blob: 75c58880486916051e21f3276d16a7a41ae4ce5e [file] [log] [blame]
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/Serialize.h"
#include "llvm/Bitcode/Deserialize.h"
using namespace clang;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
TargetInfo &t,
IdentifierTable &idents, SelectorTable &sels,
unsigned size_reserve) :
CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0),
SourceMgr(SM), LangOpts(LOpts), Target(t),
Idents(idents), Selectors(sels)
{
if (size_reserve > 0) Types.reserve(size_reserve);
InitBuiltinTypes();
BuiltinInfo.InitializeBuiltins(idents, Target);
TUDecl = TranslationUnitDecl::Create(*this);
}
ASTContext::~ASTContext() {
// Deallocate all the types.
while (!Types.empty()) {
Types.back()->Destroy(*this);
Types.pop_back();
}
TUDecl->Destroy(*this);
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
unsigned NumObjCQualifiedIds = 0;
unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
if (isa<BuiltinType>(T))
++NumBuiltin;
else if (isa<PointerType>(T))
++NumPointer;
else if (isa<BlockPointerType>(T))
++NumBlockPointer;
else if (isa<ReferenceType>(T))
++NumReference;
else if (isa<ComplexType>(T))
++NumComplex;
else if (isa<ArrayType>(T))
++NumArray;
else if (isa<VectorType>(T))
++NumVector;
else if (isa<FunctionTypeNoProto>(T))
++NumFunctionNP;
else if (isa<FunctionTypeProto>(T))
++NumFunctionP;
else if (isa<TypedefType>(T))
++NumTypeName;
else if (TagType *TT = dyn_cast<TagType>(T)) {
++NumTagged;
switch (TT->getDecl()->getTagKind()) {
default: assert(0 && "Unknown tagged type!");
case TagDecl::TK_struct: ++NumTagStruct; break;
case TagDecl::TK_union: ++NumTagUnion; break;
case TagDecl::TK_class: ++NumTagClass; break;
case TagDecl::TK_enum: ++NumTagEnum; break;
}
} else if (isa<ObjCInterfaceType>(T))
++NumObjCInterfaces;
else if (isa<ObjCQualifiedInterfaceType>(T))
++NumObjCQualifiedInterfaces;
else if (isa<ObjCQualifiedIdType>(T))
++NumObjCQualifiedIds;
else if (isa<TypeOfType>(T))
++NumTypeOfTypes;
else if (isa<TypeOfExpr>(T))
++NumTypeOfExprs;
else {
QualType(T, 0).dump();
assert(0 && "Unknown type!");
}
}
fprintf(stderr, " %d builtin types\n", NumBuiltin);
fprintf(stderr, " %d pointer types\n", NumPointer);
fprintf(stderr, " %d block pointer types\n", NumBlockPointer);
fprintf(stderr, " %d reference types\n", NumReference);
fprintf(stderr, " %d complex types\n", NumComplex);
fprintf(stderr, " %d array types\n", NumArray);
fprintf(stderr, " %d vector types\n", NumVector);
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
fprintf(stderr, " %d tagged types\n", NumTagged);
fprintf(stderr, " %d struct types\n", NumTagStruct);
fprintf(stderr, " %d union types\n", NumTagUnion);
fprintf(stderr, " %d class types\n", NumTagClass);
fprintf(stderr, " %d enum types\n", NumTagEnum);
fprintf(stderr, " %d interface types\n", NumObjCInterfaces);
fprintf(stderr, " %d protocol qualified interface types\n",
NumObjCQualifiedInterfaces);
fprintf(stderr, " %d protocol qualified id types\n",
NumObjCQualifiedIds);
fprintf(stderr, " %d typeof types\n", NumTypeOfTypes);
fprintf(stderr, " %d typeof exprs\n", NumTypeOfExprs);
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
NumFunctionP*sizeof(FunctionTypeProto)+
NumFunctionNP*sizeof(FunctionTypeNoProto)+
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr)));
}
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
}
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (Target.isCharSigned())
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// C++ 3.9.1p5
InitBuiltinType(WCharTy, BuiltinType::WChar);
// Placeholder type for functions.
InitBuiltinType(OverloadTy, BuiltinType::Overload);
// C99 6.2.5p11.
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
BuiltinVaListType = QualType();
ObjCIdType = QualType();
IdStructType = 0;
ObjCClassType = QualType();
ClassStructType = 0;
ObjCConstantStringType = QualType();
// void * type
VoidPtrTy = getPointerType(VoidTy);
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
const BuiltinType *BT = T->getAsBuiltinType();
assert(BT && "Not a floating point type!");
switch (BT->getKind()) {
default: assert(0 && "Not a floating point type!");
case BuiltinType::Float: return Target.getFloatFormat();
case BuiltinType::Double: return Target.getDoubleFormat();
case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
}
}
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(QualType T) {
T = getCanonicalType(T);
uint64_t Width;
unsigned Align;
switch (T->getTypeClass()) {
case Type::TypeName: assert(0 && "Not a canonical type!");
case Type::FunctionNoProto:
case Type::FunctionProto:
default:
assert(0 && "Incomplete types have no size!");
case Type::VariableArray:
assert(0 && "VLAs not implemented yet!");
case Type::ConstantArray: {
ConstantArrayType *CAT = cast<ConstantArrayType>(T);
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
Width = EltInfo.first*CAT->getSize().getZExtValue();
Align = EltInfo.second;
break;
}
case Type::ExtVector:
case Type::Vector: {
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<VectorType>(T)->getElementType());
Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
// FIXME: This isn't right for unusual vectors
Align = Width;
break;
}
case Type::Builtin:
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
assert(0 && "Incomplete types have no size!");
case BuiltinType::Bool:
Width = Target.getBoolWidth();
Align = Target.getBoolAlign();
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar:
Width = Target.getCharWidth();
Align = Target.getCharAlign();
break;
case BuiltinType::WChar:
Width = Target.getWCharWidth();
Align = Target.getWCharAlign();
break;
case BuiltinType::UShort:
case BuiltinType::Short:
Width = Target.getShortWidth();
Align = Target.getShortAlign();
break;
case BuiltinType::UInt:
case BuiltinType::Int:
Width = Target.getIntWidth();
Align = Target.getIntAlign();
break;
case BuiltinType::ULong:
case BuiltinType::Long:
Width = Target.getLongWidth();
Align = Target.getLongAlign();
break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong:
Width = Target.getLongLongWidth();
Align = Target.getLongLongAlign();
break;
case BuiltinType::Float:
Width = Target.getFloatWidth();
Align = Target.getFloatAlign();
break;
case BuiltinType::Double:
Width = Target.getDoubleWidth();
Align = Target.getDoubleAlign();
break;
case BuiltinType::LongDouble:
Width = Target.getLongDoubleWidth();
Align = Target.getLongDoubleAlign();
break;
}
break;
case Type::ASQual:
// FIXME: Pointers into different addr spaces could have different sizes and
// alignment requirements: getPointerInfo should take an AddrSpace.
return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
case Type::ObjCQualifiedId:
Width = Target.getPointerWidth(0);
Align = Target.getPointerAlign(0);
break;
case Type::BlockPointer: {
unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::Pointer: {
unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::Reference:
// "When applied to a reference or a reference type, the result is the size
// of the referenced type." C++98 5.3.3p2: expr.sizeof.
// FIXME: This is wrong for struct layout: a reference in a struct has
// pointer size.
return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<ComplexType>(T)->getElementType());
Width = EltInfo.first*2;
Align = EltInfo.second;
break;
}
case Type::ObjCInterface: {
ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
break;
}
case Type::Tagged: {
if (cast<TagType>(T)->getDecl()->isInvalidDecl()) {
Width = 1;
Align = 1;
break;
}
if (EnumType *ET = dyn_cast<EnumType>(cast<TagType>(T)))
return getTypeInfo(ET->getDecl()->getIntegerType());
RecordType *RT = cast<RecordType>(T);
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
break;
}
}
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
return std::make_pair(Width, Align);
}
/// LayoutField - Field layout.
void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
bool IsUnion, unsigned StructPacking,
ASTContext &Context) {
unsigned FieldPacking = StructPacking;
uint64_t FieldOffset = IsUnion ? 0 : Size;
uint64_t FieldSize;
unsigned FieldAlign;
// FIXME: Should this override struct packing? Probably we want to
// take the minimum?
if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
FieldPacking = PA->getAlignment();
if (const Expr *BitWidthExpr = FD->getBitWidth()) {
// TODO: Need to check this algorithm on other targets!
// (tested on Linux-X86)
FieldSize =
BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
std::pair<uint64_t, unsigned> FieldInfo =
Context.getTypeInfo(FD->getType());
uint64_t TypeSize = FieldInfo.first;
// Determine the alignment of this bitfield. The packing
// attributes define a maximum and the alignment attribute defines
// a minimum.
// FIXME: What is the right behavior when the specified alignment
// is smaller than the specified packing?
FieldAlign = FieldInfo.second;
if (FieldPacking)
FieldAlign = std::min(FieldAlign, FieldPacking);
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// Check if we need to add padding to give the field the correct
// alignment.
if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
// Padding members don't affect overall alignment
if (!FD->getIdentifier())
FieldAlign = 1;
} else {
if (FD->getType()->isIncompleteArrayType()) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
FieldSize = 0;
const ArrayType* ATy = Context.getAsArrayType(FD->getType());
FieldAlign = Context.getTypeAlign(ATy->getElementType());
} else {
std::pair<uint64_t, unsigned> FieldInfo =
Context.getTypeInfo(FD->getType());
FieldSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
}
// Determine the alignment of this bitfield. The packing
// attributes define a maximum and the alignment attribute defines
// a minimum. Additionally, the packing alignment must be at least
// a byte for non-bitfields.
//
// FIXME: What is the right behavior when the specified alignment
// is smaller than the specified packing?
if (FieldPacking)
FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// Round up the current record size to the field's alignment boundary.
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
}
// Place this field at the current location.
FieldOffsets[FieldNo] = FieldOffset;
// Reserve space for this field.
if (IsUnion) {
Size = std::max(Size, FieldSize);
} else {
Size = FieldOffset + FieldSize;
}
// Remember max struct/class alignment.
Alignment = std::max(Alignment, FieldAlign);
}
/// getASTObjcInterfaceLayout - Get or compute information about the layout of
/// the specified Objective C, which indicates its size and ivar
/// position information.
const ASTRecordLayout &
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = NULL;
unsigned FieldCount = D->ivar_size();
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
FieldCount++;
const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
unsigned Alignment = SL.getAlignment();
uint64_t Size = SL.getSize();
NewEntry = new ASTRecordLayout(Size, Alignment);
NewEntry->InitializeLayout(FieldCount);
// Super class is at the beginning of the layout.
NewEntry->SetFieldOffset(0, 0);
} else {
NewEntry = new ASTRecordLayout();
NewEntry->InitializeLayout(FieldCount);
}
Entry = NewEntry;
unsigned StructPacking = 0;
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
StructPacking = PA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
AA->getAlignment()));
// Layout each ivar sequentially.
unsigned i = 0;
for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
IVE = D->ivar_end(); IVI != IVE; ++IVI) {
const ObjCIvarDecl* Ivar = (*IVI);
NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
NewEntry->FinalizeLayout();
return *NewEntry;
}
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
D = D->getDefinition(*this);
assert(D && "Cannot get layout of forward declarations!");
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = new ASTRecordLayout();
Entry = NewEntry;
NewEntry->InitializeLayout(D->getNumMembers());
bool IsUnion = D->isUnion();
unsigned StructPacking = 0;
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
StructPacking = PA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
AA->getAlignment()));
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
NewEntry->LayoutField(FD, i, IsUnion, StructPacking, *this);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
NewEntry->FinalizeLayout();
return *NewEntry;
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
QualType CanT = getCanonicalType(T);
if (CanT.getAddressSpace() == AddressSpace)
return T;
// Type's cannot have multiple ASQuals, therefore we know we only have to deal
// with CVR qualifiers from here on out.
assert(CanT.getAddressSpace() == 0 &&
"Type is already address space qualified");
// Check if we've already instantiated an address space qual'd type of this
// type.
llvm::FoldingSetNodeID ID;
ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
void *InsertPos = 0;
if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ASQy, 0);
// If the base type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getASQualType(CanT, AddressSpace);
// Get the new insert position for the node we care about.
ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
ASQualTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, T.getCVRQualifiers());
}
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getComplexType(getCanonicalType(T));
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ComplexType *New = new ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
PointerType *New = new PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getBlockPointerType - Return the uniqued reference to the type for
/// a pointer to the specified block.
QualType ASTContext::getBlockPointerType(QualType T) {
assert(T->isFunctionType() && "block of function types only");
// Unique pointers, to guarantee there is only one block of a particular
// structure.
llvm::FoldingSetNodeID ID;
BlockPointerType::Profile(ID, T);
void *InsertPos = 0;
if (BlockPointerType *PT =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the block pointee type isn't canonical, this won't be a canonical
// type either so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getBlockPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
BlockPointerType *NewIP =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
BlockPointerType *New = new BlockPointerType(T, Canonical);
Types.push_back(New);
BlockPointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getReferenceType - Return the uniqued reference to the type for a reference
/// to the specified type.
QualType ASTContext::getReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getReferenceType(getCanonicalType(T));
// Get the new insert position for the node we care about.
ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ReferenceType *New = new ReferenceType(T, Canonical);
Types.push_back(New);
ReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
ConstantArrayType::Profile(ID, EltTy, ArySize);
void *InsertPos = 0;
if (ConstantArrayType *ATP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
ASM, EltTypeQuals);
ConstantArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
// Since we don't unique expressions, it isn't possible to unique VLA's
// that have an expression provided for their size.
VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
VariableArrayTypes.push_back(New);
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
IncompleteArrayType::Profile(ID, EltTy);
void *InsertPos = 0;
if (IncompleteArrayType *ATP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
IncompleteArrayType *NewIP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
ASM, EltTypeQuals);
IncompleteArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::Vector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getVectorType(getCanonicalType(vecType), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
VectorType *New = new VectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getExtVectorType - Return the unique reference to an extended vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeNoProto::Profile(ID, ResultTy);
void *InsertPos = 0;
if (FunctionTypeNoProto *FT =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FT, 0);
QualType Canonical;
if (!ResultTy->isCanonical()) {
Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
// Get the new insert position for the node we care about.
FunctionTypeNoProto *NewIP =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
Types.push_back(New);
FunctionTypeNoProtos.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
unsigned NumArgs, bool isVariadic) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
void *InsertPos = 0;
if (FunctionTypeProto *FTP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FTP, 0);
// Determine whether the type being created is already canonical or not.
bool isCanonical = ResultTy->isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i]->isCanonical())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
QualType Canonical;
if (!isCanonical) {
llvm::SmallVector<QualType, 16> CanonicalArgs;
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
Canonical = getFunctionType(getCanonicalType(ResultTy),
&CanonicalArgs[0], NumArgs,
isVariadic);
// Get the new insert position for the node we care about.
FunctionTypeProto *NewIP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
// FunctionTypeProto objects are not allocated with new because they have a
// variable size array (for parameter types) at the end of them.
FunctionTypeProto *FTP =
(FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
NumArgs*sizeof(QualType));
new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
Canonical);
Types.push_back(FTP);
FunctionTypeProtos.InsertNode(FTP, InsertPos);
return QualType(FTP, 0);
}
/// getTypeDeclType - Return the unique reference to the type for the
/// specified type declaration.
QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
assert(Decl && "Passed null for Decl param");
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
return getTypedefType(Typedef);
else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
return getObjCInterfaceType(ObjCInterface);
if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Decl)) {
Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl
: new CXXRecordType(CXXRecord);
}
else if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl
: new RecordType(Record);
}
else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl))
Decl->TypeForDecl = new EnumType(Enum);
else
assert(false && "TypeDecl without a type?");
if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// setTagDefinition - Used by RecordDecl::defineBody to inform ASTContext
/// about which RecordDecl serves as the definition of a particular
/// struct/union/class. This will eventually be used by enums as well.
void ASTContext::setTagDefinition(TagDecl* D) {
assert (D->isDefinition());
cast<TagType>(D->TypeForDecl)->decl = D;
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getObjCInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl.
QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// CmpProtocolNames - Comparison predicate for sorting protocols
/// alphabetically.
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
const ObjCProtocolDecl *RHS) {
return strcmp(LHS->getName(), RHS->getName()) < 0;
}
static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
unsigned &NumProtocols) {
ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
// Sort protocols, keyed by name.
std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
// Remove duplicates.
ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
NumProtocols = ProtocolsEnd-Protocols;
}
/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
/// the given interface decl and the conforming protocol list.
QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
// Sort the protocol list alphabetically to canonicalize it.
SortAndUniqueProtocols(Protocols, NumProtocols);
llvm::FoldingSetNodeID ID;
ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjCQualifiedInterfaceType *QT =
ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// No Match;
ObjCQualifiedInterfaceType *QType =
new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
Types.push_back(QType);
ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
/// and the conforming protocol list.
QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
unsigned NumProtocols) {
// Sort the protocol list alphabetically to canonicalize it.
SortAndUniqueProtocols(Protocols, NumProtocols);
llvm::FoldingSetNodeID ID;
ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjCQualifiedIdType *QT =
ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// No Match;
ObjCQualifiedIdType *QType = new ObjCQualifiedIdType(Protocols, NumProtocols);
Types.push_back(QType);
ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExpr AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
QualType Canonical = getCanonicalType(tofExpr->getType());
TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
Types.push_back(toe);
return QualType(toe, 0);
}
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
QualType Canonical = getCanonicalType(tofType);
TypeOfType *tot = new TypeOfType(tofType, Canonical);
Types.push_back(tot);
return QualType(tot, 0);
}
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
assert (Decl);
return getTypeDeclType(Decl);
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getSizeType() const {
// On Darwin, size_t is defined as a "long unsigned int".
// FIXME: should derive from "Target".
return UnsignedLongTy;
}
/// getWCharType - Return the unique type for "wchar_t" (C99 7.17), the
/// width of characters in wide strings, The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getWCharType() const {
if (LangOpts.CPlusPlus)
return WCharTy;
// On Darwin, wchar_t is defined as a "int".
// FIXME: should derive from "Target".
return IntTy;
}
/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getSignedWCharType() const {
// FIXME: derive from "Target" ?
return WCharTy;
}
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getUnsignedWCharType() const {
// FIXME: derive from "Target" ?
return UnsignedIntTy;
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
// On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
// FIXME: should derive from "Target".
return IntTy;
}
//===----------------------------------------------------------------------===//
// Type Operators
//===----------------------------------------------------------------------===//
/// getCanonicalType - Return the canonical (structural) type corresponding to
/// the specified potentially non-canonical type. The non-canonical version
/// of a type may have many "decorated" versions of types. Decorators can
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
/// to be free of any of these, allowing two canonical types to be compared
/// for exact equality with a simple pointer comparison.
QualType ASTContext::getCanonicalType(QualType T) {
QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
// If the result has type qualifiers, make sure to canonicalize them as well.
unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
if (TypeQuals == 0) return CanType;
// If the type qualifiers are on an array type, get the canonical type of the
// array with the qualifiers applied to the element type.
ArrayType *AT = dyn_cast<ArrayType>(CanType);
if (!AT)
return CanType.getQualifiedType(TypeQuals);
// Get the canonical version of the element with the extra qualifiers on it.
// This can recursively sink qualifiers through multiple levels of arrays.
QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
NewEltTy = getCanonicalType(NewEltTy);
if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
CAT->getIndexTypeQualifier());
if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
IAT->getIndexTypeQualifier());
// FIXME: What is the ownership of size expressions in VLAs?
VariableArrayType *VAT = cast<VariableArrayType>(AT);
return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
VAT->getSizeModifier(),
VAT->getIndexTypeQualifier());
}
const ArrayType *ASTContext::getAsArrayType(QualType T) {
// Handle the non-qualified case efficiently.
if (T.getCVRQualifiers() == 0) {
// Handle the common positive case fast.
if (const ArrayType *AT = dyn_cast<ArrayType>(T))
return AT;
}
// Handle the common negative case fast, ignoring CVR qualifiers.
QualType CType = T->getCanonicalTypeInternal();
// Make sure to look through type qualifiers (like ASQuals) for the negative
// test.
if (!isa<ArrayType>(CType) &&
!isa<ArrayType>(CType.getUnqualifiedType()))
return 0;
// Apply any CVR qualifiers from the array type to the element type. This
// implements C99 6.7.3p8: "If the specification of an array type includes
// any type qualifiers, the element type is so qualified, not the array type."
// If we get here, we either have type qualifiers on the type, or we have
// sugar such as a typedef in the way. If we have type qualifiers on the type
// we must propagate them down into the elemeng type.
unsigned CVRQuals = T.getCVRQualifiers();
unsigned AddrSpace = 0;
Type *Ty = T.getTypePtr();
// Rip through ASQualType's and typedefs to get to a concrete type.
while (1) {
if (const ASQualType *ASQT = dyn_cast<ASQualType>(Ty)) {
AddrSpace = ASQT->getAddressSpace();
Ty = ASQT->getBaseType();
} else {
T = Ty->getDesugaredType();
if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
break;
CVRQuals |= T.getCVRQualifiers();
Ty = T.getTypePtr();
}
}
// If we have a simple case, just return now.
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
return ATy;
// Otherwise, we have an array and we have qualifiers on it. Push the
// qualifiers into the array element type and return a new array type.
// Get the canonical version of the element with the extra qualifiers on it.
// This can recursively sink qualifiers through multiple levels of arrays.
QualType NewEltTy = ATy->getElementType();
if (AddrSpace)
NewEltTy = getASQualType(NewEltTy, AddrSpace);
NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
CAT->getSizeModifier(),
CAT->getIndexTypeQualifier()));
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
IAT->getSizeModifier(),
IAT->getIndexTypeQualifier()));
// FIXME: What is the ownership of size expressions in VLAs?
const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
VAT->getSizeModifier(),
VAT->getIndexTypeQualifier()));
}
/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer. This operation is non-trivial when
/// handling typedefs etc. The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType ASTContext::getArrayDecayedType(QualType Ty) {
// Get the element type with 'getAsArrayType' so that we don't lose any
// typedefs in the element type of the array. This also handles propagation
// of type qualifiers from the array type into the element type if present
// (C99 6.7.3p8).
const ArrayType *PrettyArrayType = getAsArrayType(Ty);
assert(PrettyArrayType && "Not an array type!");
QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
// int x[restrict 4] -> int *restrict
return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
}
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static FloatingRank getFloatingRank(QualType T) {
if (const ComplexType *CT = T->getAsComplexType())
return getFloatingRank(CT->getElementType());
switch (T->getAsBuiltinType()->getKind()) {
default: assert(0 && "getFloatingRank(): not a floating type");
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
}
}
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
QualType Domain) const {
FloatingRank EltRank = getFloatingRank(Size);
if (Domain->isComplexType()) {
switch (EltRank) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
}
}
assert(Domain->isRealFloatingType() && "Unknown domain!");
switch (EltRank) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatTy;
case DoubleRank: return DoubleTy;
case LongDoubleRank: return LongDoubleTy;
}
}
/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
FloatingRank LHSR = getFloatingRank(LHS);
FloatingRank RHSR = getFloatingRank(RHS);
if (LHSR == RHSR)
return 0;
if (LHSR > RHSR)
return 1;
return -1;
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum,
/// or if it is not canonicalized.
static unsigned getIntegerRank(Type *T) {
assert(T->isCanonical() && "T should be canonicalized");
if (isa<EnumType>(T))
return 4;
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2;
case BuiltinType::Short:
case BuiltinType::UShort:
return 3;
case BuiltinType::Int:
case BuiltinType::UInt:
return 4;
case BuiltinType::Long:
case BuiltinType::ULong:
return 5;
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6;
}
}
/// getIntegerTypeOrder - Returns the highest ranked integer type:
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
Type *LHSC = getCanonicalType(LHS).getTypePtr();
Type *RHSC = getCanonicalType(RHS).getTypePtr();
if (LHSC == RHSC) return 0;
bool LHSUnsigned = LHSC->isUnsignedIntegerType();
bool RHSUnsigned = RHSC->isUnsignedIntegerType();
unsigned LHSRank = getIntegerRank(LHSC);
unsigned RHSRank = getIntegerRank(RHSC);
if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
if (LHSRank == RHSRank) return 0;
return LHSRank > RHSRank ? 1 : -1;
}
// Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
if (LHSUnsigned) {
// If the unsigned [LHS] type is larger, return it.
if (LHSRank >= RHSRank)
return 1;
// If the signed type can represent all values of the unsigned type, it
// wins. Because we are dealing with 2's complement and types that are
// powers of two larger than each other, this is always safe.
return -1;
}
// If the unsigned [RHS] type is larger, return it.
if (RHSRank >= LHSRank)
return -1;
// If the signed type can represent all values of the unsigned type, it
// wins. Because we are dealing with 2's complement and types that are
// powers of two larger than each other, this is always safe.
return 1;
}
// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() {
if (!CFConstantStringTypeDecl) {
CFConstantStringTypeDecl =
RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
&Idents.get("NSConstantString"));
QualType FieldTypes[4];
// const int *isa;
FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
// int flags;
FieldTypes[1] = IntTy;
// const char *str;
FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
// long length;
FieldTypes[3] = LongTy;
// Create fields
FieldDecl *FieldDecls[4];
for (unsigned i = 0; i < 4; ++i)
FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
FieldTypes[i]);
CFConstantStringTypeDecl->defineBody(*this, FieldDecls, 4);
}
return getTagDeclType(CFConstantStringTypeDecl);
}
QualType ASTContext::getObjCFastEnumerationStateType()
{
if (!ObjCFastEnumerationStateTypeDecl) {
QualType FieldTypes[] = {
UnsignedLongTy,
getPointerType(ObjCIdType),
getPointerType(UnsignedLongTy),
getConstantArrayType(UnsignedLongTy,
llvm::APInt(32, 5), ArrayType::Normal, 0)
};
FieldDecl *FieldDecls[4];
for (size_t i = 0; i < 4; ++i)
FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
FieldTypes[i]);
ObjCFastEnumerationStateTypeDecl =
RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
&Idents.get("__objcFastEnumerationState"));
ObjCFastEnumerationStateTypeDecl->defineBody(*this, FieldDecls, 4);
}
return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
}
// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
static bool isTypeTypedefedAsBOOL(QualType T) {
if (const TypedefType *TT = dyn_cast<TypedefType>(T))
return !strcmp(TT->getDecl()->getName(), "BOOL");
return false;
}
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
int ASTContext::getObjCEncodingTypeSize(QualType type) {
uint64_t sz = getTypeSize(type);
// Make all integer and enum types at least as large as an int
if (sz > 0 && type->isIntegralType())
sz = std::max(sz, getTypeSize(IntTy));
// Treat arrays as pointers, since that's how they're passed in.
else if (type->isArrayType())
sz = getTypeSize(VoidPtrTy);
return sz / getTypeSize(CharTy);
}
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
std::string& S)
{
// FIXME: This is not very efficient.
// Encode type qualifer, 'in', 'inout', etc. for the return type.
getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
// Encode result type.
getObjCEncodingForType(Decl->getResultType(), S);
// Compute size of all parameters.
// Start with computing size of a pointer in number of bytes.
// FIXME: There might(should) be a better way of doing this computation!
SourceLocation Loc;
int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
// The first two arguments (self and _cmd) are pointers; account for
// their size.
int ParmOffset = 2 * PtrSize;
int NumOfParams = Decl->getNumParams();
for (int i = 0; i < NumOfParams; i++) {
QualType PType = Decl->getParamDecl(i)->getType();
int sz = getObjCEncodingTypeSize (PType);
assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
ParmOffset += sz;
}
S += llvm::utostr(ParmOffset);
S += "@0:";
S += llvm::utostr(PtrSize);
// Argument types.
ParmOffset = 2 * PtrSize;
for (int i = 0; i < NumOfParams; i++) {
QualType PType = Decl->getParamDecl(i)->getType();
// Process argument qualifiers for user supplied arguments; such as,
// 'in', 'inout', etc.
getObjCEncodingForTypeQualifier(
Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
getObjCEncodingForType(PType, S);
S += llvm::utostr(ParmOffset);
ParmOffset += getObjCEncodingTypeSize(PType);
}
}
/// getObjCEncodingForPropertyDecl - Return the encoded type for this
/// method declaration. If non-NULL, Container must be either an
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
/// NULL when getting encodings for protocol properties.
void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
const Decl *Container,
std::string& S)
{
// Collect information from the property implementation decl(s).
bool Dynamic = false;
ObjCPropertyImplDecl *SynthesizePID = 0;
// FIXME: Duplicated code due to poor abstraction.
if (Container) {
if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(Container)) {
for (ObjCCategoryImplDecl::propimpl_iterator
i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
ObjCPropertyImplDecl *PID = *i;
if (PID->getPropertyDecl() == PD) {
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
Dynamic = true;
} else {
SynthesizePID = PID;
}
}
}
} else {
const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
for (ObjCCategoryImplDecl::propimpl_iterator
i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
ObjCPropertyImplDecl *PID = *i;
if (PID->getPropertyDecl() == PD) {
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
Dynamic = true;
} else {
SynthesizePID = PID;
}
}
}
}
}
// FIXME: This is not very efficient.
S = "T";
// Encode result type.
// FIXME: GCC uses a generating_property_type_encoding mode during
// this part. Investigate.
getObjCEncodingForType(PD->getType(), S);
if (PD->isReadOnly()) {
S += ",R";
} else {
switch (PD->getSetterKind()) {
case ObjCPropertyDecl::Assign: break;
case ObjCPropertyDecl::Copy: S += ",C"; break;
case ObjCPropertyDecl::Retain: S += ",&"; break;
}
}
// It really isn't clear at all what this means, since properties
// are "dynamic by default".
if (Dynamic)
S += ",D";
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
S += ",G";
S += PD->getGetterName().getName();
}
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
S += ",S";
S += PD->getSetterName().getName();
}
if (SynthesizePID) {
const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
S += ",V";
S += OID->getName();
}
// FIXME: OBJCGC: weak & strong
}
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
bool NameFields) const {
// We follow the behavior of gcc, expanding structures which are
// directly pointed to, and expanding embedded structures. Note that
// these rules are sufficient to prevent recursive encoding of the
// same type.
getObjCEncodingForTypeImpl(T, S, true, true, NameFields);
}
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
bool ExpandPointedToStructures,
bool ExpandStructures,
bool NameFields) const {
if (const BuiltinType *BT = T->getAsBuiltinType()) {
char encoding;
switch (BT->getKind()) {
default: assert(0 && "Unhandled builtin type kind");
case BuiltinType::Void: encoding = 'v'; break;
case BuiltinType::Bool: encoding = 'B'; break;
case BuiltinType::Char_U:
case BuiltinType::UChar: encoding = 'C'; break;
case BuiltinType::UShort: encoding = 'S'; break;
case BuiltinType::UInt: encoding = 'I'; break;
case BuiltinType::ULong: encoding = 'L'; break;
case BuiltinType::ULongLong: encoding = 'Q'; break;
case BuiltinType::Char_S:
case BuiltinType::SChar: encoding = 'c'; break;
case BuiltinType::Short: encoding = 's'; break;
case BuiltinType::Int: encoding = 'i'; break;
case BuiltinType::Long: encoding = 'l'; break;
case BuiltinType::LongLong: encoding = 'q'; break;
case BuiltinType::Float: encoding = 'f'; break;
case BuiltinType::Double: encoding = 'd'; break;
case BuiltinType::LongDouble: encoding = 'd'; break;
}
S += encoding;
}
else if (T->isObjCQualifiedIdType()) {
// Treat id<P...> same as 'id' for encoding purposes.
return getObjCEncodingForTypeImpl(getObjCIdType(), S,
ExpandPointedToStructures,
ExpandStructures, NameFields);
}
else if (const PointerType *PT = T->getAsPointerType()) {
QualType PointeeTy = PT->getPointeeType();
if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
S += '@';
return;
} else if (isObjCClassType(PointeeTy)) {
S += '#';
return;
} else if (isObjCSelType(PointeeTy)) {
S += ':';
return;
}
if (PointeeTy->isCharType()) {
// char pointer types should be encoded as '*' unless it is a
// type that has been typedef'd to 'BOOL'.
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
S += '*';
return;
}
}
S += '^';
getObjCEncodingForTypeImpl(PT->getPointeeType(), S,
false, ExpandPointedToStructures,
NameFields);
} else if (const ArrayType *AT =
// Ignore type qualifiers etc.
dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
S += '[';
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
S += llvm::utostr(CAT->getSize().getZExtValue());
else
assert(0 && "Unhandled array type!");
getObjCEncodingForTypeImpl(AT->getElementType(), S,
false, ExpandStructures, NameFields);
S += ']';
} else if (T->getAsFunctionType()) {
S += '?';
} else if (const RecordType *RTy = T->getAsRecordType()) {
RecordDecl *RDecl = RTy->getDecl();
S += RDecl->isUnion() ? '(' : '{';
// Anonymous structures print as '?'
if (const IdentifierInfo *II = RDecl->getIdentifier()) {
S += II->getName();
} else {
S += '?';
}
if (ExpandStructures) {
S += '=';
for (int i = 0; i < RDecl->getNumMembers(); i++) {
FieldDecl *FD = RDecl->getMember(i);
if (NameFields) {
S += '"';
S += FD->getName();
S += '"';
}
// Special case bit-fields.
if (const Expr *E = FD->getBitWidth()) {
// FIXME: Fix constness.
ASTContext *Ctx = const_cast<ASTContext*>(this);
unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
// FIXME: Obj-C is losing information about the type size
// here. Investigate if this is a problem.
S += 'b';
S += llvm::utostr(N);
} else {
getObjCEncodingForTypeImpl(FD->getType(), S, false, true, NameFields);
}
}
}
S += RDecl->isUnion() ? ')' : '}';
} else if (T->isEnumeralType()) {
S += 'i';
} else if (T->isBlockPointerType()) {
S += '^'; // This type string is the same as general pointers.
} else
assert(0 && "@encode for type not implemented!");
}
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string& S) const {
if (QT & Decl::OBJC_TQ_In)
S += 'n';
if (QT & Decl::OBJC_TQ_Inout)
S += 'N';
if (QT & Decl::OBJC_TQ_Out)
S += 'o';
if (QT & Decl::OBJC_TQ_Bycopy)
S += 'O';
if (QT & Decl::OBJC_TQ_Byref)
S += 'R';
if (QT & Decl::OBJC_TQ_Oneway)
S += 'V';
}
void ASTContext::setBuiltinVaListType(QualType T)
{
assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
BuiltinVaListType = T;
}
void ASTContext::setObjCIdType(TypedefDecl *TD)
{
ObjCIdType = getTypedefType(TD);
// typedef struct objc_object *id;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'id' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'id' incorrectly typed");
IdStructType = rec;
}
void ASTContext::setObjCSelType(TypedefDecl *TD)
{
ObjCSelType = getTypedefType(TD);
// typedef struct objc_selector *SEL;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'SEL' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'SEL' incorrectly typed");
SelStructType = rec;
}
void ASTContext::setObjCProtoType(QualType QT)
{
ObjCProtoType = QT;
}
void ASTContext::setObjCClassType(TypedefDecl *TD)
{
ObjCClassType = getTypedefType(TD);
// typedef struct objc_class *Class;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'Class' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'Class' incorrectly typed");
ClassStructType = rec;
}
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
assert(ObjCConstantStringType.isNull() &&
"'NSConstantString' type already set!");
ObjCConstantStringType = getObjCInterfaceType(Decl);
}
//===----------------------------------------------------------------------===//
// Type Predicates.
//===----------------------------------------------------------------------===//
/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
/// to an object type. This includes "id" and "Class" (two 'special' pointers
/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
/// ID type).
bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
if (Ty->isObjCQualifiedIdType())
return true;
// Blocks are objects.
if (Ty->isBlockPointerType())
return true;
// All other object types are pointers.
if (!Ty->isPointerType())
return false;
// Check to see if this is 'id' or 'Class', both of which are typedefs for
// pointer types. This looks for the typedef specifically, not for the
// underlying type.
if (Ty == getObjCIdType() || Ty == getObjCClassType())
return true;
// If this a pointer to an interface (e.g. NSString*), it is ok.
return Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType();
}
//===----------------------------------------------------------------------===//
// Type Compatibility Testing
//===----------------------------------------------------------------------===//
/// typesAreBlockCompatible - This routine is called when comparing two
/// block types. Types must be strictly compatible here. For example,
/// C unfortunately doesn't produce an error for the following:
///
/// int (*emptyArgFunc)();
/// int (*intArgList)(int) = emptyArgFunc;
///
/// For blocks, we will produce an error for the following (similar to C++):
///
/// int (^emptyArgBlock)();
/// int (^intArgBlock)(int) = emptyArgBlock;
///
/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
///
bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
return getCanonicalType(lhs) == getCanonicalType(rhs);
}
/// areCompatVectorTypes - Return true if the two specified vector types are
/// compatible.
static bool areCompatVectorTypes(const VectorType *LHS,
const VectorType *RHS) {
assert(LHS->isCanonical() && RHS->isCanonical());
return LHS->getElementType() == RHS->getElementType() &&
LHS->getNumElements() == RHS->getNumElements();
}
/// canAssignObjCInterfaces - Return true if the two interface types are
/// compatible for assignment from RHS to LHS. This handles validation of any
/// protocol qualifiers on the LHS or RHS.
///
bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
const ObjCInterfaceType *RHS) {
// Verify that the base decls are compatible: the RHS must be a subclass of
// the LHS.
if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
return false;
// RHS must have a superset of the protocols in the LHS. If the LHS is not
// protocol qualified at all, then we are good.
if (!isa<ObjCQualifiedInterfaceType>(LHS))
return true;
// Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
// isn't a superset.
if (!isa<ObjCQualifiedInterfaceType>(RHS))
return true; // FIXME: should return false!
// Finally, we must have two protocol-qualified interfaces.
const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin();
ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end();
ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin();
ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end();
// All protocols in LHS must have a presence in RHS. Since the protocol lists
// are both sorted alphabetically and have no duplicates, we can scan RHS and
// LHS in a single parallel scan until we run out of elements in LHS.
assert(LHSPI != LHSPE && "Empty LHS protocol list?");
ObjCProtocolDecl *LHSProto = *LHSPI;
while (RHSPI != RHSPE) {
ObjCProtocolDecl *RHSProto = *RHSPI++;
// If the RHS has a protocol that the LHS doesn't, ignore it.
if (RHSProto != LHSProto)
continue;
// Otherwise, the RHS does have this element.
++LHSPI;
if (LHSPI == LHSPE)
return true; // All protocols in LHS exist in RHS.
LHSProto = *LHSPI;
}
// If we got here, we didn't find one of the LHS's protocols in the RHS list.
return false;
}
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
return !mergeTypes(LHS, RHS).isNull();
}
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
const FunctionType *lbase = lhs->getAsFunctionType();
const FunctionType *rbase = rhs->getAsFunctionType();
const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
bool allLTypes = true;
bool allRTypes = true;
// Check return type
QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
if (retType.isNull()) return QualType();
if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
allLTypes = false;
if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
allRTypes = false;
if (lproto && rproto) { // two C99 style function prototypes
unsigned lproto_nargs = lproto->getNumArgs();
unsigned rproto_nargs = rproto->getNumArgs();
// Compatible functions must have the same number of arguments
if (lproto_nargs != rproto_nargs)
return QualType();
// Variadic and non-variadic functions aren't compatible
if (lproto->isVariadic() != rproto->isVariadic())
return QualType();
// Check argument compatibility
llvm::SmallVector<QualType, 10> types;
for (unsigned i = 0; i < lproto_nargs; i++) {
QualType largtype = lproto->getArgType(i).getUnqualifiedType();
QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
QualType argtype = mergeTypes(largtype, rargtype);
if (argtype.isNull()) return QualType();
types.push_back(argtype);
if (getCanonicalType(argtype) != getCanonicalType(largtype))
allLTypes = false;
if (getCanonicalType(argtype) != getCanonicalType(rargtype))
allRTypes = false;
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionType(retType, types.begin(), types.size(),
lproto->isVariadic());
}
if (lproto) allRTypes = false;
if (rproto) allLTypes = false;
const FunctionTypeProto *proto = lproto ? lproto : rproto;
if (proto) {
if (proto->isVariadic()) return QualType();
// Check that the types are compatible with the types that
// would result from default argument promotions (C99 6.7.5.3p15).
// The only types actually affected are promotable integer
// types and floats, which would be passed as a different
// type depending on whether the prototype is visible.
unsigned proto_nargs = proto->getNumArgs();
for (unsigned i = 0; i < proto_nargs; ++i) {
QualType argTy = proto->getArgType(i);
if (argTy->isPromotableIntegerType() ||
getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
return QualType();
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionType(retType, proto->arg_type_begin(),
proto->getNumArgs(), lproto->isVariadic());
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionTypeNoProto(retType);
}
QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
// C++ [expr]: If an expression initially has the type "reference to T", the
// type is adjusted to "T" prior to any further analysis, the expression
// designates the object or function denoted by the reference, and the
// expression is an lvalue.
// FIXME: C++ shouldn't be going through here! The rules are different
// enough that they should be handled separately.
if (const ReferenceType *RT = LHS->getAsReferenceType())
LHS = RT->getPointeeType();
if (const ReferenceType *RT = RHS->getAsReferenceType())
RHS = RT->getPointeeType();
QualType LHSCan = getCanonicalType(LHS),
RHSCan = getCanonicalType(RHS);
// If two types are identical, they are compatible.
if (LHSCan == RHSCan)
return LHS;
// If the qualifiers are different, the types aren't compatible
if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers() ||
LHSCan.getAddressSpace() != RHSCan.getAddressSpace())
return QualType();
Type::TypeClass LHSClass = LHSCan->getTypeClass();
Type::TypeClass RHSClass = RHSCan->getTypeClass();
// We want to consider the two function types to be the same for these
// comparisons, just force one to the other.
if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
// Same as above for arrays
if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
LHSClass = Type::ConstantArray;
if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
RHSClass = Type::ConstantArray;
// Canonicalize ExtVector -> Vector.
if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
// Consider qualified interfaces and interfaces the same.
if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
// If the canonical type classes don't match.
if (LHSClass != RHSClass) {
// ID is compatible with all qualified id types.
if (LHS->isObjCQualifiedIdType()) {
if (const PointerType *PT = RHS->getAsPointerType()) {
QualType pType = PT->getPointeeType();
if (isObjCIdType(pType))
return LHS;
// FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
// Unfortunately, this API is part of Sema (which we don't have access
// to. Need to refactor. The following check is insufficient, since we
// need to make sure the class implements the protocol.
if (pType->isObjCInterfaceType())
return LHS;
}
}
if (RHS->isObjCQualifiedIdType()) {
if (const PointerType *PT = LHS->getAsPointerType()) {
QualType pType = PT->getPointeeType();
if (isObjCIdType(pType))
return RHS;
// FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
// Unfortunately, this API is part of Sema (which we don't have access
// to. Need to refactor. The following check is insufficient, since we
// need to make sure the class implements the protocol.
if (pType->isObjCInterfaceType())
return RHS;
}
}
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
// a signed integer type, or an unsigned integer type.
if (const EnumType* ETy = LHS->getAsEnumType()) {
if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
return RHS;
}
if (const EnumType* ETy = RHS->getAsEnumType()) {
if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
return LHS;
}
return QualType();
}
// The canonical type classes match.
switch (LHSClass) {
case Type::Pointer:
{
// Merge two pointer types, while trying to preserve typedef info
QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
if (ResultType.isNull()) return QualType();
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
return LHS;
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
return RHS;
return getPointerType(ResultType);
}
case Type::ConstantArray:
{
const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
return QualType();
QualType LHSElem = getAsArrayType(LHS)->getElementType();
QualType RHSElem = getAsArrayType(RHS)->getElementType();
QualType ResultType = mergeTypes(LHSElem, RHSElem);
if (ResultType.isNull()) return QualType();
if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
return RHS;
if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
ArrayType::ArraySizeModifier(), 0);
if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
ArrayType::ArraySizeModifier(), 0);
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
return RHS;
if (LVAT) {
// FIXME: This isn't correct! But tricky to implement because
// the array's size has to be the size of LHS, but the type
// has to be different.
return LHS;
}
if (RVAT) {
// FIXME: This isn't correct! But tricky to implement because
// the array's size has to be the size of RHS, but the type
// has to be different.
return RHS;
}
if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
}
case Type::FunctionNoProto:
return mergeFunctionTypes(LHS, RHS);
case Type::Tagged:
// FIXME: Why are these compatible?
if (isObjCIdType(LHS) && isObjCClassType(RHS)) return LHS;
if (isObjCClassType(LHS) && isObjCIdType(RHS)) return LHS;
return QualType();
case Type::Builtin:
// Only exactly equal builtin types are compatible, which is tested above.
return QualType();
case Type::Vector:
if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
return LHS;
return QualType();
case Type::ObjCInterface:
// Distinct ObjC interfaces are not compatible; see canAssignObjCInterfaces
// for checking assignment/comparison safety
return QualType();
default:
assert(0 && "unexpected type");
return QualType();
}
}
//===----------------------------------------------------------------------===//
// Integer Predicates
//===----------------------------------------------------------------------===//
unsigned ASTContext::getIntWidth(QualType T) {
if (T == BoolTy)
return 1;
// At the moment, only bool has padding bits
return (unsigned)getTypeSize(T);
}
QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
assert(T->isSignedIntegerType() && "Unexpected type");
if (const EnumType* ETy = T->getAsEnumType())
T = ETy->getDecl()->getIntegerType();
const BuiltinType* BTy = T->getAsBuiltinType();
assert (BTy && "Unexpected signed integer type");
switch (BTy->getKind()) {
case BuiltinType::Char_S:
case BuiltinType::SChar:
return UnsignedCharTy;
case BuiltinType::Short:
return UnsignedShortTy;
case BuiltinType::Int:
return UnsignedIntTy;
case BuiltinType::Long:
return UnsignedLongTy;
case BuiltinType::LongLong:
return UnsignedLongLongTy;
default:
assert(0 && "Unexpected signed integer type");
return QualType();
}
}
//===----------------------------------------------------------------------===//
// Serialization Support
//===----------------------------------------------------------------------===//
/// Emit - Serialize an ASTContext object to Bitcode.
void ASTContext::Emit(llvm::Serializer& S) const {
S.Emit(LangOpts);
S.EmitRef(SourceMgr);
S.EmitRef(Target);
S.EmitRef(Idents);
S.EmitRef(Selectors);
// Emit the size of the type vector so that we can reserve that size
// when we reconstitute the ASTContext object.
S.EmitInt(Types.size());
for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
I!=E;++I)
(*I)->Emit(S);
S.EmitOwnedPtr(TUDecl);
// FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
}
ASTContext* ASTContext::Create(llvm::Deserializer& D) {
// Read the language options.
LangOptions LOpts;
LOpts.Read(D);
SourceManager &SM = D.ReadRef<SourceManager>();
TargetInfo &t = D.ReadRef<TargetInfo>();
IdentifierTable &idents = D.ReadRef<IdentifierTable>();
SelectorTable &sels = D.ReadRef<SelectorTable>();
unsigned size_reserve = D.ReadInt();
ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels, size_reserve);
for (unsigned i = 0; i < size_reserve; ++i)
Type::Create(*A,i,D);
A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
// FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
return A;
}