obj->Iterate(&v);
747 }
748 return obj->Size();
749}
750
751
752void Heap::RebuildRSets() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000753 // By definition, we do not care about remembered set bits in code or data
754 // spaces.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000755 map_space_->ClearRSet();
756 RebuildRSets(map_space_);
757
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000758 old_pointer_space_->ClearRSet();
759 RebuildRSets(old_pointer_space_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000760
761 Heap::lo_space_->ClearRSet();
762 RebuildRSets(lo_space_);
763}
764
765
766void Heap::RebuildRSets(PagedSpace* space) {
767 HeapObjectIterator it(space);
768 while (it.has_next()) Heap::UpdateRSet(it.next());
769}
770
771
772void Heap::RebuildRSets(LargeObjectSpace* space) {
773 LargeObjectIterator it(space);
774 while (it.has_next()) Heap::UpdateRSet(it.next());
775}
776
777
778#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
779void Heap::RecordCopiedObject(HeapObject* obj) {
780 bool should_record = false;
781#ifdef DEBUG
782 should_record = FLAG_heap_stats;
783#endif
784#ifdef ENABLE_LOGGING_AND_PROFILING
785 should_record = should_record || FLAG_log_gc;
786#endif
787 if (should_record) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000788 if (new_space_.Contains(obj)) {
789 new_space_.RecordAllocation(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000790 } else {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000791 new_space_.RecordPromotion(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000792 }
793 }
794}
795#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
796
797
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000798
799HeapObject* Heap::MigrateObject(HeapObject* source,
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000800 HeapObject* target,
801 int size) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000802 // Copy the content of source to target.
803 CopyBlock(reinterpret_cast<Object**>(target->address()),
804 reinterpret_cast<Object**>(source->address()),
805 size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000806
kasper.lund7276f142008-07-30 08:49:36 +0000807 // Set the forwarding address.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000808 source->set_map_word(MapWord::FromForwardingAddress(target));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000809
810 // Update NewSpace stats if necessary.
811#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
812 RecordCopiedObject(target);
813#endif
814
815 return target;
816}
817
818
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000819// Inlined function.
820void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
821 ASSERT(InFromSpace(object));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000822
kasper.lund7276f142008-07-30 08:49:36 +0000823 // We use the first word (where the map pointer usually is) of a heap
824 // object to record the forwarding pointer. A forwarding pointer can
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000825 // point to an old space, the code space, or the to space of the new
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000826 // generation.
kasper.lund7276f142008-07-30 08:49:36 +0000827 MapWord first_word = object->map_word();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000828
kasper.lund7276f142008-07-30 08:49:36 +0000829 // If the first word is a forwarding address, the object has already been
830 // copied.
831 if (first_word.IsForwardingAddress()) {
832 *p = first_word.ToForwardingAddress();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000833 return;
834 }
835
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000836 // Call the slow part of scavenge object.
837 return ScavengeObjectSlow(p, object);
838}
839
ager@chromium.org870a0b62008-11-04 11:43:05 +0000840
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000841static inline bool IsShortcutCandidate(HeapObject* object, Map* map) {
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000842 STATIC_ASSERT(kNotStringTag != 0 && kSymbolTag != 0);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000843 ASSERT(object->map() == map);
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000844 InstanceType type = map->instance_type();
845 if ((type & kShortcutTypeMask) != kShortcutTypeTag) return false;
846 ASSERT(object->IsString() && !object->IsSymbol());
847 return ConsString::cast(object)->unchecked_second() == Heap::empty_string();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000848}
849
850
851void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
852 ASSERT(InFromSpace(object));
853 MapWord first_word = object->map_word();
854 ASSERT(!first_word.IsForwardingAddress());
855
856 // Optimization: Bypass flattened ConsString objects.
857 if (IsShortcutCandidate(object, first_word.ToMap())) {
ager@chromium.org870a0b62008-11-04 11:43:05 +0000858 object = HeapObject::cast(ConsString::cast(object)->unchecked_first());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000859 *p = object;
860 // After patching *p we have to repeat the checks that object is in the
861 // active semispace of the young generation and not already copied.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000862 if (!InNewSpace(object)) return;
kasper.lund7276f142008-07-30 08:49:36 +0000863 first_word = object->map_word();
864 if (first_word.IsForwardingAddress()) {
865 *p = first_word.ToForwardingAddress();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000866 return;
867 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000868 }
869
kasper.lund7276f142008-07-30 08:49:36 +0000870 int object_size = object->SizeFromMap(first_word.ToMap());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000871 // If the object should be promoted, we try to copy it to old space.
872 if (ShouldBePromoted(object->address(), object_size)) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000873 OldSpace* target_space = Heap::TargetSpace(object);
874 ASSERT(target_space == Heap::old_pointer_space_ ||
875 target_space == Heap::old_data_space_);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000876 Object* result = target_space->AllocateRaw(object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000877 if (!result->IsFailure()) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000878 *p = MigrateObject(object, HeapObject::cast(result), object_size);
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000879 if (target_space == Heap::old_pointer_space_) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000880 // Record the object's address at the top of the to space, to allow
881 // it to be swept by the scavenger.
882 promoted_top -= kPointerSize;
883 Memory::Object_at(promoted_top) = *p;
884 } else {
885#ifdef DEBUG
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000886 // Objects promoted to the data space should not have pointers to
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000887 // new space.
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000888 VerifyNonPointerSpacePointersVisitor v;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000889 (*p)->Iterate(&v);
890#endif
891 }
892 return;
893 }
894 }
895
896 // The object should remain in new space or the old space allocation failed.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000897 Object* result = new_space_.AllocateRaw(object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000898 // Failed allocation at this point is utterly unexpected.
899 ASSERT(!result->IsFailure());
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000900 *p = MigrateObject(object, HeapObject::cast(result), object_size);
901}
902
903
904void Heap::ScavengePointer(HeapObject** p) {
905 ScavengeObject(p, *p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000906}
907
908
909Object* Heap::AllocatePartialMap(InstanceType instance_type,
910 int instance_size) {
911 Object* result = AllocateRawMap(Map::kSize);
912 if (result->IsFailure()) return result;
913
914 // Map::cast cannot be used due to uninitialized map field.
915 reinterpret_cast<Map*>(result)->set_map(meta_map());
916 reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
917 reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
ager@chromium.org7c537e22008-10-16 08:43:32 +0000918 reinterpret_cast<Map*>(result)->set_inobject_properties(0);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000919 reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
920 return result;
921}
922
923
924Object* Heap::AllocateMap(InstanceType instance_type, int instance_size) {
925 Object* result = AllocateRawMap(Map::kSize);
926 if (result->IsFailure()) return result;
927
928 Map* map = reinterpret_cast<Map*>(result);
929 map->set_map(meta_map());
930 map->set_instance_type(instance_type);
931 map->set_prototype(null_value());
932 map->set_constructor(null_value());
933 map->set_instance_size(instance_size);
ager@chromium.org7c537e22008-10-16 08:43:32 +0000934 map->set_inobject_properties(0);
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000935 map->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000936 map->set_code_cache(empty_fixed_array());
937 map->set_unused_property_fields(0);
938 map->set_bit_field(0);
939 return map;
940}
941
942
943bool Heap::CreateInitialMaps() {
944 Object* obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
945 if (obj->IsFailure()) return false;
946
947 // Map::cast cannot be used due to uninitialized map field.
948 meta_map_ = reinterpret_cast<Map*>(obj);
949 meta_map()->set_map(meta_map());
950
951 obj = AllocatePartialMap(FIXED_ARRAY_TYPE, Array::kHeaderSize);
952 if (obj->IsFailure()) return false;
953 fixed_array_map_ = Map::cast(obj);
954
955 obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
956 if (obj->IsFailure()) return false;
957 oddball_map_ = Map::cast(obj);
958
959 // Allocate the empty array
960 obj = AllocateEmptyFixedArray();
961 if (obj->IsFailure()) return false;
962 empty_fixed_array_ = FixedArray::cast(obj);
963
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000964 obj = Allocate(oddball_map(), OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000965 if (obj->IsFailure()) return false;
966 null_value_ = obj;
967
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000968 // Allocate the empty descriptor array. AllocateMap can now be used.
969 obj = AllocateEmptyFixedArray();
970 if (obj->IsFailure()) return false;
971 // There is a check against empty_descriptor_array() in cast().
972 empty_descriptor_array_ = reinterpret_cast<DescriptorArray*>(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000973
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000974 // Fix the instance_descriptors for the existing maps.
975 meta_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000976 meta_map()->set_code_cache(empty_fixed_array());
977
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000978 fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000979 fixed_array_map()->set_code_cache(empty_fixed_array());
980
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000981 oddball_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000982 oddball_map()->set_code_cache(empty_fixed_array());
983
984 // Fix prototype object for existing maps.
985 meta_map()->set_prototype(null_value());
986 meta_map()->set_constructor(null_value());
987
988 fixed_array_map()->set_prototype(null_value());
989 fixed_array_map()->set_constructor(null_value());
990 oddball_map()->set_prototype(null_value());
991 oddball_map()->set_constructor(null_value());
992
993 obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
994 if (obj->IsFailure()) return false;
995 heap_number_map_ = Map::cast(obj);
996
997 obj = AllocateMap(PROXY_TYPE, Proxy::kSize);
998 if (obj->IsFailure()) return false;
999 proxy_map_ = Map::cast(obj);
1000
1001#define ALLOCATE_STRING_MAP(type, size, name) \
1002 obj = AllocateMap(type, size); \
1003 if (obj->IsFailure()) return false; \
1004 name##_map_ = Map::cast(obj);
1005 STRING_TYPE_LIST(ALLOCATE_STRING_MAP);
1006#undef ALLOCATE_STRING_MAP
1007
ager@chromium.org7c537e22008-10-16 08:43:32 +00001008 obj = AllocateMap(SHORT_STRING_TYPE, SeqTwoByteString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001009 if (obj->IsFailure()) return false;
1010 undetectable_short_string_map_ = Map::cast(obj);
1011 undetectable_short_string_map_->set_is_undetectable();
1012
ager@chromium.org7c537e22008-10-16 08:43:32 +00001013 obj = AllocateMap(MEDIUM_STRING_TYPE, SeqTwoByteString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001014 if (obj->IsFailure()) return false;
1015 undetectable_medium_string_map_ = Map::cast(obj);
1016 undetectable_medium_string_map_->set_is_undetectable();
1017
ager@chromium.org7c537e22008-10-16 08:43:32 +00001018 obj = AllocateMap(LONG_STRING_TYPE, SeqTwoByteString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001019 if (obj->IsFailure()) return false;
1020 undetectable_long_string_map_ = Map::cast(obj);
1021 undetectable_long_string_map_->set_is_undetectable();
1022
ager@chromium.org7c537e22008-10-16 08:43:32 +00001023 obj = AllocateMap(SHORT_ASCII_STRING_TYPE, SeqAsciiString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001024 if (obj->IsFailure()) return false;
1025 undetectable_short_ascii_string_map_ = Map::cast(obj);
1026 undetectable_short_ascii_string_map_->set_is_undetectable();
1027
ager@chromium.org7c537e22008-10-16 08:43:32 +00001028 obj = AllocateMap(MEDIUM_ASCII_STRING_TYPE, SeqAsciiString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001029 if (obj->IsFailure()) return false;
1030 undetectable_medium_ascii_string_map_ = Map::cast(obj);
1031 undetectable_medium_ascii_string_map_->set_is_undetectable();
1032
ager@chromium.org7c537e22008-10-16 08:43:32 +00001033 obj = AllocateMap(LONG_ASCII_STRING_TYPE, SeqAsciiString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001034 if (obj->IsFailure()) return false;
1035 undetectable_long_ascii_string_map_ = Map::cast(obj);
1036 undetectable_long_ascii_string_map_->set_is_undetectable();
1037
1038 obj = AllocateMap(BYTE_ARRAY_TYPE, Array::kHeaderSize);
1039 if (obj->IsFailure()) return false;
1040 byte_array_map_ = Map::cast(obj);
1041
1042 obj = AllocateMap(CODE_TYPE, Code::kHeaderSize);
1043 if (obj->IsFailure()) return false;
1044 code_map_ = Map::cast(obj);
1045
1046 obj = AllocateMap(FILLER_TYPE, kPointerSize);
1047 if (obj->IsFailure()) return false;
1048 one_word_filler_map_ = Map::cast(obj);
1049
1050 obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
1051 if (obj->IsFailure()) return false;
1052 two_word_filler_map_ = Map::cast(obj);
1053
1054#define ALLOCATE_STRUCT_MAP(NAME, Name, name) \
1055 obj = AllocateMap(NAME##_TYPE, Name::kSize); \
1056 if (obj->IsFailure()) return false; \
1057 name##_map_ = Map::cast(obj);
1058 STRUCT_LIST(ALLOCATE_STRUCT_MAP)
1059#undef ALLOCATE_STRUCT_MAP
1060
ager@chromium.org236ad962008-09-25 09:45:57 +00001061 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001062 if (obj->IsFailure()) return false;
1063 hash_table_map_ = Map::cast(obj);
1064
ager@chromium.org236ad962008-09-25 09:45:57 +00001065 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001066 if (obj->IsFailure()) return false;
1067 context_map_ = Map::cast(obj);
1068
ager@chromium.org236ad962008-09-25 09:45:57 +00001069 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001070 if (obj->IsFailure()) return false;
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00001071 catch_context_map_ = Map::cast(obj);
1072
1073 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
1074 if (obj->IsFailure()) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001075 global_context_map_ = Map::cast(obj);
1076
1077 obj = AllocateMap(JS_FUNCTION_TYPE, JSFunction::kSize);
1078 if (obj->IsFailure()) return false;
1079 boilerplate_function_map_ = Map::cast(obj);
1080
1081 obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kSize);
1082 if (obj->IsFailure()) return false;
1083 shared_function_info_map_ = Map::cast(obj);
1084
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001085 ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001086 return true;
1087}
1088
1089
1090Object* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
1091 // Statically ensure that it is safe to allocate heap numbers in paged
1092 // spaces.
1093 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001094 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001095 Object* result = AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001096 if (result->IsFailure()) return result;
1097
1098 HeapObject::cast(result)->set_map(heap_number_map());
1099 HeapNumber::cast(result)->set_value(value);
1100 return result;
1101}
1102
1103
1104Object* Heap::AllocateHeapNumber(double value) {
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001105 // Use general version, if we're forced to always allocate.
1106 if (always_allocate()) return AllocateHeapNumber(value, NOT_TENURED);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001107 // This version of AllocateHeapNumber is optimized for
1108 // allocation in new space.
1109 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
1110 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001111 Object* result = new_space_.AllocateRaw(HeapNumber::kSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001112 if (result->IsFailure()) return result;
1113 HeapObject::cast(result)->set_map(heap_number_map());
1114 HeapNumber::cast(result)->set_value(value);
1115 return result;
1116}
1117
1118
1119Object* Heap::CreateOddball(Map* map,
1120 const char* to_string,
1121 Object* to_number) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001122 Object* result = Allocate(map, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001123 if (result->IsFailure()) return result;
1124 return Oddball::cast(result)->Initialize(to_string, to_number);
1125}
1126
1127
1128bool Heap::CreateApiObjects() {
1129 Object* obj;
1130
1131 obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
1132 if (obj->IsFailure()) return false;
1133 neander_map_ = Map::cast(obj);
1134
1135 obj = Heap::AllocateJSObjectFromMap(neander_map_);
1136 if (obj->IsFailure()) return false;
1137 Object* elements = AllocateFixedArray(2);
1138 if (elements->IsFailure()) return false;
1139 FixedArray::cast(elements)->set(0, Smi::FromInt(0));
1140 JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
1141 message_listeners_ = JSObject::cast(obj);
1142
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001143 return true;
1144}
1145
1146void Heap::CreateFixedStubs() {
1147 // Here we create roots for fixed stubs. They are needed at GC
1148 // for cooking and uncooking (check out frames.cc).
1149 // The eliminates the need for doing dictionary lookup in the
1150 // stub cache for these stubs.
1151 HandleScope scope;
1152 {
1153 CEntryStub stub;
1154 c_entry_code_ = *stub.GetCode();
1155 }
1156 {
1157 CEntryDebugBreakStub stub;
1158 c_entry_debug_break_code_ = *stub.GetCode();
1159 }
1160 {
1161 JSEntryStub stub;
1162 js_entry_code_ = *stub.GetCode();
1163 }
1164 {
1165 JSConstructEntryStub stub;
1166 js_construct_entry_code_ = *stub.GetCode();
1167 }
1168}
1169
1170
1171bool Heap::CreateInitialObjects() {
1172 Object* obj;
1173
1174 // The -0 value must be set before NumberFromDouble works.
1175 obj = AllocateHeapNumber(-0.0, TENURED);
1176 if (obj->IsFailure()) return false;
1177 minus_zero_value_ = obj;
1178 ASSERT(signbit(minus_zero_value_->Number()) != 0);
1179
1180 obj = AllocateHeapNumber(OS::nan_value(), TENURED);
1181 if (obj->IsFailure()) return false;
1182 nan_value_ = obj;
1183
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001184 obj = Allocate(oddball_map(), OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001185 if (obj->IsFailure()) return false;
1186 undefined_value_ = obj;
1187 ASSERT(!InNewSpace(undefined_value()));
1188
1189 // Allocate initial symbol table.
1190 obj = SymbolTable::Allocate(kInitialSymbolTableSize);
1191 if (obj->IsFailure()) return false;
1192 symbol_table_ = obj;
1193
1194 // Assign the print strings for oddballs after creating symboltable.
1195 Object* symbol = LookupAsciiSymbol("undefined");
1196 if (symbol->IsFailure()) return false;
1197 Oddball::cast(undefined_value_)->set_to_string(String::cast(symbol));
1198 Oddball::cast(undefined_value_)->set_to_number(nan_value_);
1199
1200 // Assign the print strings for oddballs after creating symboltable.
1201 symbol = LookupAsciiSymbol("null");
1202 if (symbol->IsFailure()) return false;
1203 Oddball::cast(null_value_)->set_to_string(String::cast(symbol));
1204 Oddball::cast(null_value_)->set_to_number(Smi::FromInt(0));
1205
1206 // Allocate the null_value
1207 obj = Oddball::cast(null_value())->Initialize("null", Smi::FromInt(0));
1208 if (obj->IsFailure()) return false;
1209
1210 obj = CreateOddball(oddball_map(), "true", Smi::FromInt(1));
1211 if (obj->IsFailure()) return false;
1212 true_value_ = obj;
1213
1214 obj = CreateOddball(oddball_map(), "false", Smi::FromInt(0));
1215 if (obj->IsFailure()) return false;
1216 false_value_ = obj;
1217
1218 obj = CreateOddball(oddball_map(), "hole", Smi::FromInt(-1));
1219 if (obj->IsFailure()) return false;
1220 the_hole_value_ = obj;
1221
1222 // Allocate the empty string.
1223 obj = AllocateRawAsciiString(0, TENURED);
1224 if (obj->IsFailure()) return false;
1225 empty_string_ = String::cast(obj);
1226
1227#define SYMBOL_INITIALIZE(name, string) \
1228 obj = LookupAsciiSymbol(string); \
1229 if (obj->IsFailure()) return false; \
1230 (name##_) = String::cast(obj);
1231 SYMBOL_LIST(SYMBOL_INITIALIZE)
1232#undef SYMBOL_INITIALIZE
1233
ager@chromium.org3b45ab52009-03-19 22:21:34 +00001234 // Allocate the hidden symbol which is used to identify the hidden properties
1235 // in JSObjects. The hash code has a special value so that it will not match
1236 // the empty string when searching for the property. It cannot be part of the
1237 // SYMBOL_LIST because it needs to be allocated manually with the special
1238 // hash code in place. The hash code for the hidden_symbol is zero to ensure
1239 // that it will always be at the first entry in property descriptors.
1240 obj = AllocateSymbol(CStrVector(""), 0, String::kHashComputedMask);
1241 if (obj->IsFailure()) return false;
1242 hidden_symbol_ = String::cast(obj);
1243
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001244 // Allocate the proxy for __proto__.
1245 obj = AllocateProxy((Address) &Accessors::ObjectPrototype);
1246 if (obj->IsFailure()) return false;
1247 prototype_accessors_ = Proxy::cast(obj);
1248
1249 // Allocate the code_stubs dictionary.
1250 obj = Dictionary::Allocate(4);
1251 if (obj->IsFailure()) return false;
1252 code_stubs_ = Dictionary::cast(obj);
1253
1254 // Allocate the non_monomorphic_cache used in stub-cache.cc
1255 obj = Dictionary::Allocate(4);
1256 if (obj->IsFailure()) return false;
1257 non_monomorphic_cache_ = Dictionary::cast(obj);
1258
1259 CreateFixedStubs();
1260
1261 // Allocate the number->string conversion cache
1262 obj = AllocateFixedArray(kNumberStringCacheSize * 2);
1263 if (obj->IsFailure()) return false;
1264 number_string_cache_ = FixedArray::cast(obj);
1265
1266 // Allocate cache for single character strings.
1267 obj = AllocateFixedArray(String::kMaxAsciiCharCode+1);
1268 if (obj->IsFailure()) return false;
1269 single_character_string_cache_ = FixedArray::cast(obj);
1270
1271 // Allocate cache for external strings pointing to native source code.
1272 obj = AllocateFixedArray(Natives::GetBuiltinsCount());
1273 if (obj->IsFailure()) return false;
1274 natives_source_cache_ = FixedArray::cast(obj);
1275
kasperl@chromium.org7be3c992009-03-12 07:19:55 +00001276 // Handling of script id generation is in Factory::NewScript.
1277 last_script_id_ = undefined_value();
1278
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001279 // Initialize keyed lookup cache.
1280 ClearKeyedLookupCache();
1281
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00001282 // Initialize compilation cache.
1283 CompilationCache::Clear();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001284
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001285 return true;
1286}
1287
1288
1289static inline int double_get_hash(double d) {
1290 DoubleRepresentation rep(d);
1291 return ((static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) &
1292 (Heap::kNumberStringCacheSize - 1));
1293}
1294
1295
1296static inline int smi_get_hash(Smi* smi) {
1297 return (smi->value() & (Heap::kNumberStringCacheSize - 1));
1298}
1299
1300
1301
1302Object* Heap::GetNumberStringCache(Object* number) {
1303 int hash;
1304 if (number->IsSmi()) {
1305 hash = smi_get_hash(Smi::cast(number));
1306 } else {
1307 hash = double_get_hash(number->Number());
1308 }
1309 Object* key = number_string_cache_->get(hash * 2);
1310 if (key == number) {
1311 return String::cast(number_string_cache_->get(hash * 2 + 1));
1312 } else if (key->IsHeapNumber() &&
1313 number->IsHeapNumber() &&
1314 key->Number() == number->Number()) {
1315 return String::cast(number_string_cache_->get(hash * 2 + 1));
1316 }
1317 return undefined_value();
1318}
1319
1320
1321void Heap::SetNumberStringCache(Object* number, String* string) {
1322 int hash;
1323 if (number->IsSmi()) {
1324 hash = smi_get_hash(Smi::cast(number));
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001325 number_string_cache_->set(hash * 2, number, SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001326 } else {
1327 hash = double_get_hash(number->Number());
1328 number_string_cache_->set(hash * 2, number);
1329 }
1330 number_string_cache_->set(hash * 2 + 1, string);
1331}
1332
1333
1334Object* Heap::SmiOrNumberFromDouble(double value,
1335 bool new_object,
1336 PretenureFlag pretenure) {
1337 // We need to distinguish the minus zero value and this cannot be
1338 // done after conversion to int. Doing this by comparing bit
1339 // patterns is faster than using fpclassify() et al.
1340 static const DoubleRepresentation plus_zero(0.0);
1341 static const DoubleRepresentation minus_zero(-0.0);
1342 static const DoubleRepresentation nan(OS::nan_value());
1343 ASSERT(minus_zero_value_ != NULL);
1344 ASSERT(sizeof(plus_zero.value) == sizeof(plus_zero.bits));
1345
1346 DoubleRepresentation rep(value);
1347 if (rep.bits == plus_zero.bits) return Smi::FromInt(0); // not uncommon
1348 if (rep.bits == minus_zero.bits) {
1349 return new_object ? AllocateHeapNumber(-0.0, pretenure)
1350 : minus_zero_value_;
1351 }
1352 if (rep.bits == nan.bits) {
1353 return new_object
1354 ? AllocateHeapNumber(OS::nan_value(), pretenure)
1355 : nan_value_;
1356 }
1357
1358 // Try to represent the value as a tagged small integer.
1359 int int_value = FastD2I(value);
1360 if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
1361 return Smi::FromInt(int_value);
1362 }
1363
1364 // Materialize the value in the heap.
1365 return AllocateHeapNumber(value, pretenure);
1366}
1367
1368
1369Object* Heap::NewNumberFromDouble(double value, PretenureFlag pretenure) {
1370 return SmiOrNumberFromDouble(value,
1371 true /* number object must be new */,
1372 pretenure);
1373}
1374
1375
1376Object* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
1377 return SmiOrNumberFromDouble(value,
1378 false /* use preallocated NaN, -0.0 */,
1379 pretenure);
1380}
1381
1382
1383Object* Heap::AllocateProxy(Address proxy, PretenureFlag pretenure) {
1384 // Statically ensure that it is safe to allocate proxies in paged spaces.
1385 STATIC_ASSERT(Proxy::kSize <= Page::kMaxHeapObjectSize);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001386 AllocationSpace space =
1387 (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001388 Object* result = Allocate(proxy_map(), space);
1389 if (result->IsFailure()) return result;
1390
1391 Proxy::cast(result)->set_proxy(proxy);
1392 return result;
1393}
1394
1395
1396Object* Heap::AllocateSharedFunctionInfo(Object* name) {
1397 Object* result = Allocate(shared_function_info_map(), NEW_SPACE);
1398 if (result->IsFailure()) return result;
1399
1400 SharedFunctionInfo* share = SharedFunctionInfo::cast(result);
1401 share->set_name(name);
1402 Code* illegal = Builtins::builtin(Builtins::Illegal);
1403 share->set_code(illegal);
1404 share->set_expected_nof_properties(0);
1405 share->set_length(0);
1406 share->set_formal_parameter_count(0);
1407 share->set_instance_class_name(Object_symbol());
1408 share->set_function_data(undefined_value());
1409 share->set_lazy_load_data(undefined_value());
1410 share->set_script(undefined_value());
1411 share->set_start_position_and_type(0);
1412 share->set_debug_info(undefined_value());
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +00001413 share->set_inferred_name(empty_string());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001414 return result;
1415}
1416
1417
ager@chromium.org870a0b62008-11-04 11:43:05 +00001418Object* Heap::AllocateConsString(String* first,
ager@chromium.orgc3e50d82008-11-05 11:53:10 +00001419 String* second) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001420 int first_length = first->length();
1421 int second_length = second->length();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001422 int length = first_length + second_length;
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001423 bool is_ascii = StringShape(first).IsAsciiRepresentation()
1424 && StringShape(second).IsAsciiRepresentation();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001425
1426 // If the resulting string is small make a flat string.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001427 if (length < String::kMinNonFlatLength) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001428 ASSERT(first->IsFlat());
1429 ASSERT(second->IsFlat());
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001430 if (is_ascii) {
1431 Object* result = AllocateRawAsciiString(length);
1432 if (result->IsFailure()) return result;
1433 // Copy the characters into the new object.
1434 char* dest = SeqAsciiString::cast(result)->GetChars();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001435 String::WriteToFlat(first, dest, 0, first_length);
1436 String::WriteToFlat(second, dest + first_length, 0, second_length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001437 return result;
1438 } else {
1439 Object* result = AllocateRawTwoByteString(length);
1440 if (result->IsFailure()) return result;
1441 // Copy the characters into the new object.
1442 uc16* dest = SeqTwoByteString::cast(result)->GetChars();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001443 String::WriteToFlat(first, dest, 0, first_length);
1444 String::WriteToFlat(second, dest + first_length, 0, second_length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001445 return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001446 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001447 }
1448
1449 Map* map;
1450 if (length <= String::kMaxShortStringSize) {
1451 map = is_ascii ? short_cons_ascii_string_map()
1452 : short_cons_string_map();
1453 } else if (length <= String::kMaxMediumStringSize) {
1454 map = is_ascii ? medium_cons_ascii_string_map()
1455 : medium_cons_string_map();
1456 } else {
1457 map = is_ascii ? long_cons_ascii_string_map()
1458 : long_cons_string_map();
1459 }
1460
1461 Object* result = Allocate(map, NEW_SPACE);
1462 if (result->IsFailure()) return result;
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001463 ASSERT(InNewSpace(result));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001464 ConsString* cons_string = ConsString::cast(result);
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001465 cons_string->set_first(first, SKIP_WRITE_BARRIER);
1466 cons_string->set_second(second, SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001467 cons_string->set_length(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001468 return result;
1469}
1470
1471
ager@chromium.org870a0b62008-11-04 11:43:05 +00001472Object* Heap::AllocateSlicedString(String* buffer,
ager@chromium.org870a0b62008-11-04 11:43:05 +00001473 int start,
1474 int end) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001475 int length = end - start;
1476
1477 // If the resulting string is small make a sub string.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001478 if (end - start <= String::kMinNonFlatLength) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001479 return Heap::AllocateSubString(buffer, start, end);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001480 }
1481
1482 Map* map;
1483 if (length <= String::kMaxShortStringSize) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001484 map = StringShape(buffer).IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001485 short_sliced_ascii_string_map() :
1486 short_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001487 } else if (length <= String::kMaxMediumStringSize) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001488 map = StringShape(buffer).IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001489 medium_sliced_ascii_string_map() :
1490 medium_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001491 } else {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001492 map = StringShape(buffer).IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001493 long_sliced_ascii_string_map() :
1494 long_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001495 }
1496
1497 Object* result = Allocate(map, NEW_SPACE);
1498 if (result->IsFailure()) return result;
1499
1500 SlicedString* sliced_string = SlicedString::cast(result);
1501 sliced_string->set_buffer(buffer);
1502 sliced_string->set_start(start);
1503 sliced_string->set_length(length);
1504
1505 return result;
1506}
1507
1508
ager@chromium.org870a0b62008-11-04 11:43:05 +00001509Object* Heap::AllocateSubString(String* buffer,
ager@chromium.org870a0b62008-11-04 11:43:05 +00001510 int start,
1511 int end) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001512 int length = end - start;
1513
ager@chromium.org7c537e22008-10-16 08:43:32 +00001514 if (length == 1) {
ager@chromium.org870a0b62008-11-04 11:43:05 +00001515 return Heap::LookupSingleCharacterStringFromCode(
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001516 buffer->Get(start));
ager@chromium.org7c537e22008-10-16 08:43:32 +00001517 }
1518
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001519 // Make an attempt to flatten the buffer to reduce access time.
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001520 if (!buffer->IsFlat()) {
1521 buffer->TryFlatten();
ager@chromium.org870a0b62008-11-04 11:43:05 +00001522 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001523
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001524 Object* result = StringShape(buffer).IsAsciiRepresentation()
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001525 ? AllocateRawAsciiString(length)
1526 : AllocateRawTwoByteString(length);
1527 if (result->IsFailure()) return result;
1528
1529 // Copy the characters into the new object.
1530 String* string_result = String::cast(result);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001531 StringHasher hasher(length);
1532 int i = 0;
1533 for (; i < length && hasher.is_array_index(); i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001534 uc32 c = buffer->Get(start + i);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001535 hasher.AddCharacter(c);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001536 string_result->Set(i, c);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001537 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00001538 for (; i < length; i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001539 uc32 c = buffer->Get(start + i);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001540 hasher.AddCharacterNoIndex(c);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001541 string_result->Set(i, c);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001542 }
1543 string_result->set_length_field(hasher.GetHashField());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001544 return result;
1545}
1546
1547
1548Object* Heap::AllocateExternalStringFromAscii(
1549 ExternalAsciiString::Resource* resource) {
1550 Map* map;
1551 int length = resource->length();
1552 if (length <= String::kMaxShortStringSize) {
1553 map = short_external_ascii_string_map();
1554 } else if (length <= String::kMaxMediumStringSize) {
1555 map = medium_external_ascii_string_map();
1556 } else {
1557 map = long_external_ascii_string_map();
1558 }
1559
1560 Object* result = Allocate(map, NEW_SPACE);
1561 if (result->IsFailure()) return result;
1562
1563 ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
1564 external_string->set_length(length);
1565 external_string->set_resource(resource);
1566
1567 return result;
1568}
1569
1570
1571Object* Heap::AllocateExternalStringFromTwoByte(
1572 ExternalTwoByteString::Resource* resource) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001573 int length = resource->length();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001574
ager@chromium.org6f10e412009-02-13 10:11:16 +00001575 Map* map = ExternalTwoByteString::StringMap(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001576 Object* result = Allocate(map, NEW_SPACE);
1577 if (result->IsFailure()) return result;
1578
1579 ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
1580 external_string->set_length(length);
1581 external_string->set_resource(resource);
1582
1583 return result;
1584}
1585
1586
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001587Object* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001588 if (code <= String::kMaxAsciiCharCode) {
1589 Object* value = Heap::single_character_string_cache()->get(code);
1590 if (value != Heap::undefined_value()) return value;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001591
1592 char buffer[1];
1593 buffer[0] = static_cast<char>(code);
1594 Object* result = LookupSymbol(Vector<const char>(buffer, 1));
1595
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001596 if (result->IsFailure()) return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001597 Heap::single_character_string_cache()->set(code, result);
1598 return result;
1599 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001600
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001601 Object* result = Heap::AllocateRawTwoByteString(1);
1602 if (result->IsFailure()) return result;
ager@chromium.org870a0b62008-11-04 11:43:05 +00001603 String* answer = String::cast(result);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001604 answer->Set(0, code);
ager@chromium.org870a0b62008-11-04 11:43:05 +00001605 return answer;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001606}
1607
1608
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001609Object* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
1610 if (pretenure == NOT_TENURED) {
1611 return AllocateByteArray(length);
1612 }
1613 int size = ByteArray::SizeFor(length);
1614 AllocationSpace space =
1615 size > MaxHeapObjectSize() ? LO_SPACE : OLD_DATA_SPACE;
1616
1617 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
1618
1619 if (result->IsFailure()) return result;
1620
1621 reinterpret_cast<Array*>(result)->set_map(byte_array_map());
1622 reinterpret_cast<Array*>(result)->set_length(length);
1623 return result;
1624}
1625
1626
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001627Object* Heap::AllocateByteArray(int length) {
1628 int size = ByteArray::SizeFor(length);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001629 AllocationSpace space =
1630 size > MaxHeapObjectSize() ? LO_SPACE : NEW_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001631
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001632 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001633
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001634 if (result->IsFailure()) return result;
1635
1636 reinterpret_cast<Array*>(result)->set_map(byte_array_map());
1637 reinterpret_cast<Array*>(result)->set_length(length);
1638 return result;
1639}
1640
1641
ager@chromium.org6f10e412009-02-13 10:11:16 +00001642void Heap::CreateFillerObjectAt(Address addr, int size) {
1643 if (size == 0) return;
1644 HeapObject* filler = HeapObject::FromAddress(addr);
1645 if (size == kPointerSize) {
1646 filler->set_map(Heap::one_word_filler_map());
1647 } else {
1648 filler->set_map(Heap::byte_array_map());
1649 ByteArray::cast(filler)->set_length(ByteArray::LengthFor(size));
1650 }
1651}
1652
1653
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001654Object* Heap::CreateCode(const CodeDesc& desc,
1655 ScopeInfo<>* sinfo,
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001656 Code::Flags flags,
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001657 Handle<Object> self_reference) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001658 // Compute size
1659 int body_size = RoundUp(desc.instr_size + desc.reloc_size, kObjectAlignment);
1660 int sinfo_size = 0;
1661 if (sinfo != NULL) sinfo_size = sinfo->Serialize(NULL);
1662 int obj_size = Code::SizeFor(body_size, sinfo_size);
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001663 ASSERT(IsAligned(obj_size, Code::kCodeAlignment));
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001664 Object* result;
1665 if (obj_size > MaxHeapObjectSize()) {
1666 result = lo_space_->AllocateRawCode(obj_size);
1667 } else {
1668 result = code_space_->AllocateRaw(obj_size);
1669 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001670
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001671 if (result->IsFailure()) return result;
1672
1673 // Initialize the object
1674 HeapObject::cast(result)->set_map(code_map());
1675 Code* code = Code::cast(result);
1676 code->set_instruction_size(desc.instr_size);
1677 code->set_relocation_size(desc.reloc_size);
1678 code->set_sinfo_size(sinfo_size);
1679 code->set_flags(flags);
1680 code->set_ic_flag(Code::IC_TARGET_IS_ADDRESS);
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001681 // Allow self references to created code object by patching the handle to
1682 // point to the newly allocated Code object.
1683 if (!self_reference.is_null()) {
1684 *(self_reference.location()) = code;
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001685 }
1686 // Migrate generated code.
1687 // The generated code can contain Object** values (typically from handles)
1688 // that are dereferenced during the copy to point directly to the actual heap
1689 // objects. These pointers can include references to the code object itself,
1690 // through the self_reference parameter.
1691 code->CopyFrom(desc);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001692 if (sinfo != NULL) sinfo->Serialize(code); // write scope info
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00001693 LOG(CodeAllocateEvent(code, desc.origin));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001694
1695#ifdef DEBUG
1696 code->Verify();
1697#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001698 return code;
1699}
1700
1701
1702Object* Heap::CopyCode(Code* code) {
1703 // Allocate an object the same size as the code object.
1704 int obj_size = code->Size();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001705 Object* result;
1706 if (obj_size > MaxHeapObjectSize()) {
1707 result = lo_space_->AllocateRawCode(obj_size);
1708 } else {
1709 result = code_space_->AllocateRaw(obj_size);
1710 }
1711
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001712 if (result->IsFailure()) return result;
1713
1714 // Copy code object.
1715 Address old_addr = code->address();
1716 Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001717 CopyBlock(reinterpret_cast<Object**>(new_addr),
1718 reinterpret_cast<Object**>(old_addr),
1719 obj_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001720 // Relocate the copy.
1721 Code* new_code = Code::cast(result);
1722 new_code->Relocate(new_addr - old_addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001723 return new_code;
1724}
1725
1726
1727Object* Heap::Allocate(Map* map, AllocationSpace space) {
1728 ASSERT(gc_state_ == NOT_IN_GC);
1729 ASSERT(map->instance_type() != MAP_TYPE);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001730 Object* result = AllocateRaw(map->instance_size(),
1731 space,
1732 TargetSpaceId(map->instance_type()));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001733 if (result->IsFailure()) return result;
1734 HeapObject::cast(result)->set_map(map);
1735 return result;
1736}
1737
1738
1739Object* Heap::InitializeFunction(JSFunction* function,
1740 SharedFunctionInfo* shared,
1741 Object* prototype) {
1742 ASSERT(!prototype->IsMap());
1743 function->initialize_properties();
1744 function->initialize_elements();
1745 function->set_shared(shared);
1746 function->set_prototype_or_initial_map(prototype);
1747 function->set_context(undefined_value());
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001748 function->set_literals(empty_fixed_array(), SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001749 return function;
1750}
1751
1752
1753Object* Heap::AllocateFunctionPrototype(JSFunction* function) {
ager@chromium.orgddb913d2009-01-27 10:01:48 +00001754 // Allocate the prototype. Make sure to use the object function
1755 // from the function's context, since the function can be from a
1756 // different context.
1757 JSFunction* object_function =
1758 function->context()->global_context()->object_function();
1759 Object* prototype = AllocateJSObject(object_function);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001760 if (prototype->IsFailure()) return prototype;
1761 // When creating the prototype for the function we must set its
1762 // constructor to the function.
1763 Object* result =
1764 JSObject::cast(prototype)->SetProperty(constructor_symbol(),
1765 function,
1766 DONT_ENUM);
1767 if (result->IsFailure()) return result;
1768 return prototype;
1769}
1770
1771
1772Object* Heap::AllocateFunction(Map* function_map,
1773 SharedFunctionInfo* shared,
1774 Object* prototype) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001775 Object* result = Allocate(function_map, OLD_POINTER_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001776 if (result->IsFailure()) return result;
1777 return InitializeFunction(JSFunction::cast(result), shared, prototype);
1778}
1779
1780
1781Object* Heap::AllocateArgumentsObject(Object* callee, int length) {
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001782 // To get fast allocation and map sharing for arguments objects we
1783 // allocate them based on an arguments boilerplate.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001784
1785 // This calls Copy directly rather than using Heap::AllocateRaw so we
1786 // duplicate the check here.
1787 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
1788
1789 JSObject* boilerplate =
1790 Top::context()->global_context()->arguments_boilerplate();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001791
1792 // Make the clone.
1793 Map* map = boilerplate->map();
1794 int object_size = map->instance_size();
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001795 Object* result = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001796 if (result->IsFailure()) return result;
1797
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001798 // Copy the content. The arguments boilerplate doesn't have any
1799 // fields that point to new space so it's safe to skip the write
1800 // barrier here.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001801 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(result)->address()),
1802 reinterpret_cast<Object**>(boilerplate->address()),
1803 object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001804
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001805 // Set the two properties.
1806 JSObject::cast(result)->InObjectPropertyAtPut(arguments_callee_index,
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001807 callee);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001808 JSObject::cast(result)->InObjectPropertyAtPut(arguments_length_index,
1809 Smi::FromInt(length),
1810 SKIP_WRITE_BARRIER);
1811
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001812 // Check the state of the object
1813 ASSERT(JSObject::cast(result)->HasFastProperties());
1814 ASSERT(JSObject::cast(result)->HasFastElements());
1815
1816 return result;
1817}
1818
1819
1820Object* Heap::AllocateInitialMap(JSFunction* fun) {
1821 ASSERT(!fun->has_initial_map());
1822
ager@chromium.org7c537e22008-10-16 08:43:32 +00001823 // First create a new map with the expected number of properties being
1824 // allocated in-object.
1825 int expected_nof_properties = fun->shared()->expected_nof_properties();
1826 int instance_size = JSObject::kHeaderSize +
1827 expected_nof_properties * kPointerSize;
1828 if (instance_size > JSObject::kMaxInstanceSize) {
1829 instance_size = JSObject::kMaxInstanceSize;
1830 expected_nof_properties = (instance_size - JSObject::kHeaderSize) /
1831 kPointerSize;
1832 }
1833 Object* map_obj = Heap::AllocateMap(JS_OBJECT_TYPE, instance_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001834 if (map_obj->IsFailure()) return map_obj;
1835
1836 // Fetch or allocate prototype.
1837 Object* prototype;
1838 if (fun->has_instance_prototype()) {
1839 prototype = fun->instance_prototype();
1840 } else {
1841 prototype = AllocateFunctionPrototype(fun);
1842 if (prototype->IsFailure()) return prototype;
1843 }
1844 Map* map = Map::cast(map_obj);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001845 map->set_inobject_properties(expected_nof_properties);
1846 map->set_unused_property_fields(expected_nof_properties);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001847 map->set_prototype(prototype);
1848 return map;
1849}
1850
1851
1852void Heap::InitializeJSObjectFromMap(JSObject* obj,
1853 FixedArray* properties,
1854 Map* map) {
1855 obj->set_properties(properties);
1856 obj->initialize_elements();
1857 // TODO(1240798): Initialize the object's body using valid initial values
1858 // according to the object's initial map. For example, if the map's
1859 // instance type is JS_ARRAY_TYPE, the length field should be initialized
1860 // to a number (eg, Smi::FromInt(0)) and the elements initialized to a
1861 // fixed array (eg, Heap::empty_fixed_array()). Currently, the object
1862 // verification code has to cope with (temporarily) invalid objects. See
1863 // for example, JSArray::JSArrayVerify).
1864 obj->InitializeBody(map->instance_size());
1865}
1866
1867
1868Object* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
1869 // JSFunctions should be allocated using AllocateFunction to be
1870 // properly initialized.
1871 ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
1872
1873 // Allocate the backing storage for the properties.
ager@chromium.org7c537e22008-10-16 08:43:32 +00001874 int prop_size = map->unused_property_fields() - map->inobject_properties();
1875 Object* properties = AllocateFixedArray(prop_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001876 if (properties->IsFailure()) return properties;
1877
1878 // Allocate the JSObject.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001879 AllocationSpace space =
1880 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001881 if (map->instance_size() > MaxHeapObjectSize()) space = LO_SPACE;
1882 Object* obj = Allocate(map, space);
1883 if (obj->IsFailure()) return obj;
1884
1885 // Initialize the JSObject.
1886 InitializeJSObjectFromMap(JSObject::cast(obj),
1887 FixedArray::cast(properties),
1888 map);
1889 return obj;
1890}
1891
1892
1893Object* Heap::AllocateJSObject(JSFunction* constructor,
1894 PretenureFlag pretenure) {
1895 // Allocate the initial map if absent.
1896 if (!constructor->has_initial_map()) {
1897 Object* initial_map = AllocateInitialMap(constructor);
1898 if (initial_map->IsFailure()) return initial_map;
1899 constructor->set_initial_map(Map::cast(initial_map));
1900 Map::cast(initial_map)->set_constructor(constructor);
1901 }
1902 // Allocate the object based on the constructors initial map.
1903 return AllocateJSObjectFromMap(constructor->initial_map(), pretenure);
1904}
1905
1906
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001907Object* Heap::CopyJSObject(JSObject* source) {
1908 // Never used to copy functions. If functions need to be copied we
1909 // have to be careful to clear the literals array.
1910 ASSERT(!source->IsJSFunction());
1911
1912 // Make the clone.
1913 Map* map = source->map();
1914 int object_size = map->instance_size();
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001915 Object* clone;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001916
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001917 // If we're forced to always allocate, we use the general allocation
1918 // functions which may leave us with an object in old space.
1919 if (always_allocate()) {
1920 clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
1921 if (clone->IsFailure()) return clone;
1922 Address clone_address = HeapObject::cast(clone)->address();
1923 CopyBlock(reinterpret_cast<Object**>(clone_address),
1924 reinterpret_cast<Object**>(source->address()),
1925 object_size);
1926 // Update write barrier for all fields that lie beyond the header.
1927 for (int offset = JSObject::kHeaderSize;
1928 offset < object_size;
1929 offset += kPointerSize) {
1930 RecordWrite(clone_address, offset);
1931 }
1932 } else {
1933 clone = new_space_.AllocateRaw(object_size);
1934 if (clone->IsFailure()) return clone;
1935 ASSERT(Heap::InNewSpace(clone));
1936 // Since we know the clone is allocated in new space, we can copy
ager@chromium.org32912102009-01-16 10:38:43 +00001937 // the contents without worrying about updating the write barrier.
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001938 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(clone)->address()),
1939 reinterpret_cast<Object**>(source->address()),
1940 object_size);
1941 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001942
1943 FixedArray* elements = FixedArray::cast(source->elements());
1944 FixedArray* properties = FixedArray::cast(source->properties());
1945 // Update elements if necessary.
1946 if (elements->length()> 0) {
1947 Object* elem = CopyFixedArray(elements);
1948 if (elem->IsFailure()) return elem;
1949 JSObject::cast(clone)->set_elements(FixedArray::cast(elem));
1950 }
1951 // Update properties if necessary.
1952 if (properties->length() > 0) {
1953 Object* prop = CopyFixedArray(properties);
1954 if (prop->IsFailure()) return prop;
1955 JSObject::cast(clone)->set_properties(FixedArray::cast(prop));
1956 }
1957 // Return the new clone.
1958 return clone;
1959}
1960
1961
1962Object* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
1963 JSGlobalProxy* object) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001964 // Allocate initial map if absent.
1965 if (!constructor->has_initial_map()) {
1966 Object* initial_map = AllocateInitialMap(constructor);
1967 if (initial_map->IsFailure()) return initial_map;
1968 constructor->set_initial_map(Map::cast(initial_map));
1969 Map::cast(initial_map)->set_constructor(constructor);
1970 }
1971
1972 Map* map = constructor->initial_map();
1973
1974 // Check that the already allocated object has the same size as
1975 // objects allocated using the constructor.
1976 ASSERT(map->instance_size() == object->map()->instance_size());
1977
1978 // Allocate the backing storage for the properties.
ager@chromium.org7c537e22008-10-16 08:43:32 +00001979 int prop_size = map->unused_property_fields() - map->inobject_properties();
1980 Object* properties = AllocateFixedArray(prop_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001981 if (properties->IsFailure()) return properties;
1982
1983 // Reset the map for the object.
1984 object->set_map(constructor->initial_map());
1985
1986 // Reinitialize the object from the constructor map.
1987 InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
1988 return object;
1989}
1990
1991
1992Object* Heap::AllocateStringFromAscii(Vector<const char> string,
1993 PretenureFlag pretenure) {
1994 Object* result = AllocateRawAsciiString(string.length(), pretenure);
1995 if (result->IsFailure()) return result;
1996
1997 // Copy the characters into the new object.
ager@chromium.org7c537e22008-10-16 08:43:32 +00001998 SeqAsciiString* string_result = SeqAsciiString::cast(result);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001999 for (int i = 0; i < string.length(); i++) {
ager@chromium.org7c537e22008-10-16 08:43:32 +00002000 string_result->SeqAsciiStringSet(i, string[i]);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002001 }
2002 return result;
2003}
2004
2005
2006Object* Heap::AllocateStringFromUtf8(Vector<const char> string,
2007 PretenureFlag pretenure) {
2008 // Count the number of characters in the UTF-8 string and check if
2009 // it is an ASCII string.
2010 Access<Scanner::Utf8Decoder> decoder(Scanner::utf8_decoder());
2011 decoder->Reset(string.start(), string.length());
2012 int chars = 0;
2013 bool is_ascii = true;
2014 while (decoder->has_more()) {
2015 uc32 r = decoder->GetNext();
2016 if (r > String::kMaxAsciiCharCode) is_ascii = false;
2017 chars++;
2018 }
2019
2020 // If the string is ascii, we do not need to convert the characters
2021 // since UTF8 is backwards compatible with ascii.
2022 if (is_ascii) return AllocateStringFromAscii(string, pretenure);
2023
2024 Object* result = AllocateRawTwoByteString(chars, pretenure);
2025 if (result->IsFailure()) return result;
2026
2027 // Convert and copy the characters into the new object.
2028 String* string_result = String::cast(result);
2029 decoder->Reset(string.start(), string.length());
2030 for (int i = 0; i < chars; i++) {
2031 uc32 r = decoder->GetNext();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002032 string_result->Set(i, r);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002033 }
2034 return result;
2035}
2036
2037
2038Object* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
2039 PretenureFlag pretenure) {
2040 // Check if the string is an ASCII string.
2041 int i = 0;
2042 while (i < string.length() && string[i] <= String::kMaxAsciiCharCode) i++;
2043
2044 Object* result;
2045 if (i == string.length()) { // It's an ASCII string.
2046 result = AllocateRawAsciiString(string.length(), pretenure);
2047 } else { // It's not an ASCII string.
2048 result = AllocateRawTwoByteString(string.length(), pretenure);
2049 }
2050 if (result->IsFailure()) return result;
2051
2052 // Copy the characters into the new object, which may be either ASCII or
2053 // UTF-16.
2054 String* string_result = String::cast(result);
2055 for (int i = 0; i < string.length(); i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002056 string_result->Set(i, string[i]);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002057 }
2058 return result;
2059}
2060
2061
2062Map* Heap::SymbolMapForString(String* string) {
2063 // If the string is in new space it cannot be used as a symbol.
2064 if (InNewSpace(string)) return NULL;
2065
2066 // Find the corresponding symbol map for strings.
2067 Map* map = string->map();
2068
2069 if (map == short_ascii_string_map()) return short_ascii_symbol_map();
2070 if (map == medium_ascii_string_map()) return medium_ascii_symbol_map();
2071 if (map == long_ascii_string_map()) return long_ascii_symbol_map();
2072
2073 if (map == short_string_map()) return short_symbol_map();
2074 if (map == medium_string_map()) return medium_symbol_map();
2075 if (map == long_string_map()) return long_symbol_map();
2076
2077 if (map == short_cons_string_map()) return short_cons_symbol_map();
2078 if (map == medium_cons_string_map()) return medium_cons_symbol_map();
2079 if (map == long_cons_string_map()) return long_cons_symbol_map();
2080
2081 if (map == short_cons_ascii_string_map()) {
2082 return short_cons_ascii_symbol_map();
2083 }
2084 if (map == medium_cons_ascii_string_map()) {
2085 return medium_cons_ascii_symbol_map();
2086 }
2087 if (map == long_cons_ascii_string_map()) {
2088 return long_cons_ascii_symbol_map();
2089 }
2090
2091 if (map == short_sliced_string_map()) return short_sliced_symbol_map();
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002092 if (map == medium_sliced_string_map()) return medium_sliced_symbol_map();
2093 if (map == long_sliced_string_map()) return long_sliced_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002094
2095 if (map == short_sliced_ascii_string_map()) {
2096 return short_sliced_ascii_symbol_map();
2097 }
2098 if (map == medium_sliced_ascii_string_map()) {
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002099 return medium_sliced_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002100 }
2101 if (map == long_sliced_ascii_string_map()) {
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002102 return long_sliced_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002103 }
2104
ager@chromium.org6f10e412009-02-13 10:11:16 +00002105 if (map == short_external_string_map()) {
2106 return short_external_symbol_map();
2107 }
2108 if (map == medium_external_string_map()) {
2109 return medium_external_symbol_map();
2110 }
2111 if (map == long_external_string_map()) {
2112 return long_external_symbol_map();
2113 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002114
2115 if (map == short_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002116 return short_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002117 }
2118 if (map == medium_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002119 return medium_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002120 }
2121 if (map == long_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002122 return long_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002123 }
2124
2125 // No match found.
2126 return NULL;
2127}
2128
2129
ager@chromium.orga74f0da2008-12-03 16:05:52 +00002130Object* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
2131 int chars,
2132 uint32_t length_field) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002133 // Ensure the chars matches the number of characters in the buffer.
2134 ASSERT(static_cast<unsigned>(chars) == buffer->Length());
2135 // Determine whether the string is ascii.
2136 bool is_ascii = true;
ager@chromium.org6f10e412009-02-13 10:11:16 +00002137 while (buffer->has_more() && is_ascii) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002138 if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) is_ascii = false;
2139 }
2140 buffer->Rewind();
2141
2142 // Compute map and object size.
2143 int size;
2144 Map* map;
2145
2146 if (is_ascii) {
2147 if (chars <= String::kMaxShortStringSize) {
2148 map = short_ascii_symbol_map();
2149 } else if (chars <= String::kMaxMediumStringSize) {
2150 map = medium_ascii_symbol_map();
2151 } else {
2152 map = long_ascii_symbol_map();
2153 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00002154 size = SeqAsciiString::SizeFor(chars);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002155 } else {
2156 if (chars <= String::kMaxShortStringSize) {
2157 map = short_symbol_map();
2158 } else if (chars <= String::kMaxMediumStringSize) {
2159 map = medium_symbol_map();
2160 } else {
2161 map = long_symbol_map();
2162 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00002163 size = SeqTwoByteString::SizeFor(chars);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002164 }
2165
2166 // Allocate string.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002167 AllocationSpace space =
2168 (size > MaxHeapObjectSize()) ? LO_SPACE : OLD_DATA_SPACE;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002169 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002170 if (result->IsFailure()) return result;
2171
2172 reinterpret_cast<HeapObject*>(result)->set_map(map);
2173 // The hash value contains the length of the string.
ager@chromium.org870a0b62008-11-04 11:43:05 +00002174 String* answer = String::cast(result);
ager@chromium.org870a0b62008-11-04 11:43:05 +00002175 answer->set_length_field(length_field);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002176
ager@chromium.org870a0b62008-11-04 11:43:05 +00002177 ASSERT_EQ(size, answer->Size());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002178
2179 // Fill in the characters.
2180 for (int i = 0; i < chars; i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002181 answer->Set(i, buffer->GetNext());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002182 }
ager@chromium.org870a0b62008-11-04 11:43:05 +00002183 return answer;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002184}
2185
2186
2187Object* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002188 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
ager@chromium.org7c537e22008-10-16 08:43:32 +00002189 int size = SeqAsciiString::SizeFor(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002190 if (size > MaxHeapObjectSize()) {
2191 space = LO_SPACE;
2192 }
2193
2194 // Use AllocateRaw rather than Allocate because the object's size cannot be
2195 // determined from the map.
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002196 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002197 if (result->IsFailure()) return result;
2198
2199 // Determine the map based on the string's length.
2200 Map* map;
2201 if (length <= String::kMaxShortStringSize) {
2202 map = short_ascii_string_map();
2203 } else if (length <= String::kMaxMediumStringSize) {
2204 map = medium_ascii_string_map();
2205 } else {
2206 map = long_ascii_string_map();
2207 }
2208
2209 // Partially initialize the object.
2210 HeapObject::cast(result)->set_map(map);
2211 String::cast(result)->set_length(length);
2212 ASSERT_EQ(size, HeapObject::cast(result)->Size());
2213 return result;
2214}
2215
2216
2217Object* Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002218 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
ager@chromium.org7c537e22008-10-16 08:43:32 +00002219 int size = SeqTwoByteString::SizeFor(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002220 if (size > MaxHeapObjectSize()) {
2221 space = LO_SPACE;
2222 }
2223
2224 // Use AllocateRaw rather than Allocate because the object's size cannot be
2225 // determined from the map.
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002226 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002227 if (result->IsFailure()) return result;
2228
2229 // Determine the map based on the string's length.
2230 Map* map;
2231 if (length <= String::kMaxShortStringSize) {
2232 map = short_string_map();
2233 } else if (length <= String::kMaxMediumStringSize) {
2234 map = medium_string_map();
2235 } else {
2236 map = long_string_map();
2237 }
2238
2239 // Partially initialize the object.
2240 HeapObject::cast(result)->set_map(map);
2241 String::cast(result)->set_length(length);
2242 ASSERT_EQ(size, HeapObject::cast(result)->Size());
2243 return result;
2244}
2245
2246
2247Object* Heap::AllocateEmptyFixedArray() {
2248 int size = FixedArray::SizeFor(0);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002249 Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002250 if (result->IsFailure()) return result;
2251 // Initialize the object.
2252 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2253 reinterpret_cast<Array*>(result)->set_length(0);
2254 return result;
2255}
2256
2257
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002258Object* Heap::AllocateRawFixedArray(int length) {
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002259 // Use the general function if we're forced to always allocate.
2260 if (always_allocate()) return AllocateFixedArray(length, NOT_TENURED);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002261 // Allocate the raw data for a fixed array.
2262 int size = FixedArray::SizeFor(length);
2263 return (size > MaxHeapObjectSize())
2264 ? lo_space_->AllocateRawFixedArray(size)
2265 : new_space_.AllocateRaw(size);
2266}
2267
2268
2269Object* Heap::CopyFixedArray(FixedArray* src) {
2270 int len = src->length();
2271 Object* obj = AllocateRawFixedArray(len);
2272 if (obj->IsFailure()) return obj;
2273 if (Heap::InNewSpace(obj)) {
2274 HeapObject* dst = HeapObject::cast(obj);
2275 CopyBlock(reinterpret_cast<Object**>(dst->address()),
2276 reinterpret_cast<Object**>(src->address()),
2277 FixedArray::SizeFor(len));
2278 return obj;
2279 }
2280 HeapObject::cast(obj)->set_map(src->map());
2281 FixedArray* result = FixedArray::cast(obj);
2282 result->set_length(len);
2283 // Copy the content
2284 WriteBarrierMode mode = result->GetWriteBarrierMode();
2285 for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
2286 return result;
2287}
2288
2289
2290Object* Heap::AllocateFixedArray(int length) {
ager@chromium.org32912102009-01-16 10:38:43 +00002291 if (length == 0) return empty_fixed_array();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002292 Object* result = AllocateRawFixedArray(length);
2293 if (!result->IsFailure()) {
2294 // Initialize header.
2295 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2296 FixedArray* array = FixedArray::cast(result);
2297 array->set_length(length);
2298 Object* value = undefined_value();
2299 // Initialize body.
2300 for (int index = 0; index < length; index++) {
2301 array->set(index, value, SKIP_WRITE_BARRIER);
2302 }
2303 }
2304 return result;
2305}
2306
2307
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002308Object* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
2309 ASSERT(empty_fixed_array()->IsFixedArray());
2310 if (length == 0) return empty_fixed_array();
2311
2312 int size = FixedArray::SizeFor(length);
2313 Object* result;
2314 if (size > MaxHeapObjectSize()) {
2315 result = lo_space_->AllocateRawFixedArray(size);
2316 } else {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002317 AllocationSpace space =
2318 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002319 result = AllocateRaw(size, space, OLD_POINTER_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002320 }
2321 if (result->IsFailure()) return result;
2322
2323 // Initialize the object.
2324 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2325 FixedArray* array = FixedArray::cast(result);
2326 array->set_length(length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002327 Object* value = undefined_value();
2328 for (int index = 0; index < length; index++) {
2329 array->set(index, value, SKIP_WRITE_BARRIER);
2330 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002331 return array;
2332}
2333
2334
2335Object* Heap::AllocateFixedArrayWithHoles(int length) {
2336 if (length == 0) return empty_fixed_array();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002337 Object* result = AllocateRawFixedArray(length);
2338 if (!result->IsFailure()) {
2339 // Initialize header.
2340 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2341 FixedArray* array = FixedArray::cast(result);
2342 array->set_length(length);
2343 // Initialize body.
2344 Object* value = the_hole_value();
2345 for (int index = 0; index < length; index++) {
2346 array->set(index, value, SKIP_WRITE_BARRIER);
2347 }
2348 }
2349 return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002350}
2351
2352
2353Object* Heap::AllocateHashTable(int length) {
2354 Object* result = Heap::AllocateFixedArray(length);
2355 if (result->IsFailure()) return result;
2356 reinterpret_cast<Array*>(result)->set_map(hash_table_map());
2357 ASSERT(result->IsDictionary());
2358 return result;
2359}
2360
2361
2362Object* Heap::AllocateGlobalContext() {
2363 Object* result = Heap::AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
2364 if (result->IsFailure()) return result;
2365 Context* context = reinterpret_cast<Context*>(result);
2366 context->set_map(global_context_map());
2367 ASSERT(context->IsGlobalContext());
2368 ASSERT(result->IsContext());
2369 return result;
2370}
2371
2372
2373Object* Heap::AllocateFunctionContext(int length, JSFunction* function) {
2374 ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
2375 Object* result = Heap::AllocateFixedArray(length);
2376 if (result->IsFailure()) return result;
2377 Context* context = reinterpret_cast<Context*>(result);
2378 context->set_map(context_map());
2379 context->set_closure(function);
2380 context->set_fcontext(context);
2381 context->set_previous(NULL);
2382 context->set_extension(NULL);
2383 context->set_global(function->context()->global());
2384 ASSERT(!context->IsGlobalContext());
2385 ASSERT(context->is_function_context());
2386 ASSERT(result->IsContext());
2387 return result;
2388}
2389
2390
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00002391Object* Heap::AllocateWithContext(Context* previous,
2392 JSObject* extension,
2393 bool is_catch_context) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002394 Object* result = Heap::AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
2395 if (result->IsFailure()) return result;
2396 Context* context = reinterpret_cast<Context*>(result);
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00002397 context->set_map(is_catch_context ? catch_context_map() : context_map());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002398 context->set_closure(previous->closure());
2399 context->set_fcontext(previous->fcontext());
2400 context->set_previous(previous);
2401 context->set_extension(extension);
2402 context->set_global(previous->global());
2403 ASSERT(!context->IsGlobalContext());
2404 ASSERT(!context->is_function_context());
2405 ASSERT(result->IsContext());
2406 return result;
2407}
2408
2409
2410Object* Heap::AllocateStruct(InstanceType type) {
2411 Map* map;
2412 switch (type) {
2413#define MAKE_CASE(NAME, Name, name) case NAME##_TYPE: map = name##_map(); break;
2414STRUCT_LIST(MAKE_CASE)
2415#undef MAKE_CASE
2416 default:
2417 UNREACHABLE();
2418 return Failure::InternalError();
2419 }
2420 int size = map->instance_size();
2421 AllocationSpace space =
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002422 (size > MaxHeapObjectSize()) ? LO_SPACE : OLD_POINTER_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002423 Object* result = Heap::Allocate(map, space);
2424 if (result->IsFailure()) return result;
2425 Struct::cast(result)->InitializeBody(size);
2426 return result;
2427}
2428
2429
2430#ifdef DEBUG
2431
2432void Heap::Print() {
2433 if (!HasBeenSetup()) return;
2434 Top::PrintStack();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002435 AllSpaces spaces;
2436 while (Space* space = spaces.next()) space->Print();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002437}
2438
2439
2440void Heap::ReportCodeStatistics(const char* title) {
2441 PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
2442 PagedSpace::ResetCodeStatistics();
2443 // We do not look for code in new space, map space, or old space. If code
2444 // somehow ends up in those spaces, we would miss it here.
2445 code_space_->CollectCodeStatistics();
2446 lo_space_->CollectCodeStatistics();
2447 PagedSpace::ReportCodeStatistics();
2448}
2449
2450
2451// This function expects that NewSpace's allocated objects histogram is
2452// populated (via a call to CollectStatistics or else as a side effect of a
2453// just-completed scavenge collection).
2454void Heap::ReportHeapStatistics(const char* title) {
2455 USE(title);
2456 PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
2457 title, gc_count_);
2458 PrintF("mark-compact GC : %d\n", mc_count_);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002459 PrintF("old_gen_promotion_limit_ %d\n", old_gen_promotion_limit_);
2460 PrintF("old_gen_allocation_limit_ %d\n", old_gen_allocation_limit_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002461
2462 PrintF("\n");
2463 PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
2464 GlobalHandles::PrintStats();
2465 PrintF("\n");
2466
2467 PrintF("Heap statistics : ");
2468 MemoryAllocator::ReportStatistics();
2469 PrintF("To space : ");
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002470 new_space_.ReportStatistics();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002471 PrintF("Old pointer space : ");
2472 old_pointer_space_->ReportStatistics();
2473 PrintF("Old data space : ");
2474 old_data_space_->ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002475 PrintF("Code space : ");
2476 code_space_->ReportStatistics();
2477 PrintF("Map space : ");
2478 map_space_->ReportStatistics();
2479 PrintF("Large object space : ");
2480 lo_space_->ReportStatistics();
2481 PrintF(">>>>>> ========================================= >>>>>>\n");
2482}
2483
2484#endif // DEBUG
2485
2486bool Heap::Contains(HeapObject* value) {
2487 return Contains(value->address());
2488}
2489
2490
2491bool Heap::Contains(Address addr) {
2492 if (OS::IsOutsideAllocatedSpace(addr)) return false;
2493 return HasBeenSetup() &&
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002494 (new_space_.ToSpaceContains(addr) ||
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002495 old_pointer_space_->Contains(addr) ||
2496 old_data_space_->Contains(addr) ||
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002497 code_space_->Contains(addr) ||
2498 map_space_->Contains(addr) ||
2499 lo_space_->SlowContains(addr));
2500}
2501
2502
2503bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
2504 return InSpace(value->address(), space);
2505}
2506
2507
2508bool Heap::InSpace(Address addr, AllocationSpace space) {
2509 if (OS::IsOutsideAllocatedSpace(addr)) return false;
2510 if (!HasBeenSetup()) return false;
2511
2512 switch (space) {
2513 case NEW_SPACE:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002514 return new_space_.ToSpaceContains(addr);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002515 case OLD_POINTER_SPACE:
2516 return old_pointer_space_->Contains(addr);
2517 case OLD_DATA_SPACE:
2518 return old_data_space_->Contains(addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002519 case CODE_SPACE:
2520 return code_space_->Contains(addr);
2521 case MAP_SPACE:
2522 return map_space_->Contains(addr);
2523 case LO_SPACE:
2524 return lo_space_->SlowContains(addr);
2525 }
2526
2527 return false;
2528}
2529
2530
2531#ifdef DEBUG
2532void Heap::Verify() {
2533 ASSERT(HasBeenSetup());
2534
2535 VerifyPointersVisitor visitor;
2536 Heap::IterateRoots(&visitor);
2537
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002538 AllSpaces spaces;
2539 while (Space* space = spaces.next()) {
2540 space->Verify();
2541 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002542}
2543#endif // DEBUG
2544
2545
2546Object* Heap::LookupSymbol(Vector<const char> string) {
2547 Object* symbol = NULL;
2548 Object* new_table =
2549 SymbolTable::cast(symbol_table_)->LookupSymbol(string, &symbol);
2550 if (new_table->IsFailure()) return new_table;
2551 symbol_table_ = new_table;
2552 ASSERT(symbol != NULL);
2553 return symbol;
2554}
2555
2556
2557Object* Heap::LookupSymbol(String* string) {
2558 if (string->IsSymbol()) return string;
2559 Object* symbol = NULL;
2560 Object* new_table =
2561 SymbolTable::cast(symbol_table_)->LookupString(string, &symbol);
2562 if (new_table->IsFailure()) return new_table;
2563 symbol_table_ = new_table;
2564 ASSERT(symbol != NULL);
2565 return symbol;
2566}
2567
2568
ager@chromium.org7c537e22008-10-16 08:43:32 +00002569bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
2570 if (string->IsSymbol()) {
2571 *symbol = string;
2572 return true;
2573 }
2574 SymbolTable* table = SymbolTable::cast(symbol_table_);
2575 return table->LookupSymbolIfExists(string, symbol);
2576}
2577
2578
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002579#ifdef DEBUG
2580void Heap::ZapFromSpace() {
2581 ASSERT(HAS_HEAP_OBJECT_TAG(kFromSpaceZapValue));
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002582 for (Address a = new_space_.FromSpaceLow();
2583 a < new_space_.FromSpaceHigh();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002584 a += kPointerSize) {
2585 Memory::Address_at(a) = kFromSpaceZapValue;
2586 }
2587}
2588#endif // DEBUG
2589
2590
2591void Heap::IterateRSetRange(Address object_start,
2592 Address object_end,
2593 Address rset_start,
2594 ObjectSlotCallback copy_object_func) {
2595 Address object_address = object_start;
2596 Address rset_address = rset_start;
2597
2598 // Loop over all the pointers in [object_start, object_end).
2599 while (object_address < object_end) {
2600 uint32_t rset_word = Memory::uint32_at(rset_address);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002601 if (rset_word != 0) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002602 uint32_t result_rset = rset_word;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002603 for (uint32_t bitmask = 1; bitmask != 0; bitmask = bitmask << 1) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002604 // Do not dereference pointers at or past object_end.
2605 if ((rset_word & bitmask) != 0 && object_address < object_end) {
2606 Object** object_p = reinterpret_cast<Object**>(object_address);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002607 if (Heap::InNewSpace(*object_p)) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002608 copy_object_func(reinterpret_cast<HeapObject**>(object_p));
2609 }
2610 // If this pointer does not need to be remembered anymore, clear
2611 // the remembered set bit.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002612 if (!Heap::InNewSpace(*object_p)) result_rset &= ~bitmask;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002613 }
2614 object_address += kPointerSize;
2615 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002616 // Update the remembered set if it has changed.
2617 if (result_rset != rset_word) {
2618 Memory::uint32_at(rset_address) = result_rset;
2619 }
2620 } else {
2621 // No bits in the word were set. This is the common case.
2622 object_address += kPointerSize * kBitsPerInt;
2623 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002624 rset_address += kIntSize;
2625 }
2626}
2627
2628
2629void Heap::IterateRSet(PagedSpace* space, ObjectSlotCallback copy_object_func) {
2630 ASSERT(Page::is_rset_in_use());
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002631 ASSERT(space == old_pointer_space_ || space == map_space_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002632
2633 PageIterator it(space, PageIterator::PAGES_IN_USE);
2634 while (it.has_next()) {
2635 Page* page = it.next();
2636 IterateRSetRange(page->ObjectAreaStart(), page->AllocationTop(),
2637 page->RSetStart(), copy_object_func);
2638 }
2639}
2640
2641
2642#ifdef DEBUG
2643#define SYNCHRONIZE_TAG(tag) v->Synchronize(tag)
2644#else
2645#define SYNCHRONIZE_TAG(tag)
2646#endif
2647
2648void Heap::IterateRoots(ObjectVisitor* v) {
2649 IterateStrongRoots(v);
2650 v->VisitPointer(reinterpret_cast<Object**>(&symbol_table_));
2651 SYNCHRONIZE_TAG("symbol_table");
2652}
2653
2654
2655void Heap::IterateStrongRoots(ObjectVisitor* v) {
2656#define ROOT_ITERATE(type, name) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002657 v->VisitPointer(bit_cast<Object**, type**>(&name##_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002658 STRONG_ROOT_LIST(ROOT_ITERATE);
2659#undef ROOT_ITERATE
2660 SYNCHRONIZE_TAG("strong_root_list");
2661
2662#define STRUCT_MAP_ITERATE(NAME, Name, name) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002663 v->VisitPointer(bit_cast<Object**, Map**>(&name##_map_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002664 STRUCT_LIST(STRUCT_MAP_ITERATE);
2665#undef STRUCT_MAP_ITERATE
2666 SYNCHRONIZE_TAG("struct_map");
2667
2668#define SYMBOL_ITERATE(name, string) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002669 v->VisitPointer(bit_cast<Object**, String**>(&name##_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002670 SYMBOL_LIST(SYMBOL_ITERATE)
2671#undef SYMBOL_ITERATE
ager@chromium.org3b45ab52009-03-19 22:21:34 +00002672 v->VisitPointer(bit_cast<Object**, String**>(&hidden_symbol_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002673 SYNCHRONIZE_TAG("symbol");
2674
2675 Bootstrapper::Iterate(v);
2676 SYNCHRONIZE_TAG("bootstrapper");
2677 Top::Iterate(v);
2678 SYNCHRONIZE_TAG("top");
2679 Debug::Iterate(v);
2680 SYNCHRONIZE_TAG("debug");
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00002681 CompilationCache::Iterate(v);
2682 SYNCHRONIZE_TAG("compilationcache");
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002683
2684 // Iterate over local handles in handle scopes.
2685 HandleScopeImplementer::Iterate(v);
2686 SYNCHRONIZE_TAG("handlescope");
2687
2688 // Iterate over the builtin code objects and code stubs in the heap. Note
2689 // that it is not strictly necessary to iterate over code objects on
2690 // scavenge collections. We still do it here because this same function
2691 // is used by the mark-sweep collector and the deserializer.
2692 Builtins::IterateBuiltins(v);
2693 SYNCHRONIZE_TAG("builtins");
2694
2695 // Iterate over global handles.
2696 GlobalHandles::IterateRoots(v);
2697 SYNCHRONIZE_TAG("globalhandles");
2698
2699 // Iterate over pointers being held by inactive threads.
2700 ThreadManager::Iterate(v);
2701 SYNCHRONIZE_TAG("threadmanager");
2702}
2703#undef SYNCHRONIZE_TAG
2704
2705
2706// Flag is set when the heap has been configured. The heap can be repeatedly
2707// configured through the API until it is setup.
2708static bool heap_configured = false;
2709
2710// TODO(1236194): Since the heap size is configurable on the command line
2711// and through the API, we should gracefully handle the case that the heap
2712// size is not big enough to fit all the initial objects.
2713bool Heap::ConfigureHeap(int semispace_size, int old_gen_size) {
2714 if (HasBeenSetup()) return false;
2715
2716 if (semispace_size > 0) semispace_size_ = semispace_size;
2717 if (old_gen_size > 0) old_generation_size_ = old_gen_size;
2718
2719 // The new space size must be a power of two to support single-bit testing
2720 // for containment.
mads.s.ager@gmail.com769cc962008-08-06 10:02:49 +00002721 semispace_size_ = RoundUpToPowerOf2(semispace_size_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002722 initial_semispace_size_ = Min(initial_semispace_size_, semispace_size_);
2723 young_generation_size_ = 2 * semispace_size_;
2724
2725 // The old generation is paged.
2726 old_generation_size_ = RoundUp(old_generation_size_, Page::kPageSize);
2727
2728 heap_configured = true;
2729 return true;
2730}
2731
2732
kasper.lund7276f142008-07-30 08:49:36 +00002733bool Heap::ConfigureHeapDefault() {
2734 return ConfigureHeap(FLAG_new_space_size, FLAG_old_space_size);
2735}
2736
2737
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002738int Heap::PromotedSpaceSize() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002739 return old_pointer_space_->Size()
2740 + old_data_space_->Size()
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002741 + code_space_->Size()
2742 + map_space_->Size()
2743 + lo_space_->Size();
2744}
2745
2746
kasper.lund7276f142008-07-30 08:49:36 +00002747int Heap::PromotedExternalMemorySize() {
2748 if (amount_of_external_allocated_memory_
2749 <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
2750 return amount_of_external_allocated_memory_
2751 - amount_of_external_allocated_memory_at_last_global_gc_;
2752}
2753
2754
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002755bool Heap::Setup(bool create_heap_objects) {
2756 // Initialize heap spaces and initial maps and objects. Whenever something
2757 // goes wrong, just return false. The caller should check the results and
2758 // call Heap::TearDown() to release allocated memory.
2759 //
2760 // If the heap is not yet configured (eg, through the API), configure it.
2761 // Configuration is based on the flags new-space-size (really the semispace
2762 // size) and old-space-size if set or the initial values of semispace_size_
2763 // and old_generation_size_ otherwise.
2764 if (!heap_configured) {
kasper.lund7276f142008-07-30 08:49:36 +00002765 if (!ConfigureHeapDefault()) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002766 }
2767
2768 // Setup memory allocator and allocate an initial chunk of memory. The
2769 // initial chunk is double the size of the new space to ensure that we can
2770 // find a pair of semispaces that are contiguous and aligned to their size.
2771 if (!MemoryAllocator::Setup(MaxCapacity())) return false;
2772 void* chunk
2773 = MemoryAllocator::ReserveInitialChunk(2 * young_generation_size_);
2774 if (chunk == NULL) return false;
2775
2776 // Put the initial chunk of the old space at the start of the initial
2777 // chunk, then the two new space semispaces, then the initial chunk of
2778 // code space. Align the pair of semispaces to their size, which must be
2779 // a power of 2.
2780 ASSERT(IsPowerOf2(young_generation_size_));
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00002781 Address code_space_start = reinterpret_cast<Address>(chunk);
2782 Address new_space_start = RoundUp(code_space_start, young_generation_size_);
2783 Address old_space_start = new_space_start + young_generation_size_;
2784 int code_space_size = new_space_start - code_space_start;
2785 int old_space_size = young_generation_size_ - code_space_size;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002786
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002787 // Initialize new space.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002788 if (!new_space_.Setup(new_space_start, young_generation_size_)) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002789
2790 // Initialize old space, set the maximum capacity to the old generation
kasper.lund7276f142008-07-30 08:49:36 +00002791 // size. It will not contain code.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002792 old_pointer_space_ =
2793 new OldSpace(old_generation_size_, OLD_POINTER_SPACE, NOT_EXECUTABLE);
2794 if (old_pointer_space_ == NULL) return false;
2795 if (!old_pointer_space_->Setup(old_space_start, old_space_size >> 1)) {
2796 return false;
2797 }
2798 old_data_space_ =
2799 new OldSpace(old_generation_size_, OLD_DATA_SPACE, NOT_EXECUTABLE);
2800 if (old_data_space_ == NULL) return false;
2801 if (!old_data_space_->Setup(old_space_start + (old_space_size >> 1),
2802 old_space_size >> 1)) {
2803 return false;
2804 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002805
2806 // Initialize the code space, set its maximum capacity to the old
kasper.lund7276f142008-07-30 08:49:36 +00002807 // generation size. It needs executable memory.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002808 code_space_ =
2809 new OldSpace(old_generation_size_, CODE_SPACE, EXECUTABLE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002810 if (code_space_ == NULL) return false;
2811 if (!code_space_->Setup(code_space_start, code_space_size)) return false;
2812
2813 // Initialize map space.
kasper.lund7276f142008-07-30 08:49:36 +00002814 map_space_ = new MapSpace(kMaxMapSpaceSize, MAP_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002815 if (map_space_ == NULL) return false;
2816 // Setting up a paged space without giving it a virtual memory range big
2817 // enough to hold at least a page will cause it to allocate.
2818 if (!map_space_->Setup(NULL, 0)) return false;
2819
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002820 // The large object code space may contain code or data. We set the memory
2821 // to be non-executable here for safety, but this means we need to enable it
2822 // explicitly when allocating large code objects.
2823 lo_space_ = new LargeObjectSpace(LO_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002824 if (lo_space_ == NULL) return false;
2825 if (!lo_space_->Setup()) return false;
2826
2827 if (create_heap_objects) {
2828 // Create initial maps.
2829 if (!CreateInitialMaps()) return false;
2830 if (!CreateApiObjects()) return false;
2831
2832 // Create initial objects
2833 if (!CreateInitialObjects()) return false;
2834 }
2835
2836 LOG(IntEvent("heap-capacity", Capacity()));
2837 LOG(IntEvent("heap-available", Available()));
2838
2839 return true;
2840}
2841
2842
2843void Heap::TearDown() {
2844 GlobalHandles::TearDown();
2845
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002846 new_space_.TearDown();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002847
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002848 if (old_pointer_space_ != NULL) {
2849 old_pointer_space_->TearDown();
2850 delete old_pointer_space_;
2851 old_pointer_space_ = NULL;
2852 }
2853
2854 if (old_data_space_ != NULL) {
2855 old_data_space_->TearDown();
2856 delete old_data_space_;
2857 old_data_space_ = NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002858 }
2859
2860 if (code_space_ != NULL) {
2861 code_space_->TearDown();
2862 delete code_space_;
2863 code_space_ = NULL;
2864 }
2865
2866 if (map_space_ != NULL) {
2867 map_space_->TearDown();
2868 delete map_space_;
2869 map_space_ = NULL;
2870 }
2871
2872 if (lo_space_ != NULL) {
2873 lo_space_->TearDown();
2874 delete lo_space_;
2875 lo_space_ = NULL;
2876 }
2877
2878 MemoryAllocator::TearDown();
2879}
2880
2881
2882void Heap::Shrink() {
2883 // Try to shrink map, old, and code spaces.
2884 map_space_->Shrink();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002885 old_pointer_space_->Shrink();
2886 old_data_space_->Shrink();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002887 code_space_->Shrink();
2888}
2889
2890
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00002891#ifdef ENABLE_HEAP_PROTECTION
2892
2893void Heap::Protect() {
ager@chromium.org71daaf62009-04-01 07:22:49 +00002894 if (HasBeenSetup()) {
2895 new_space_.Protect();
2896 map_space_->Protect();
2897 old_pointer_space_->Protect();
2898 old_data_space_->Protect();
2899 code_space_->Protect();
2900 lo_space_->Protect();
2901 }
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00002902}
2903
2904
2905void Heap::Unprotect() {
ager@chromium.org71daaf62009-04-01 07:22:49 +00002906 if (HasBeenSetup()) {
2907 new_space_.Unprotect();
2908 map_space_->Unprotect();
2909 old_pointer_space_->Unprotect();
2910 old_data_space_->Unprotect();
2911 code_space_->Unprotect();
2912 lo_space_->Unprotect();
2913 }
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00002914}
2915
2916#endif
2917
2918
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002919#ifdef DEBUG
2920
2921class PrintHandleVisitor: public ObjectVisitor {
2922 public:
2923 void VisitPointers(Object** start, Object** end) {
2924 for (Object** p = start; p < end; p++)
2925 PrintF(" handle %p to %p\n", p, *p);
2926 }
2927};
2928
2929void Heap::PrintHandles() {
2930 PrintF("Handles:\n");
2931 PrintHandleVisitor v;
2932 HandleScopeImplementer::Iterate(&v);
2933}
2934
2935#endif
2936
2937
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002938Space* AllSpaces::next() {
2939 switch (counter_++) {
2940 case NEW_SPACE:
2941 return Heap::new_space();
2942 case OLD_POINTER_SPACE:
2943 return Heap::old_pointer_space();
2944 case OLD_DATA_SPACE:
2945 return Heap::old_data_space();
2946 case CODE_SPACE:
2947 return Heap::code_space();
2948 case MAP_SPACE:
2949 return Heap::map_space();
2950 case LO_SPACE:
2951 return Heap::lo_space();
2952 default:
2953 return NULL;
2954 }
2955}
2956
2957
2958PagedSpace* PagedSpaces::next() {
2959 switch (counter_++) {
2960 case OLD_POINTER_SPACE:
2961 return Heap::old_pointer_space();
2962 case OLD_DATA_SPACE:
2963 return Heap::old_data_space();
2964 case CODE_SPACE:
2965 return Heap::code_space();
2966 case MAP_SPACE:
2967 return Heap::map_space();
2968 default:
2969 return NULL;
2970 }
2971}
2972
2973
2974
2975OldSpace* OldSpaces::next() {
2976 switch (counter_++) {
2977 case OLD_POINTER_SPACE:
2978 return Heap::old_pointer_space();
2979 case OLD_DATA_SPACE:
2980 return Heap::old_data_space();
2981 case CODE_SPACE:
2982 return Heap::code_space();
2983 default:
2984 return NULL;
2985 }
2986}
2987
2988
kasper.lund7276f142008-07-30 08:49:36 +00002989SpaceIterator::SpaceIterator() : current_space_(FIRST_SPACE), iterator_(NULL) {
2990}
2991
2992
2993SpaceIterator::~SpaceIterator() {
2994 // Delete active iterator if any.
2995 delete iterator_;
2996}
2997
2998
2999bool SpaceIterator::has_next() {
3000 // Iterate until no more spaces.
3001 return current_space_ != LAST_SPACE;
3002}
3003
3004
3005ObjectIterator* SpaceIterator::next() {
3006 if (iterator_ != NULL) {
3007 delete iterator_;
3008 iterator_ = NULL;
3009 // Move to the next space
3010 current_space_++;
3011 if (current_space_ > LAST_SPACE) {
3012 return NULL;
3013 }
3014 }
3015
3016 // Return iterator for the new current space.
3017 return CreateIterator();
3018}
3019
3020
3021// Create an iterator for the space to iterate.
3022ObjectIterator* SpaceIterator::CreateIterator() {
3023 ASSERT(iterator_ == NULL);
3024
3025 switch (current_space_) {
3026 case NEW_SPACE:
3027 iterator_ = new SemiSpaceIterator(Heap::new_space());
3028 break;
ager@chromium.org9258b6b2008-09-11 09:11:10 +00003029 case OLD_POINTER_SPACE:
3030 iterator_ = new HeapObjectIterator(Heap::old_pointer_space());
3031 break;
3032 case OLD_DATA_SPACE:
3033 iterator_ = new HeapObjectIterator(Heap::old_data_space());
kasper.lund7276f142008-07-30 08:49:36 +00003034 break;
3035 case CODE_SPACE:
3036 iterator_ = new HeapObjectIterator(Heap::code_space());
3037 break;
3038 case MAP_SPACE:
3039 iterator_ = new HeapObjectIterator(Heap::map_space());
3040 break;
3041 case LO_SPACE:
3042 iterator_ = new LargeObjectIterator(Heap::lo_space());
3043 break;
3044 }
3045
3046 // Return the newly allocated iterator;
3047 ASSERT(iterator_ != NULL);
3048 return iterator_;
3049}
3050
3051
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003052HeapIterator::HeapIterator() {
3053 Init();
3054}
3055
3056
3057HeapIterator::~HeapIterator() {
3058 Shutdown();
3059}
3060
3061
3062void HeapIterator::Init() {
3063 // Start the iteration.
3064 space_iterator_ = new SpaceIterator();
3065 object_iterator_ = space_iterator_->next();
3066}
3067
3068
3069void HeapIterator::Shutdown() {
3070 // Make sure the last iterator is deallocated.
3071 delete space_iterator_;
3072 space_iterator_ = NULL;
3073 object_iterator_ = NULL;
3074}
3075
3076
3077bool HeapIterator::has_next() {
3078 // No iterator means we are done.
3079 if (object_iterator_ == NULL) return false;
3080
3081 if (object_iterator_->has_next_object()) {
3082 // If the current iterator has more objects we are fine.
3083 return true;
3084 } else {
3085 // Go though the spaces looking for one that has objects.
3086 while (space_iterator_->has_next()) {
3087 object_iterator_ = space_iterator_->next();
3088 if (object_iterator_->has_next_object()) {
3089 return true;
3090 }
3091 }
3092 }
3093 // Done with the last space.
3094 object_iterator_ = NULL;
3095 return false;
3096}
3097
3098
3099HeapObject* HeapIterator::next() {
3100 if (has_next()) {
3101 return object_iterator_->next_object();
3102 } else {
3103 return NULL;
3104 }
3105}
3106
3107
3108void HeapIterator::reset() {
3109 // Restart the iterator.
3110 Shutdown();
3111 Init();
3112}
3113
3114
3115//
3116// HeapProfiler class implementation.
3117//
3118#ifdef ENABLE_LOGGING_AND_PROFILING
3119void HeapProfiler::CollectStats(HeapObject* obj, HistogramInfo* info) {
3120 InstanceType type = obj->map()->instance_type();
3121 ASSERT(0 <= type && type <= LAST_TYPE);
3122 info[type].increment_number(1);
3123 info[type].increment_bytes(obj->Size());
3124}
3125#endif
3126
3127
3128#ifdef ENABLE_LOGGING_AND_PROFILING
3129void HeapProfiler::WriteSample() {
3130 LOG(HeapSampleBeginEvent("Heap", "allocated"));
3131
3132 HistogramInfo info[LAST_TYPE+1];
3133#define DEF_TYPE_NAME(name) info[name].set_name(#name);
3134 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
3135#undef DEF_TYPE_NAME
3136
3137 HeapIterator iterator;
3138 while (iterator.has_next()) {
3139 CollectStats(iterator.next(), info);
3140 }
3141
3142 // Lump all the string types together.
3143 int string_number = 0;
3144 int string_bytes = 0;
3145#define INCREMENT_SIZE(type, size, name) \
3146 string_number += info[type].number(); \
3147 string_bytes += info[type].bytes();
3148 STRING_TYPE_LIST(INCREMENT_SIZE)
3149#undef INCREMENT_SIZE
3150 if (string_bytes > 0) {
3151 LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
3152 }
3153
3154 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
3155 if (info[i].bytes() > 0) {
3156 LOG(HeapSampleItemEvent(info[i].name(), info[i].number(),
3157 info[i].bytes()));
3158 }
3159 }
3160
3161 LOG(HeapSampleEndEvent("Heap", "allocated"));
3162}
3163
3164
3165#endif
3166
3167
3168
3169#ifdef DEBUG
3170
3171static bool search_for_any_global;
3172static Object* search_target;
3173static bool found_target;
3174static List<Object*> object_stack(20);
3175
3176
3177// Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
3178static const int kMarkTag = 2;
3179
3180static void MarkObjectRecursively(Object** p);
3181class MarkObjectVisitor : public ObjectVisitor {
3182 public:
3183 void VisitPointers(Object** start, Object** end) {
3184 // Copy all HeapObject pointers in [start, end)
3185 for (Object** p = start; p < end; p++) {
3186 if ((*p)->IsHeapObject())
3187 MarkObjectRecursively(p);
3188 }
3189 }
3190};
3191
3192static MarkObjectVisitor mark_visitor;
3193
3194static void MarkObjectRecursively(Object** p) {
3195 if (!(*p)->IsHeapObject()) return;
3196
3197 HeapObject* obj = HeapObject::cast(*p);
3198
3199 Object* map = obj->map();
3200
3201 if (!map->IsHeapObject()) return; // visited before
3202
3203 if (found_target) return; // stop if target found
3204 object_stack.Add(obj);
3205 if ((search_for_any_global && obj->IsJSGlobalObject()) ||
3206 (!search_for_any_global && (obj == search_target))) {
3207 found_target = true;
3208 return;
3209 }
3210
3211 if (obj->IsCode()) {
3212 Code::cast(obj)->ConvertICTargetsFromAddressToObject();
3213 }
3214
3215 // not visited yet
3216 Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
3217
3218 Address map_addr = map_p->address();
3219
3220 obj->set_map(reinterpret_cast<Map*>(map_addr + kMarkTag));
3221
3222 MarkObjectRecursively(&map);
3223
3224 obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
3225 &mark_visitor);
3226
3227 if (!found_target) // don't pop if found the target
3228 object_stack.RemoveLast();
3229}
3230
3231
3232static void UnmarkObjectRecursively(Object** p);
3233class UnmarkObjectVisitor : public ObjectVisitor {
3234 public:
3235 void VisitPointers(Object** start, Object** end) {
3236 // Copy all HeapObject pointers in [start, end)
3237 for (Object** p = start; p < end; p++) {
3238 if ((*p)->IsHeapObject())
3239 UnmarkObjectRecursively(p);
3240 }
3241 }
3242};
3243
3244static UnmarkObjectVisitor unmark_visitor;
3245
3246static void UnmarkObjectRecursively(Object** p) {
3247 if (!(*p)->IsHeapObject()) return;
3248
3249 HeapObject* obj = HeapObject::cast(*p);
3250
3251 Object* map = obj->map();
3252
3253 if (map->IsHeapObject()) return; // unmarked already
3254
3255 Address map_addr = reinterpret_cast<Address>(map);
3256
3257 map_addr -= kMarkTag;
3258
3259 ASSERT_TAG_ALIGNED(map_addr);
3260
3261 HeapObject* map_p = HeapObject::FromAddress(map_addr);
3262
3263 obj->set_map(reinterpret_cast<Map*>(map_p));
3264
3265 UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
3266
3267 obj->IterateBody(Map::cast(map_p)->instance_type(),
3268 obj->SizeFromMap(Map::cast(map_p)),
3269 &unmark_visitor);
3270
3271 if (obj->IsCode()) {
3272 Code::cast(obj)->ConvertICTargetsFromObjectToAddress();
3273 }
3274}
3275
3276
3277static void MarkRootObjectRecursively(Object** root) {
3278 if (search_for_any_global) {
3279 ASSERT(search_target == NULL);
3280 } else {
3281 ASSERT(search_target->IsHeapObject());
3282 }
3283 found_target = false;
3284 object_stack.Clear();
3285
3286 MarkObjectRecursively(root);
3287 UnmarkObjectRecursively(root);
3288
3289 if (found_target) {
3290 PrintF("=====================================\n");
3291 PrintF("==== Path to object ====\n");
3292 PrintF("=====================================\n\n");
3293
3294 ASSERT(!object_stack.is_empty());
3295 for (int i = 0; i < object_stack.length(); i++) {
3296 if (i > 0) PrintF("\n |\n |\n V\n\n");
3297 Object* obj = object_stack[i];
3298 obj->Print();
3299 }
3300 PrintF("=====================================\n");
3301 }
3302}
3303
3304
3305// Helper class for visiting HeapObjects recursively.
3306class MarkRootVisitor: public ObjectVisitor {
3307 public:
3308 void VisitPointers(Object** start, Object** end) {
3309 // Visit all HeapObject pointers in [start, end)
3310 for (Object** p = start; p < end; p++) {
3311 if ((*p)->IsHeapObject())
3312 MarkRootObjectRecursively(p);
3313 }
3314 }
3315};
3316
3317
3318// Triggers a depth-first traversal of reachable objects from roots
3319// and finds a path to a specific heap object and prints it.
3320void Heap::TracePathToObject() {
3321 search_target = NULL;
3322 search_for_any_global = false;
3323
3324 MarkRootVisitor root_visitor;
3325 IterateRoots(&root_visitor);
3326}
3327
3328
3329// Triggers a depth-first traversal of reachable objects from roots
3330// and finds a path to any global object and prints it. Useful for
3331// determining the source for leaks of global objects.
3332void Heap::TracePathToGlobal() {
3333 search_target = NULL;
3334 search_for_any_global = true;
3335
3336 MarkRootVisitor root_visitor;
3337 IterateRoots(&root_visitor);
3338}
3339#endif
3340
3341
kasper.lund7276f142008-07-30 08:49:36 +00003342GCTracer::GCTracer()
3343 : start_time_(0.0),
3344 start_size_(0.0),
3345 gc_count_(0),
3346 full_gc_count_(0),
3347 is_compacting_(false),
3348 marked_count_(0) {
3349 // These two fields reflect the state of the previous full collection.
3350 // Set them before they are changed by the collector.
3351 previous_has_compacted_ = MarkCompactCollector::HasCompacted();
3352 previous_marked_count_ = MarkCompactCollector::previous_marked_count();
3353 if (!FLAG_trace_gc) return;
3354 start_time_ = OS::TimeCurrentMillis();
3355 start_size_ = SizeOfHeapObjects();
3356}
3357
3358
3359GCTracer::~GCTracer() {
3360 if (!FLAG_trace_gc) return;
3361 // Printf ONE line iff flag is set.
3362 PrintF("%s %.1f -> %.1f MB, %d ms.\n",
3363 CollectorString(),
3364 start_size_, SizeOfHeapObjects(),
3365 static_cast<int>(OS::TimeCurrentMillis() - start_time_));
3366}
3367
3368
3369const char* GCTracer::CollectorString() {
3370 switch (collector_) {
3371 case SCAVENGER:
3372 return "Scavenge";
3373 case MARK_COMPACTOR:
3374 return MarkCompactCollector::HasCompacted() ? "Mark-compact"
3375 : "Mark-sweep";
3376 }
3377 return "Unknown GC";
3378}
3379
3380
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00003381#ifdef DEBUG
3382bool Heap::GarbageCollectionGreedyCheck() {
3383 ASSERT(FLAG_gc_greedy);
3384 if (Bootstrapper::IsActive()) return true;
3385 if (disallow_allocation_failure()) return true;
3386 return CollectGarbage(0, NEW_SPACE);
3387}
3388#endif
3389
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003390} } // namespace v8::internal