| //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // These classes wrap the information about a call or function | 
 | // definition used to handle ABI compliancy. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CGCall.h" | 
 | #include "CGCXXABI.h" | 
 | #include "ABIInfo.h" | 
 | #include "CodeGenFunction.h" | 
 | #include "CodeGenModule.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "clang/AST/Decl.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/Frontend/CodeGenOptions.h" | 
 | #include "llvm/Attributes.h" | 
 | #include "llvm/Support/CallSite.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/InlineAsm.h" | 
 | #include "llvm/Transforms/Utils/Local.h" | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | /***/ | 
 |  | 
 | static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { | 
 |   switch (CC) { | 
 |   default: return llvm::CallingConv::C; | 
 |   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; | 
 |   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; | 
 |   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; | 
 |   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; | 
 |   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; | 
 |   // TODO: add support for CC_X86Pascal to llvm | 
 |   } | 
 | } | 
 |  | 
 | /// Derives the 'this' type for codegen purposes, i.e. ignoring method | 
 | /// qualification. | 
 | /// FIXME: address space qualification? | 
 | static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { | 
 |   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); | 
 |   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); | 
 | } | 
 |  | 
 | /// Returns the canonical formal type of the given C++ method. | 
 | static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { | 
 |   return MD->getType()->getCanonicalTypeUnqualified() | 
 |            .getAs<FunctionProtoType>(); | 
 | } | 
 |  | 
 | /// Returns the "extra-canonicalized" return type, which discards | 
 | /// qualifiers on the return type.  Codegen doesn't care about them, | 
 | /// and it makes ABI code a little easier to be able to assume that | 
 | /// all parameter and return types are top-level unqualified. | 
 | static CanQualType GetReturnType(QualType RetTy) { | 
 |   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); | 
 | } | 
 |  | 
 | const CGFunctionInfo & | 
 | CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) { | 
 |   return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(), | 
 |                          SmallVector<CanQualType, 16>(), | 
 |                          FTNP->getExtInfo()); | 
 | } | 
 |  | 
 | /// \param Args - contains any initial parameters besides those | 
 | ///   in the formal type | 
 | static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT, | 
 |                                   SmallVectorImpl<CanQualType> &ArgTys, | 
 |                                              CanQual<FunctionProtoType> FTP) { | 
 |   // FIXME: Kill copy. | 
 |   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) | 
 |     ArgTys.push_back(FTP->getArgType(i)); | 
 |   CanQualType ResTy = FTP->getResultType().getUnqualifiedType(); | 
 |   return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); | 
 | } | 
 |  | 
 | const CGFunctionInfo & | 
 | CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) { | 
 |   SmallVector<CanQualType, 16> ArgTys; | 
 |   return ::getFunctionInfo(*this, ArgTys, FTP); | 
 | } | 
 |  | 
 | static CallingConv getCallingConventionForDecl(const Decl *D) { | 
 |   // Set the appropriate calling convention for the Function. | 
 |   if (D->hasAttr<StdCallAttr>()) | 
 |     return CC_X86StdCall; | 
 |  | 
 |   if (D->hasAttr<FastCallAttr>()) | 
 |     return CC_X86FastCall; | 
 |  | 
 |   if (D->hasAttr<ThisCallAttr>()) | 
 |     return CC_X86ThisCall; | 
 |  | 
 |   if (D->hasAttr<PascalAttr>()) | 
 |     return CC_X86Pascal; | 
 |  | 
 |   if (PcsAttr *PCS = D->getAttr<PcsAttr>()) | 
 |     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); | 
 |  | 
 |   return CC_C; | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD, | 
 |                                                  const FunctionProtoType *FTP) { | 
 |   SmallVector<CanQualType, 16> ArgTys; | 
 |  | 
 |   // Add the 'this' pointer. | 
 |   ArgTys.push_back(GetThisType(Context, RD)); | 
 |  | 
 |   return ::getFunctionInfo(*this, ArgTys, | 
 |               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { | 
 |   SmallVector<CanQualType, 16> ArgTys; | 
 |  | 
 |   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); | 
 |   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); | 
 |  | 
 |   // Add the 'this' pointer unless this is a static method. | 
 |   if (MD->isInstance()) | 
 |     ArgTys.push_back(GetThisType(Context, MD->getParent())); | 
 |  | 
 |   return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD)); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D, | 
 |                                                     CXXCtorType Type) { | 
 |   SmallVector<CanQualType, 16> ArgTys; | 
 |   ArgTys.push_back(GetThisType(Context, D->getParent())); | 
 |   CanQualType ResTy = Context.VoidTy; | 
 |  | 
 |   TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys); | 
 |  | 
 |   CanQual<FunctionProtoType> FTP = GetFormalType(D); | 
 |  | 
 |   // Add the formal parameters. | 
 |   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) | 
 |     ArgTys.push_back(FTP->getArgType(i)); | 
 |  | 
 |   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D, | 
 |                                                     CXXDtorType Type) { | 
 |   SmallVector<CanQualType, 2> ArgTys; | 
 |   ArgTys.push_back(GetThisType(Context, D->getParent())); | 
 |   CanQualType ResTy = Context.VoidTy; | 
 |  | 
 |   TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys); | 
 |  | 
 |   CanQual<FunctionProtoType> FTP = GetFormalType(D); | 
 |   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); | 
 |  | 
 |   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { | 
 |   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) | 
 |     if (MD->isInstance()) | 
 |       return getFunctionInfo(MD); | 
 |  | 
 |   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); | 
 |   assert(isa<FunctionType>(FTy)); | 
 |   if (isa<FunctionNoProtoType>(FTy)) | 
 |     return getFunctionInfo(FTy.getAs<FunctionNoProtoType>()); | 
 |   assert(isa<FunctionProtoType>(FTy)); | 
 |   return getFunctionInfo(FTy.getAs<FunctionProtoType>()); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { | 
 |   SmallVector<CanQualType, 16> ArgTys; | 
 |   ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType())); | 
 |   ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); | 
 |   // FIXME: Kill copy? | 
 |   for (ObjCMethodDecl::param_iterator i = MD->param_begin(), | 
 |          e = MD->param_end(); i != e; ++i) { | 
 |     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); | 
 |   } | 
 |  | 
 |   FunctionType::ExtInfo einfo; | 
 |   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); | 
 |  | 
 |   if (getContext().getLangOptions().ObjCAutoRefCount && | 
 |       MD->hasAttr<NSReturnsRetainedAttr>()) | 
 |     einfo = einfo.withProducesResult(true); | 
 |  | 
 |   return getFunctionInfo(GetReturnType(MD->getResultType()), ArgTys, einfo); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) { | 
 |   // FIXME: Do we need to handle ObjCMethodDecl? | 
 |   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); | 
 |  | 
 |   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) | 
 |     return getFunctionInfo(CD, GD.getCtorType()); | 
 |  | 
 |   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) | 
 |     return getFunctionInfo(DD, GD.getDtorType()); | 
 |  | 
 |   return getFunctionInfo(FD); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, | 
 |                                                     const CallArgList &Args, | 
 |                                             const FunctionType::ExtInfo &Info) { | 
 |   // FIXME: Kill copy. | 
 |   SmallVector<CanQualType, 16> ArgTys; | 
 |   for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); | 
 |        i != e; ++i) | 
 |     ArgTys.push_back(Context.getCanonicalParamType(i->Ty)); | 
 |   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, | 
 |                                                     const FunctionArgList &Args, | 
 |                                             const FunctionType::ExtInfo &Info) { | 
 |   // FIXME: Kill copy. | 
 |   SmallVector<CanQualType, 16> ArgTys; | 
 |   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); | 
 |        i != e; ++i) | 
 |     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); | 
 |   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() { | 
 |   SmallVector<CanQualType, 1> args; | 
 |   return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo()); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy, | 
 |                            const SmallVectorImpl<CanQualType> &ArgTys, | 
 |                                             const FunctionType::ExtInfo &Info) { | 
 | #ifndef NDEBUG | 
 |   for (SmallVectorImpl<CanQualType>::const_iterator | 
 |          I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) | 
 |     assert(I->isCanonicalAsParam()); | 
 | #endif | 
 |  | 
 |   unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC()); | 
 |  | 
 |   // Lookup or create unique function info. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   CGFunctionInfo::Profile(ID, Info, ResTy, ArgTys.begin(), ArgTys.end()); | 
 |  | 
 |   void *InsertPos = 0; | 
 |   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (FI) | 
 |     return *FI; | 
 |  | 
 |   // Construct the function info. | 
 |   FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getProducesResult(), | 
 |                           Info.getHasRegParm(), Info.getRegParm(), ResTy, | 
 |                           ArgTys.data(), ArgTys.size()); | 
 |   FunctionInfos.InsertNode(FI, InsertPos); | 
 |  | 
 |   bool Inserted = FunctionsBeingProcessed.insert(FI); (void)Inserted; | 
 |   assert(Inserted && "Recursively being processed?"); | 
 |    | 
 |   // Compute ABI information. | 
 |   getABIInfo().computeInfo(*FI); | 
 |  | 
 |   // Loop over all of the computed argument and return value info.  If any of | 
 |   // them are direct or extend without a specified coerce type, specify the | 
 |   // default now. | 
 |   ABIArgInfo &RetInfo = FI->getReturnInfo(); | 
 |   if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0) | 
 |     RetInfo.setCoerceToType(ConvertType(FI->getReturnType())); | 
 |  | 
 |   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); | 
 |        I != E; ++I) | 
 |     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) | 
 |       I->info.setCoerceToType(ConvertType(I->type)); | 
 |  | 
 |   bool Erased = FunctionsBeingProcessed.erase(FI); (void)Erased; | 
 |   assert(Erased && "Not in set?"); | 
 |    | 
 |   return *FI; | 
 | } | 
 |  | 
 | CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention, | 
 |                                bool _NoReturn, bool returnsRetained, | 
 |                                bool _HasRegParm, unsigned _RegParm, | 
 |                                CanQualType ResTy, | 
 |                                const CanQualType *ArgTys, | 
 |                                unsigned NumArgTys) | 
 |   : CallingConvention(_CallingConvention), | 
 |     EffectiveCallingConvention(_CallingConvention), | 
 |     NoReturn(_NoReturn), ReturnsRetained(returnsRetained), | 
 |     HasRegParm(_HasRegParm), RegParm(_RegParm) | 
 | { | 
 |   NumArgs = NumArgTys; | 
 |  | 
 |   // FIXME: Coallocate with the CGFunctionInfo object. | 
 |   Args = new ArgInfo[1 + NumArgTys]; | 
 |   Args[0].type = ResTy; | 
 |   for (unsigned i = 0; i != NumArgTys; ++i) | 
 |     Args[1 + i].type = ArgTys[i]; | 
 | } | 
 |  | 
 | /***/ | 
 |  | 
 | void CodeGenTypes::GetExpandedTypes(QualType type, | 
 |                      SmallVectorImpl<llvm::Type*> &expandedTypes) { | 
 |   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { | 
 |     uint64_t NumElts = AT->getSize().getZExtValue(); | 
 |     for (uint64_t Elt = 0; Elt < NumElts; ++Elt) | 
 |       GetExpandedTypes(AT->getElementType(), expandedTypes); | 
 |   } else if (const RecordType *RT = type->getAsStructureType()) { | 
 |     const RecordDecl *RD = RT->getDecl(); | 
 |     assert(!RD->hasFlexibleArrayMember() && | 
 |            "Cannot expand structure with flexible array."); | 
 |     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
 |          i != e; ++i) { | 
 |       const FieldDecl *FD = *i; | 
 |       assert(!FD->isBitField() && | 
 |              "Cannot expand structure with bit-field members."); | 
 |       GetExpandedTypes(FD->getType(), expandedTypes); | 
 |     } | 
 |   } else if (const ComplexType *CT = type->getAs<ComplexType>()) { | 
 |     llvm::Type *EltTy = ConvertType(CT->getElementType()); | 
 |     expandedTypes.push_back(EltTy); | 
 |     expandedTypes.push_back(EltTy); | 
 |   } else | 
 |     expandedTypes.push_back(ConvertType(type)); | 
 | } | 
 |  | 
 | llvm::Function::arg_iterator | 
 | CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, | 
 |                                     llvm::Function::arg_iterator AI) { | 
 |   assert(LV.isSimple() && | 
 |          "Unexpected non-simple lvalue during struct expansion."); | 
 |   llvm::Value *Addr = LV.getAddress(); | 
 |  | 
 |   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { | 
 |     unsigned NumElts = AT->getSize().getZExtValue(); | 
 |     QualType EltTy = AT->getElementType(); | 
 |     for (unsigned Elt = 0; Elt < NumElts; ++Elt) { | 
 |       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); | 
 |       LValue LV = MakeAddrLValue(EltAddr, EltTy); | 
 |       AI = ExpandTypeFromArgs(EltTy, LV, AI); | 
 |     } | 
 |   } else if (const RecordType *RT = Ty->getAsStructureType()) { | 
 |     RecordDecl *RD = RT->getDecl(); | 
 |     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
 |          i != e; ++i) { | 
 |       FieldDecl *FD = *i; | 
 |       QualType FT = FD->getType(); | 
 |  | 
 |       // FIXME: What are the right qualifiers here? | 
 |       LValue LV = EmitLValueForField(Addr, FD, 0); | 
 |       AI = ExpandTypeFromArgs(FT, LV, AI); | 
 |     } | 
 |   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { | 
 |     QualType EltTy = CT->getElementType(); | 
 |     llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real"); | 
 |     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); | 
 |     llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 0, "imag"); | 
 |     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); | 
 |   } else { | 
 |     EmitStoreThroughLValue(RValue::get(AI), LV); | 
 |     ++AI; | 
 |   } | 
 |  | 
 |   return AI; | 
 | } | 
 |  | 
 | /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are | 
 | /// accessing some number of bytes out of it, try to gep into the struct to get | 
 | /// at its inner goodness.  Dive as deep as possible without entering an element | 
 | /// with an in-memory size smaller than DstSize. | 
 | static llvm::Value * | 
 | EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, | 
 |                                    llvm::StructType *SrcSTy, | 
 |                                    uint64_t DstSize, CodeGenFunction &CGF) { | 
 |   // We can't dive into a zero-element struct. | 
 |   if (SrcSTy->getNumElements() == 0) return SrcPtr; | 
 |  | 
 |   llvm::Type *FirstElt = SrcSTy->getElementType(0); | 
 |  | 
 |   // If the first elt is at least as large as what we're looking for, or if the | 
 |   // first element is the same size as the whole struct, we can enter it. | 
 |   uint64_t FirstEltSize = | 
 |     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); | 
 |   if (FirstEltSize < DstSize && | 
 |       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) | 
 |     return SrcPtr; | 
 |  | 
 |   // GEP into the first element. | 
 |   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); | 
 |  | 
 |   // If the first element is a struct, recurse. | 
 |   llvm::Type *SrcTy = | 
 |     cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); | 
 |   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) | 
 |     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); | 
 |  | 
 |   return SrcPtr; | 
 | } | 
 |  | 
 | /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both | 
 | /// are either integers or pointers.  This does a truncation of the value if it | 
 | /// is too large or a zero extension if it is too small. | 
 | static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, | 
 |                                              llvm::Type *Ty, | 
 |                                              CodeGenFunction &CGF) { | 
 |   if (Val->getType() == Ty) | 
 |     return Val; | 
 |  | 
 |   if (isa<llvm::PointerType>(Val->getType())) { | 
 |     // If this is Pointer->Pointer avoid conversion to and from int. | 
 |     if (isa<llvm::PointerType>(Ty)) | 
 |       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); | 
 |  | 
 |     // Convert the pointer to an integer so we can play with its width. | 
 |     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); | 
 |   } | 
 |  | 
 |   llvm::Type *DestIntTy = Ty; | 
 |   if (isa<llvm::PointerType>(DestIntTy)) | 
 |     DestIntTy = CGF.IntPtrTy; | 
 |  | 
 |   if (Val->getType() != DestIntTy) | 
 |     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); | 
 |  | 
 |   if (isa<llvm::PointerType>(Ty)) | 
 |     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); | 
 |   return Val; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as | 
 | /// a pointer to an object of type \arg Ty. | 
 | /// | 
 | /// This safely handles the case when the src type is smaller than the | 
 | /// destination type; in this situation the values of bits which not | 
 | /// present in the src are undefined. | 
 | static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, | 
 |                                       llvm::Type *Ty, | 
 |                                       CodeGenFunction &CGF) { | 
 |   llvm::Type *SrcTy = | 
 |     cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); | 
 |  | 
 |   // If SrcTy and Ty are the same, just do a load. | 
 |   if (SrcTy == Ty) | 
 |     return CGF.Builder.CreateLoad(SrcPtr); | 
 |  | 
 |   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); | 
 |  | 
 |   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { | 
 |     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); | 
 |     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); | 
 |   } | 
 |  | 
 |   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); | 
 |  | 
 |   // If the source and destination are integer or pointer types, just do an | 
 |   // extension or truncation to the desired type. | 
 |   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && | 
 |       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { | 
 |     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); | 
 |     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); | 
 |   } | 
 |  | 
 |   // If load is legal, just bitcast the src pointer. | 
 |   if (SrcSize >= DstSize) { | 
 |     // Generally SrcSize is never greater than DstSize, since this means we are | 
 |     // losing bits. However, this can happen in cases where the structure has | 
 |     // additional padding, for example due to a user specified alignment. | 
 |     // | 
 |     // FIXME: Assert that we aren't truncating non-padding bits when have access | 
 |     // to that information. | 
 |     llvm::Value *Casted = | 
 |       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); | 
 |     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); | 
 |     // FIXME: Use better alignment / avoid requiring aligned load. | 
 |     Load->setAlignment(1); | 
 |     return Load; | 
 |   } | 
 |  | 
 |   // Otherwise do coercion through memory. This is stupid, but | 
 |   // simple. | 
 |   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); | 
 |   llvm::Value *Casted = | 
 |     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); | 
 |   llvm::StoreInst *Store = | 
 |     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); | 
 |   // FIXME: Use better alignment / avoid requiring aligned store. | 
 |   Store->setAlignment(1); | 
 |   return CGF.Builder.CreateLoad(Tmp); | 
 | } | 
 |  | 
 | // Function to store a first-class aggregate into memory.  We prefer to | 
 | // store the elements rather than the aggregate to be more friendly to | 
 | // fast-isel. | 
 | // FIXME: Do we need to recurse here? | 
 | static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, | 
 |                           llvm::Value *DestPtr, bool DestIsVolatile, | 
 |                           bool LowAlignment) { | 
 |   // Prefer scalar stores to first-class aggregate stores. | 
 |   if (llvm::StructType *STy = | 
 |         dyn_cast<llvm::StructType>(Val->getType())) { | 
 |     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
 |       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); | 
 |       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); | 
 |       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, | 
 |                                                     DestIsVolatile); | 
 |       if (LowAlignment) | 
 |         SI->setAlignment(1); | 
 |     } | 
 |   } else { | 
 |     CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); | 
 |   } | 
 | } | 
 |  | 
 | /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, | 
 | /// where the source and destination may have different types. | 
 | /// | 
 | /// This safely handles the case when the src type is larger than the | 
 | /// destination type; the upper bits of the src will be lost. | 
 | static void CreateCoercedStore(llvm::Value *Src, | 
 |                                llvm::Value *DstPtr, | 
 |                                bool DstIsVolatile, | 
 |                                CodeGenFunction &CGF) { | 
 |   llvm::Type *SrcTy = Src->getType(); | 
 |   llvm::Type *DstTy = | 
 |     cast<llvm::PointerType>(DstPtr->getType())->getElementType(); | 
 |   if (SrcTy == DstTy) { | 
 |     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); | 
 |     return; | 
 |   } | 
 |  | 
 |   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); | 
 |  | 
 |   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { | 
 |     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); | 
 |     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); | 
 |   } | 
 |  | 
 |   // If the source and destination are integer or pointer types, just do an | 
 |   // extension or truncation to the desired type. | 
 |   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && | 
 |       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { | 
 |     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); | 
 |     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); | 
 |     return; | 
 |   } | 
 |  | 
 |   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); | 
 |  | 
 |   // If store is legal, just bitcast the src pointer. | 
 |   if (SrcSize <= DstSize) { | 
 |     llvm::Value *Casted = | 
 |       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); | 
 |     // FIXME: Use better alignment / avoid requiring aligned store. | 
 |     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); | 
 |   } else { | 
 |     // Otherwise do coercion through memory. This is stupid, but | 
 |     // simple. | 
 |  | 
 |     // Generally SrcSize is never greater than DstSize, since this means we are | 
 |     // losing bits. However, this can happen in cases where the structure has | 
 |     // additional padding, for example due to a user specified alignment. | 
 |     // | 
 |     // FIXME: Assert that we aren't truncating non-padding bits when have access | 
 |     // to that information. | 
 |     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); | 
 |     CGF.Builder.CreateStore(Src, Tmp); | 
 |     llvm::Value *Casted = | 
 |       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); | 
 |     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); | 
 |     // FIXME: Use better alignment / avoid requiring aligned load. | 
 |     Load->setAlignment(1); | 
 |     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); | 
 |   } | 
 | } | 
 |  | 
 | /***/ | 
 |  | 
 | bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { | 
 |   return FI.getReturnInfo().isIndirect(); | 
 | } | 
 |  | 
 | bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { | 
 |   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { | 
 |     switch (BT->getKind()) { | 
 |     default: | 
 |       return false; | 
 |     case BuiltinType::Float: | 
 |       return getContext().Target.useObjCFPRetForRealType(TargetInfo::Float); | 
 |     case BuiltinType::Double: | 
 |       return getContext().Target.useObjCFPRetForRealType(TargetInfo::Double); | 
 |     case BuiltinType::LongDouble: | 
 |       return getContext().Target.useObjCFPRetForRealType( | 
 |         TargetInfo::LongDouble); | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { | 
 |   const CGFunctionInfo &FI = getFunctionInfo(GD); | 
 |  | 
 |   // For definition purposes, don't consider a K&R function variadic. | 
 |   bool Variadic = false; | 
 |   if (const FunctionProtoType *FPT = | 
 |         cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>()) | 
 |     Variadic = FPT->isVariadic(); | 
 |  | 
 |   return GetFunctionType(FI, Variadic); | 
 | } | 
 |  | 
 | llvm::FunctionType * | 
 | CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool isVariadic) { | 
 |    | 
 |   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; | 
 |   assert(Inserted && "Recursively being processed?"); | 
 |    | 
 |   SmallVector<llvm::Type*, 8> argTypes; | 
 |   llvm::Type *resultType = 0; | 
 |  | 
 |   const ABIArgInfo &retAI = FI.getReturnInfo(); | 
 |   switch (retAI.getKind()) { | 
 |   case ABIArgInfo::Expand: | 
 |     llvm_unreachable("Invalid ABI kind for return argument"); | 
 |  | 
 |   case ABIArgInfo::Extend: | 
 |   case ABIArgInfo::Direct: | 
 |     resultType = retAI.getCoerceToType(); | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Indirect: { | 
 |     assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); | 
 |     resultType = llvm::Type::getVoidTy(getLLVMContext()); | 
 |  | 
 |     QualType ret = FI.getReturnType(); | 
 |     llvm::Type *ty = ConvertType(ret); | 
 |     unsigned addressSpace = Context.getTargetAddressSpace(ret); | 
 |     argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); | 
 |     break; | 
 |   } | 
 |  | 
 |   case ABIArgInfo::Ignore: | 
 |     resultType = llvm::Type::getVoidTy(getLLVMContext()); | 
 |     break; | 
 |   } | 
 |  | 
 |   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), | 
 |          ie = FI.arg_end(); it != ie; ++it) { | 
 |     const ABIArgInfo &argAI = it->info; | 
 |  | 
 |     switch (argAI.getKind()) { | 
 |     case ABIArgInfo::Ignore: | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Indirect: { | 
 |       // indirect arguments are always on the stack, which is addr space #0. | 
 |       llvm::Type *LTy = ConvertTypeForMem(it->type); | 
 |       argTypes.push_back(LTy->getPointerTo()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Extend: | 
 |     case ABIArgInfo::Direct: { | 
 |       // If the coerce-to type is a first class aggregate, flatten it.  Either | 
 |       // way is semantically identical, but fast-isel and the optimizer | 
 |       // generally likes scalar values better than FCAs. | 
 |       llvm::Type *argType = argAI.getCoerceToType(); | 
 |       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { | 
 |         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) | 
 |           argTypes.push_back(st->getElementType(i)); | 
 |       } else { | 
 |         argTypes.push_back(argType); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Expand: | 
 |       GetExpandedTypes(it->type, argTypes); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; | 
 |   assert(Erased && "Not in set?"); | 
 |    | 
 |   return llvm::FunctionType::get(resultType, argTypes, isVariadic); | 
 | } | 
 |  | 
 | llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { | 
 |   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); | 
 |   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); | 
 |  | 
 |   if (!isFuncTypeConvertible(FPT)) | 
 |     return llvm::StructType::get(getLLVMContext()); | 
 |      | 
 |   const CGFunctionInfo *Info; | 
 |   if (isa<CXXDestructorDecl>(MD)) | 
 |     Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType()); | 
 |   else | 
 |     Info = &getFunctionInfo(MD); | 
 |   return GetFunctionType(*Info, FPT->isVariadic()); | 
 | } | 
 |  | 
 | void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, | 
 |                                            const Decl *TargetDecl, | 
 |                                            AttributeListType &PAL, | 
 |                                            unsigned &CallingConv) { | 
 |   unsigned FuncAttrs = 0; | 
 |   unsigned RetAttrs = 0; | 
 |  | 
 |   CallingConv = FI.getEffectiveCallingConvention(); | 
 |  | 
 |   if (FI.isNoReturn()) | 
 |     FuncAttrs |= llvm::Attribute::NoReturn; | 
 |  | 
 |   // FIXME: handle sseregparm someday... | 
 |   if (TargetDecl) { | 
 |     if (TargetDecl->hasAttr<NoThrowAttr>()) | 
 |       FuncAttrs |= llvm::Attribute::NoUnwind; | 
 |     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { | 
 |       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); | 
 |       if (FPT && FPT->isNothrow(getContext())) | 
 |         FuncAttrs |= llvm::Attribute::NoUnwind; | 
 |     } | 
 |  | 
 |     if (TargetDecl->hasAttr<NoReturnAttr>()) | 
 |       FuncAttrs |= llvm::Attribute::NoReturn; | 
 |  | 
 |     // 'const' and 'pure' attribute functions are also nounwind. | 
 |     if (TargetDecl->hasAttr<ConstAttr>()) { | 
 |       FuncAttrs |= llvm::Attribute::ReadNone; | 
 |       FuncAttrs |= llvm::Attribute::NoUnwind; | 
 |     } else if (TargetDecl->hasAttr<PureAttr>()) { | 
 |       FuncAttrs |= llvm::Attribute::ReadOnly; | 
 |       FuncAttrs |= llvm::Attribute::NoUnwind; | 
 |     } | 
 |     if (TargetDecl->hasAttr<MallocAttr>()) | 
 |       RetAttrs |= llvm::Attribute::NoAlias; | 
 |   } | 
 |  | 
 |   if (CodeGenOpts.OptimizeSize) | 
 |     FuncAttrs |= llvm::Attribute::OptimizeForSize; | 
 |   if (CodeGenOpts.DisableRedZone) | 
 |     FuncAttrs |= llvm::Attribute::NoRedZone; | 
 |   if (CodeGenOpts.NoImplicitFloat) | 
 |     FuncAttrs |= llvm::Attribute::NoImplicitFloat; | 
 |  | 
 |   QualType RetTy = FI.getReturnType(); | 
 |   unsigned Index = 1; | 
 |   const ABIArgInfo &RetAI = FI.getReturnInfo(); | 
 |   switch (RetAI.getKind()) { | 
 |   case ABIArgInfo::Extend: | 
 |    if (RetTy->hasSignedIntegerRepresentation()) | 
 |      RetAttrs |= llvm::Attribute::SExt; | 
 |    else if (RetTy->hasUnsignedIntegerRepresentation()) | 
 |      RetAttrs |= llvm::Attribute::ZExt; | 
 |     break; | 
 |   case ABIArgInfo::Direct: | 
 |   case ABIArgInfo::Ignore: | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Indirect: | 
 |     PAL.push_back(llvm::AttributeWithIndex::get(Index, | 
 |                                                 llvm::Attribute::StructRet)); | 
 |     ++Index; | 
 |     // sret disables readnone and readonly | 
 |     FuncAttrs &= ~(llvm::Attribute::ReadOnly | | 
 |                    llvm::Attribute::ReadNone); | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Expand: | 
 |     assert(0 && "Invalid ABI kind for return argument"); | 
 |   } | 
 |  | 
 |   if (RetAttrs) | 
 |     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); | 
 |  | 
 |   // FIXME: RegParm should be reduced in case of global register variable. | 
 |   signed RegParm; | 
 |   if (FI.getHasRegParm()) | 
 |     RegParm = FI.getRegParm(); | 
 |   else | 
 |     RegParm = CodeGenOpts.NumRegisterParameters; | 
 |  | 
 |   unsigned PointerWidth = getContext().Target.getPointerWidth(0); | 
 |   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), | 
 |          ie = FI.arg_end(); it != ie; ++it) { | 
 |     QualType ParamType = it->type; | 
 |     const ABIArgInfo &AI = it->info; | 
 |     unsigned Attributes = 0; | 
 |  | 
 |     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we | 
 |     // have the corresponding parameter variable.  It doesn't make | 
 |     // sense to do it here because parameters are so messed up. | 
 |     switch (AI.getKind()) { | 
 |     case ABIArgInfo::Extend: | 
 |       if (ParamType->isSignedIntegerOrEnumerationType()) | 
 |         Attributes |= llvm::Attribute::SExt; | 
 |       else if (ParamType->isUnsignedIntegerOrEnumerationType()) | 
 |         Attributes |= llvm::Attribute::ZExt; | 
 |       // FALL THROUGH | 
 |     case ABIArgInfo::Direct: | 
 |       if (RegParm > 0 && | 
 |           (ParamType->isIntegerType() || ParamType->isPointerType())) { | 
 |         RegParm -= | 
 |         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; | 
 |         if (RegParm >= 0) | 
 |           Attributes |= llvm::Attribute::InReg; | 
 |       } | 
 |       // FIXME: handle sseregparm someday... | 
 |  | 
 |       if (llvm::StructType *STy = | 
 |             dyn_cast<llvm::StructType>(AI.getCoerceToType())) | 
 |         Index += STy->getNumElements()-1;  // 1 will be added below. | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Indirect: | 
 |       if (AI.getIndirectByVal()) | 
 |         Attributes |= llvm::Attribute::ByVal; | 
 |  | 
 |       Attributes |= | 
 |         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); | 
 |       // byval disables readnone and readonly. | 
 |       FuncAttrs &= ~(llvm::Attribute::ReadOnly | | 
 |                      llvm::Attribute::ReadNone); | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Ignore: | 
 |       // Skip increment, no matching LLVM parameter. | 
 |       continue; | 
 |  | 
 |     case ABIArgInfo::Expand: { | 
 |       SmallVector<llvm::Type*, 8> types; | 
 |       // FIXME: This is rather inefficient. Do we ever actually need to do | 
 |       // anything here? The result should be just reconstructed on the other | 
 |       // side, so extension should be a non-issue. | 
 |       getTypes().GetExpandedTypes(ParamType, types); | 
 |       Index += types.size(); | 
 |       continue; | 
 |     } | 
 |     } | 
 |  | 
 |     if (Attributes) | 
 |       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); | 
 |     ++Index; | 
 |   } | 
 |   if (FuncAttrs) | 
 |     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); | 
 | } | 
 |  | 
 | /// An argument came in as a promoted argument; demote it back to its | 
 | /// declared type. | 
 | static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, | 
 |                                          const VarDecl *var, | 
 |                                          llvm::Value *value) { | 
 |   llvm::Type *varType = CGF.ConvertType(var->getType()); | 
 |  | 
 |   // This can happen with promotions that actually don't change the | 
 |   // underlying type, like the enum promotions. | 
 |   if (value->getType() == varType) return value; | 
 |  | 
 |   assert((varType->isIntegerTy() || varType->isFloatingPointTy()) | 
 |          && "unexpected promotion type"); | 
 |  | 
 |   if (isa<llvm::IntegerType>(varType)) | 
 |     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); | 
 |  | 
 |   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, | 
 |                                          llvm::Function *Fn, | 
 |                                          const FunctionArgList &Args) { | 
 |   // If this is an implicit-return-zero function, go ahead and | 
 |   // initialize the return value.  TODO: it might be nice to have | 
 |   // a more general mechanism for this that didn't require synthesized | 
 |   // return statements. | 
 |   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { | 
 |     if (FD->hasImplicitReturnZero()) { | 
 |       QualType RetTy = FD->getResultType().getUnqualifiedType(); | 
 |       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); | 
 |       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); | 
 |       Builder.CreateStore(Zero, ReturnValue); | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: We no longer need the types from FunctionArgList; lift up and | 
 |   // simplify. | 
 |  | 
 |   // Emit allocs for param decls.  Give the LLVM Argument nodes names. | 
 |   llvm::Function::arg_iterator AI = Fn->arg_begin(); | 
 |  | 
 |   // Name the struct return argument. | 
 |   if (CGM.ReturnTypeUsesSRet(FI)) { | 
 |     AI->setName("agg.result"); | 
 |     ++AI; | 
 |   } | 
 |  | 
 |   assert(FI.arg_size() == Args.size() && | 
 |          "Mismatch between function signature & arguments."); | 
 |   unsigned ArgNo = 1; | 
 |   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); | 
 |   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();  | 
 |        i != e; ++i, ++info_it, ++ArgNo) { | 
 |     const VarDecl *Arg = *i; | 
 |     QualType Ty = info_it->type; | 
 |     const ABIArgInfo &ArgI = info_it->info; | 
 |  | 
 |     bool isPromoted = | 
 |       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); | 
 |  | 
 |     switch (ArgI.getKind()) { | 
 |     case ABIArgInfo::Indirect: { | 
 |       llvm::Value *V = AI; | 
 |  | 
 |       if (hasAggregateLLVMType(Ty)) { | 
 |         // Aggregates and complex variables are accessed by reference.  All we | 
 |         // need to do is realign the value, if requested | 
 |         if (ArgI.getIndirectRealign()) { | 
 |           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); | 
 |  | 
 |           // Copy from the incoming argument pointer to the temporary with the | 
 |           // appropriate alignment. | 
 |           // | 
 |           // FIXME: We should have a common utility for generating an aggregate | 
 |           // copy. | 
 |           llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); | 
 |           CharUnits Size = getContext().getTypeSizeInChars(Ty); | 
 |           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); | 
 |           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); | 
 |           Builder.CreateMemCpy(Dst, | 
 |                                Src, | 
 |                                llvm::ConstantInt::get(IntPtrTy,  | 
 |                                                       Size.getQuantity()), | 
 |                                ArgI.getIndirectAlign(), | 
 |                                false); | 
 |           V = AlignedTemp; | 
 |         } | 
 |       } else { | 
 |         // Load scalar value from indirect argument. | 
 |         CharUnits Alignment = getContext().getTypeAlignInChars(Ty); | 
 |         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); | 
 |  | 
 |         if (isPromoted) | 
 |           V = emitArgumentDemotion(*this, Arg, V); | 
 |       } | 
 |       EmitParmDecl(*Arg, V, ArgNo); | 
 |       break; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Extend: | 
 |     case ABIArgInfo::Direct: { | 
 |       // If we have the trivial case, handle it with no muss and fuss. | 
 |       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && | 
 |           ArgI.getCoerceToType() == ConvertType(Ty) && | 
 |           ArgI.getDirectOffset() == 0) { | 
 |         assert(AI != Fn->arg_end() && "Argument mismatch!"); | 
 |         llvm::Value *V = AI; | 
 |  | 
 |         if (Arg->getType().isRestrictQualified()) | 
 |           AI->addAttr(llvm::Attribute::NoAlias); | 
 |  | 
 |         // Ensure the argument is the correct type. | 
 |         if (V->getType() != ArgI.getCoerceToType()) | 
 |           V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); | 
 |  | 
 |         if (isPromoted) | 
 |           V = emitArgumentDemotion(*this, Arg, V); | 
 |          | 
 |         EmitParmDecl(*Arg, V, ArgNo); | 
 |         break; | 
 |       } | 
 |  | 
 |       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce"); | 
 |  | 
 |       // The alignment we need to use is the max of the requested alignment for | 
 |       // the argument plus the alignment required by our access code below. | 
 |       unsigned AlignmentToUse = | 
 |         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); | 
 |       AlignmentToUse = std::max(AlignmentToUse, | 
 |                         (unsigned)getContext().getDeclAlign(Arg).getQuantity()); | 
 |  | 
 |       Alloca->setAlignment(AlignmentToUse); | 
 |       llvm::Value *V = Alloca; | 
 |       llvm::Value *Ptr = V;    // Pointer to store into. | 
 |  | 
 |       // If the value is offset in memory, apply the offset now. | 
 |       if (unsigned Offs = ArgI.getDirectOffset()) { | 
 |         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); | 
 |         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); | 
 |         Ptr = Builder.CreateBitCast(Ptr, | 
 |                           llvm::PointerType::getUnqual(ArgI.getCoerceToType())); | 
 |       } | 
 |  | 
 |       // If the coerce-to type is a first class aggregate, we flatten it and | 
 |       // pass the elements. Either way is semantically identical, but fast-isel | 
 |       // and the optimizer generally likes scalar values better than FCAs. | 
 |       if (llvm::StructType *STy = | 
 |             dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) { | 
 |         Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); | 
 |  | 
 |         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
 |           assert(AI != Fn->arg_end() && "Argument mismatch!"); | 
 |           AI->setName(Arg->getName() + ".coerce" + Twine(i)); | 
 |           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); | 
 |           Builder.CreateStore(AI++, EltPtr); | 
 |         } | 
 |       } else { | 
 |         // Simple case, just do a coerced store of the argument into the alloca. | 
 |         assert(AI != Fn->arg_end() && "Argument mismatch!"); | 
 |         AI->setName(Arg->getName() + ".coerce"); | 
 |         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); | 
 |       } | 
 |  | 
 |  | 
 |       // Match to what EmitParmDecl is expecting for this type. | 
 |       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { | 
 |         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); | 
 |         if (isPromoted) | 
 |           V = emitArgumentDemotion(*this, Arg, V); | 
 |       } | 
 |       EmitParmDecl(*Arg, V, ArgNo); | 
 |       continue;  // Skip ++AI increment, already done. | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Expand: { | 
 |       // If this structure was expanded into multiple arguments then | 
 |       // we need to create a temporary and reconstruct it from the | 
 |       // arguments. | 
 |       llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr"); | 
 |       llvm::Function::arg_iterator End = | 
 |         ExpandTypeFromArgs(Ty, MakeAddrLValue(Temp, Ty), AI); | 
 |       EmitParmDecl(*Arg, Temp, ArgNo); | 
 |  | 
 |       // Name the arguments used in expansion and increment AI. | 
 |       unsigned Index = 0; | 
 |       for (; AI != End; ++AI, ++Index) | 
 |         AI->setName(Arg->getName() + "." + Twine(Index)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Ignore: | 
 |       // Initialize the local variable appropriately. | 
 |       if (hasAggregateLLVMType(Ty)) | 
 |         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); | 
 |       else | 
 |         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), | 
 |                      ArgNo); | 
 |  | 
 |       // Skip increment, no matching LLVM parameter. | 
 |       continue; | 
 |     } | 
 |  | 
 |     ++AI; | 
 |   } | 
 |   assert(AI == Fn->arg_end() && "Argument mismatch!"); | 
 | } | 
 |  | 
 | /// Try to emit a fused autorelease of a return result. | 
 | static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, | 
 |                                                     llvm::Value *result) { | 
 |   // We must be immediately followed the cast. | 
 |   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); | 
 |   if (BB->empty()) return 0; | 
 |   if (&BB->back() != result) return 0; | 
 |  | 
 |   llvm::Type *resultType = result->getType(); | 
 |  | 
 |   // result is in a BasicBlock and is therefore an Instruction. | 
 |   llvm::Instruction *generator = cast<llvm::Instruction>(result); | 
 |  | 
 |   SmallVector<llvm::Instruction*,4> insnsToKill; | 
 |  | 
 |   // Look for: | 
 |   //  %generator = bitcast %type1* %generator2 to %type2* | 
 |   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { | 
 |     // We would have emitted this as a constant if the operand weren't | 
 |     // an Instruction. | 
 |     generator = cast<llvm::Instruction>(bitcast->getOperand(0)); | 
 |  | 
 |     // Require the generator to be immediately followed by the cast. | 
 |     if (generator->getNextNode() != bitcast) | 
 |       return 0; | 
 |  | 
 |     insnsToKill.push_back(bitcast); | 
 |   } | 
 |  | 
 |   // Look for: | 
 |   //   %generator = call i8* @objc_retain(i8* %originalResult) | 
 |   // or | 
 |   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) | 
 |   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); | 
 |   if (!call) return 0; | 
 |  | 
 |   bool doRetainAutorelease; | 
 |  | 
 |   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { | 
 |     doRetainAutorelease = true; | 
 |   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() | 
 |                                           .objc_retainAutoreleasedReturnValue) { | 
 |     doRetainAutorelease = false; | 
 |  | 
 |     // Look for an inline asm immediately preceding the call and kill it, too. | 
 |     llvm::Instruction *prev = call->getPrevNode(); | 
 |     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev)) | 
 |       if (asmCall->getCalledValue() | 
 |             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) | 
 |         insnsToKill.push_back(prev); | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   result = call->getArgOperand(0); | 
 |   insnsToKill.push_back(call); | 
 |  | 
 |   // Keep killing bitcasts, for sanity.  Note that we no longer care | 
 |   // about precise ordering as long as there's exactly one use. | 
 |   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { | 
 |     if (!bitcast->hasOneUse()) break; | 
 |     insnsToKill.push_back(bitcast); | 
 |     result = bitcast->getOperand(0); | 
 |   } | 
 |  | 
 |   // Delete all the unnecessary instructions, from latest to earliest. | 
 |   for (SmallVectorImpl<llvm::Instruction*>::iterator | 
 |          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) | 
 |     (*i)->eraseFromParent(); | 
 |  | 
 |   // Do the fused retain/autorelease if we were asked to. | 
 |   if (doRetainAutorelease) | 
 |     result = CGF.EmitARCRetainAutoreleaseReturnValue(result); | 
 |  | 
 |   // Cast back to the result type. | 
 |   return CGF.Builder.CreateBitCast(result, resultType); | 
 | } | 
 |  | 
 | /// Emit an ARC autorelease of the result of a function. | 
 | static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, | 
 |                                             llvm::Value *result) { | 
 |   // At -O0, try to emit a fused retain/autorelease. | 
 |   if (CGF.shouldUseFusedARCCalls()) | 
 |     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) | 
 |       return fused; | 
 |  | 
 |   return CGF.EmitARCAutoreleaseReturnValue(result); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { | 
 |   // Functions with no result always return void. | 
 |   if (ReturnValue == 0) { | 
 |     Builder.CreateRetVoid(); | 
 |     return; | 
 |   } | 
 |  | 
 |   llvm::DebugLoc RetDbgLoc; | 
 |   llvm::Value *RV = 0; | 
 |   QualType RetTy = FI.getReturnType(); | 
 |   const ABIArgInfo &RetAI = FI.getReturnInfo(); | 
 |  | 
 |   switch (RetAI.getKind()) { | 
 |   case ABIArgInfo::Indirect: { | 
 |     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); | 
 |     if (RetTy->isAnyComplexType()) { | 
 |       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); | 
 |       StoreComplexToAddr(RT, CurFn->arg_begin(), false); | 
 |     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { | 
 |       // Do nothing; aggregrates get evaluated directly into the destination. | 
 |     } else { | 
 |       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), | 
 |                         false, Alignment, RetTy); | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   case ABIArgInfo::Extend: | 
 |   case ABIArgInfo::Direct: | 
 |     if (RetAI.getCoerceToType() == ConvertType(RetTy) && | 
 |         RetAI.getDirectOffset() == 0) { | 
 |       // The internal return value temp always will have pointer-to-return-type | 
 |       // type, just do a load. | 
 |  | 
 |       // If the instruction right before the insertion point is a store to the | 
 |       // return value, we can elide the load, zap the store, and usually zap the | 
 |       // alloca. | 
 |       llvm::BasicBlock *InsertBB = Builder.GetInsertBlock(); | 
 |       llvm::StoreInst *SI = 0; | 
 |       if (InsertBB->empty() || | 
 |           !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) || | 
 |           SI->getPointerOperand() != ReturnValue || SI->isVolatile()) { | 
 |         RV = Builder.CreateLoad(ReturnValue); | 
 |       } else { | 
 |         // Get the stored value and nuke the now-dead store. | 
 |         RetDbgLoc = SI->getDebugLoc(); | 
 |         RV = SI->getValueOperand(); | 
 |         SI->eraseFromParent(); | 
 |  | 
 |         // If that was the only use of the return value, nuke it as well now. | 
 |         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { | 
 |           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); | 
 |           ReturnValue = 0; | 
 |         } | 
 |       } | 
 |     } else { | 
 |       llvm::Value *V = ReturnValue; | 
 |       // If the value is offset in memory, apply the offset now. | 
 |       if (unsigned Offs = RetAI.getDirectOffset()) { | 
 |         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); | 
 |         V = Builder.CreateConstGEP1_32(V, Offs); | 
 |         V = Builder.CreateBitCast(V, | 
 |                          llvm::PointerType::getUnqual(RetAI.getCoerceToType())); | 
 |       } | 
 |  | 
 |       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); | 
 |     } | 
 |  | 
 |     // In ARC, end functions that return a retainable type with a call | 
 |     // to objc_autoreleaseReturnValue. | 
 |     if (AutoreleaseResult) { | 
 |       assert(getLangOptions().ObjCAutoRefCount && | 
 |              !FI.isReturnsRetained() && | 
 |              RetTy->isObjCRetainableType()); | 
 |       RV = emitAutoreleaseOfResult(*this, RV); | 
 |     } | 
 |  | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Ignore: | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Expand: | 
 |     assert(0 && "Invalid ABI kind for return argument"); | 
 |   } | 
 |  | 
 |   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); | 
 |   if (!RetDbgLoc.isUnknown()) | 
 |     Ret->setDebugLoc(RetDbgLoc); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, | 
 |                                           const VarDecl *param) { | 
 |   // StartFunction converted the ABI-lowered parameter(s) into a | 
 |   // local alloca.  We need to turn that into an r-value suitable | 
 |   // for EmitCall. | 
 |   llvm::Value *local = GetAddrOfLocalVar(param); | 
 |  | 
 |   QualType type = param->getType(); | 
 |  | 
 |   // For the most part, we just need to load the alloca, except: | 
 |   // 1) aggregate r-values are actually pointers to temporaries, and | 
 |   // 2) references to aggregates are pointers directly to the aggregate. | 
 |   // I don't know why references to non-aggregates are different here. | 
 |   if (const ReferenceType *ref = type->getAs<ReferenceType>()) { | 
 |     if (hasAggregateLLVMType(ref->getPointeeType())) | 
 |       return args.add(RValue::getAggregate(local), type); | 
 |  | 
 |     // Locals which are references to scalars are represented | 
 |     // with allocas holding the pointer. | 
 |     return args.add(RValue::get(Builder.CreateLoad(local)), type); | 
 |   } | 
 |  | 
 |   if (type->isAnyComplexType()) { | 
 |     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); | 
 |     return args.add(RValue::getComplex(complex), type); | 
 |   } | 
 |  | 
 |   if (hasAggregateLLVMType(type)) | 
 |     return args.add(RValue::getAggregate(local), type); | 
 |  | 
 |   unsigned alignment = getContext().getDeclAlign(param).getQuantity(); | 
 |   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); | 
 |   return args.add(RValue::get(value), type); | 
 | } | 
 |  | 
 | static bool isProvablyNull(llvm::Value *addr) { | 
 |   return isa<llvm::ConstantPointerNull>(addr); | 
 | } | 
 |  | 
 | static bool isProvablyNonNull(llvm::Value *addr) { | 
 |   return isa<llvm::AllocaInst>(addr); | 
 | } | 
 |  | 
 | /// Emit the actual writing-back of a writeback. | 
 | static void emitWriteback(CodeGenFunction &CGF, | 
 |                           const CallArgList::Writeback &writeback) { | 
 |   llvm::Value *srcAddr = writeback.Address; | 
 |   assert(!isProvablyNull(srcAddr) && | 
 |          "shouldn't have writeback for provably null argument"); | 
 |  | 
 |   llvm::BasicBlock *contBB = 0; | 
 |  | 
 |   // If the argument wasn't provably non-null, we need to null check | 
 |   // before doing the store. | 
 |   bool provablyNonNull = isProvablyNonNull(srcAddr); | 
 |   if (!provablyNonNull) { | 
 |     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); | 
 |     contBB = CGF.createBasicBlock("icr.done"); | 
 |  | 
 |     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); | 
 |     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); | 
 |     CGF.EmitBlock(writebackBB); | 
 |   } | 
 |  | 
 |   // Load the value to writeback. | 
 |   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); | 
 |  | 
 |   // Cast it back, in case we're writing an id to a Foo* or something. | 
 |   value = CGF.Builder.CreateBitCast(value, | 
 |                cast<llvm::PointerType>(srcAddr->getType())->getElementType(), | 
 |                             "icr.writeback-cast"); | 
 |    | 
 |   // Perform the writeback. | 
 |   QualType srcAddrType = writeback.AddressType; | 
 |   CGF.EmitStoreThroughLValue(RValue::get(value), | 
 |                              CGF.MakeAddrLValue(srcAddr, srcAddrType)); | 
 |  | 
 |   // Jump to the continuation block. | 
 |   if (!provablyNonNull) | 
 |     CGF.EmitBlock(contBB); | 
 | } | 
 |  | 
 | static void emitWritebacks(CodeGenFunction &CGF, | 
 |                            const CallArgList &args) { | 
 |   for (CallArgList::writeback_iterator | 
 |          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) | 
 |     emitWriteback(CGF, *i); | 
 | } | 
 |  | 
 | /// Emit an argument that's being passed call-by-writeback.  That is, | 
 | /// we are passing the address of  | 
 | static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, | 
 |                              const ObjCIndirectCopyRestoreExpr *CRE) { | 
 |   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); | 
 |  | 
 |   // The dest and src types don't necessarily match in LLVM terms | 
 |   // because of the crazy ObjC compatibility rules. | 
 |  | 
 |   llvm::PointerType *destType = | 
 |     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); | 
 |  | 
 |   // If the address is a constant null, just pass the appropriate null. | 
 |   if (isProvablyNull(srcAddr)) { | 
 |     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), | 
 |              CRE->getType()); | 
 |     return; | 
 |   } | 
 |  | 
 |   QualType srcAddrType = | 
 |     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); | 
 |  | 
 |   // Create the temporary. | 
 |   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), | 
 |                                            "icr.temp"); | 
 |  | 
 |   // Zero-initialize it if we're not doing a copy-initialization. | 
 |   bool shouldCopy = CRE->shouldCopy(); | 
 |   if (!shouldCopy) { | 
 |     llvm::Value *null = | 
 |       llvm::ConstantPointerNull::get( | 
 |         cast<llvm::PointerType>(destType->getElementType())); | 
 |     CGF.Builder.CreateStore(null, temp); | 
 |   } | 
 |  | 
 |   llvm::BasicBlock *contBB = 0; | 
 |  | 
 |   // If the address is *not* known to be non-null, we need to switch. | 
 |   llvm::Value *finalArgument; | 
 |  | 
 |   bool provablyNonNull = isProvablyNonNull(srcAddr); | 
 |   if (provablyNonNull) { | 
 |     finalArgument = temp; | 
 |   } else { | 
 |     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); | 
 |  | 
 |     finalArgument = CGF.Builder.CreateSelect(isNull,  | 
 |                                    llvm::ConstantPointerNull::get(destType), | 
 |                                              temp, "icr.argument"); | 
 |  | 
 |     // If we need to copy, then the load has to be conditional, which | 
 |     // means we need control flow. | 
 |     if (shouldCopy) { | 
 |       contBB = CGF.createBasicBlock("icr.cont"); | 
 |       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); | 
 |       CGF.Builder.CreateCondBr(isNull, contBB, copyBB); | 
 |       CGF.EmitBlock(copyBB); | 
 |     } | 
 |   } | 
 |  | 
 |   // Perform a copy if necessary. | 
 |   if (shouldCopy) { | 
 |     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); | 
 |     RValue srcRV = CGF.EmitLoadOfLValue(srcLV); | 
 |     assert(srcRV.isScalar()); | 
 |  | 
 |     llvm::Value *src = srcRV.getScalarVal(); | 
 |     src = CGF.Builder.CreateBitCast(src, destType->getElementType(), | 
 |                                     "icr.cast"); | 
 |  | 
 |     // Use an ordinary store, not a store-to-lvalue. | 
 |     CGF.Builder.CreateStore(src, temp); | 
 |   } | 
 |  | 
 |   // Finish the control flow if we needed it. | 
 |   if (shouldCopy && !provablyNonNull) | 
 |     CGF.EmitBlock(contBB); | 
 |  | 
 |   args.addWriteback(srcAddr, srcAddrType, temp); | 
 |   args.add(RValue::get(finalArgument), CRE->getType()); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, | 
 |                                   QualType type) { | 
 |   if (const ObjCIndirectCopyRestoreExpr *CRE | 
 |         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { | 
 |     assert(getContext().getLangOptions().ObjCAutoRefCount); | 
 |     assert(getContext().hasSameType(E->getType(), type)); | 
 |     return emitWritebackArg(*this, args, CRE); | 
 |   } | 
 |  | 
 |   if (type->isReferenceType()) | 
 |     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), | 
 |                     type); | 
 |  | 
 |   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && | 
 |       isa<ImplicitCastExpr>(E) && | 
 |       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { | 
 |     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); | 
 |     assert(L.isSimple()); | 
 |     args.add(RValue::getAggregate(L.getAddress(), L.isVolatileQualified()), | 
 |              type, /*NeedsCopy*/true); | 
 |     return; | 
 |   } | 
 |  | 
 |   args.add(EmitAnyExprToTemp(E), type); | 
 | } | 
 |  | 
 | /// Emits a call or invoke instruction to the given function, depending | 
 | /// on the current state of the EH stack. | 
 | llvm::CallSite | 
 | CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, | 
 |                                   ArrayRef<llvm::Value *> Args, | 
 |                                   const Twine &Name) { | 
 |   llvm::BasicBlock *InvokeDest = getInvokeDest(); | 
 |   if (!InvokeDest) | 
 |     return Builder.CreateCall(Callee, Args, Name); | 
 |  | 
 |   llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); | 
 |   llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest, | 
 |                                                   Args, Name); | 
 |   EmitBlock(ContBB); | 
 |   return Invoke; | 
 | } | 
 |  | 
 | llvm::CallSite | 
 | CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, | 
 |                                   const Twine &Name) { | 
 |   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); | 
 | } | 
 |  | 
 | static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, | 
 |                             llvm::FunctionType *FTy) { | 
 |   if (ArgNo < FTy->getNumParams()) | 
 |     assert(Elt->getType() == FTy->getParamType(ArgNo)); | 
 |   else | 
 |     assert(FTy->isVarArg()); | 
 |   ++ArgNo; | 
 | } | 
 |  | 
 | void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, | 
 |                                        SmallVector<llvm::Value*,16> &Args, | 
 |                                        llvm::FunctionType *IRFuncTy) { | 
 |   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { | 
 |     unsigned NumElts = AT->getSize().getZExtValue(); | 
 |     QualType EltTy = AT->getElementType(); | 
 |     llvm::Value *Addr = RV.getAggregateAddr(); | 
 |     for (unsigned Elt = 0; Elt < NumElts; ++Elt) { | 
 |       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); | 
 |       LValue LV = MakeAddrLValue(EltAddr, EltTy); | 
 |       RValue EltRV; | 
 |       if (CodeGenFunction::hasAggregateLLVMType(EltTy)) | 
 |         EltRV = RValue::getAggregate(LV.getAddress()); | 
 |       else | 
 |         EltRV = EmitLoadOfLValue(LV); | 
 |       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); | 
 |     } | 
 |   } else if (const RecordType *RT = Ty->getAsStructureType()) { | 
 |     RecordDecl *RD = RT->getDecl(); | 
 |     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); | 
 |     llvm::Value *Addr = RV.getAggregateAddr(); | 
 |     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
 |          i != e; ++i) { | 
 |       FieldDecl *FD = *i; | 
 |       QualType FT = FD->getType(); | 
 |      | 
 |       // FIXME: What are the right qualifiers here? | 
 |       LValue LV = EmitLValueForField(Addr, FD, 0); | 
 |       RValue FldRV; | 
 |       if (CodeGenFunction::hasAggregateLLVMType(FT)) | 
 |         FldRV = RValue::getAggregate(LV.getAddress()); | 
 |       else | 
 |         FldRV = EmitLoadOfLValue(LV); | 
 |       ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy); | 
 |     } | 
 |   } else if (isa<ComplexType>(Ty)) { | 
 |     ComplexPairTy CV = RV.getComplexVal(); | 
 |     Args.push_back(CV.first); | 
 |     Args.push_back(CV.second); | 
 |   } else { | 
 |     assert(RV.isScalar() && | 
 |            "Unexpected non-scalar rvalue during struct expansion."); | 
 |  | 
 |     // Insert a bitcast as needed. | 
 |     llvm::Value *V = RV.getScalarVal(); | 
 |     if (Args.size() < IRFuncTy->getNumParams() && | 
 |         V->getType() != IRFuncTy->getParamType(Args.size())) | 
 |       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); | 
 |  | 
 |     Args.push_back(V); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, | 
 |                                  llvm::Value *Callee, | 
 |                                  ReturnValueSlot ReturnValue, | 
 |                                  const CallArgList &CallArgs, | 
 |                                  const Decl *TargetDecl, | 
 |                                  llvm::Instruction **callOrInvoke) { | 
 |   // FIXME: We no longer need the types from CallArgs; lift up and simplify. | 
 |   SmallVector<llvm::Value*, 16> Args; | 
 |  | 
 |   // Handle struct-return functions by passing a pointer to the | 
 |   // location that we would like to return into. | 
 |   QualType RetTy = CallInfo.getReturnType(); | 
 |   const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); | 
 |  | 
 |   // IRArgNo - Keep track of the argument number in the callee we're looking at. | 
 |   unsigned IRArgNo = 0; | 
 |   llvm::FunctionType *IRFuncTy = | 
 |     cast<llvm::FunctionType>( | 
 |                   cast<llvm::PointerType>(Callee->getType())->getElementType()); | 
 |  | 
 |   // If the call returns a temporary with struct return, create a temporary | 
 |   // alloca to hold the result, unless one is given to us. | 
 |   if (CGM.ReturnTypeUsesSRet(CallInfo)) { | 
 |     llvm::Value *Value = ReturnValue.getValue(); | 
 |     if (!Value) | 
 |       Value = CreateMemTemp(RetTy); | 
 |     Args.push_back(Value); | 
 |     checkArgMatches(Value, IRArgNo, IRFuncTy); | 
 |   } | 
 |  | 
 |   assert(CallInfo.arg_size() == CallArgs.size() && | 
 |          "Mismatch between function signature & arguments."); | 
 |   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); | 
 |   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); | 
 |        I != E; ++I, ++info_it) { | 
 |     const ABIArgInfo &ArgInfo = info_it->info; | 
 |     RValue RV = I->RV; | 
 |  | 
 |     unsigned TypeAlign = | 
 |       getContext().getTypeAlignInChars(I->Ty).getQuantity(); | 
 |     switch (ArgInfo.getKind()) { | 
 |     case ABIArgInfo::Indirect: { | 
 |       if (RV.isScalar() || RV.isComplex()) { | 
 |         // Make a temporary alloca to pass the argument. | 
 |         llvm::AllocaInst *AI = CreateMemTemp(I->Ty); | 
 |         if (ArgInfo.getIndirectAlign() > AI->getAlignment()) | 
 |           AI->setAlignment(ArgInfo.getIndirectAlign()); | 
 |         Args.push_back(AI); | 
 |          | 
 |         if (RV.isScalar()) | 
 |           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, | 
 |                             TypeAlign, I->Ty); | 
 |         else | 
 |           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); | 
 |          | 
 |         // Validate argument match. | 
 |         checkArgMatches(AI, IRArgNo, IRFuncTy); | 
 |       } else { | 
 |         // We want to avoid creating an unnecessary temporary+copy here; | 
 |         // however, we need one in two cases: | 
 |         // 1. If the argument is not byval, and we are required to copy the | 
 |         //    source.  (This case doesn't occur on any common architecture.) | 
 |         // 2. If the argument is byval, RV is not sufficiently aligned, and | 
 |         //    we cannot force it to be sufficiently aligned. | 
 |         llvm::Value *Addr = RV.getAggregateAddr(); | 
 |         unsigned Align = ArgInfo.getIndirectAlign(); | 
 |         const llvm::TargetData *TD = &CGM.getTargetData(); | 
 |         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || | 
 |             (ArgInfo.getIndirectByVal() && TypeAlign < Align && | 
 |              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { | 
 |           // Create an aligned temporary, and copy to it. | 
 |           llvm::AllocaInst *AI = CreateMemTemp(I->Ty); | 
 |           if (Align > AI->getAlignment()) | 
 |             AI->setAlignment(Align); | 
 |           Args.push_back(AI); | 
 |           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); | 
 |                | 
 |           // Validate argument match. | 
 |           checkArgMatches(AI, IRArgNo, IRFuncTy); | 
 |         } else { | 
 |           // Skip the extra memcpy call. | 
 |           Args.push_back(Addr); | 
 |            | 
 |           // Validate argument match. | 
 |           checkArgMatches(Addr, IRArgNo, IRFuncTy); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Ignore: | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Extend: | 
 |     case ABIArgInfo::Direct: { | 
 |       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && | 
 |           ArgInfo.getCoerceToType() == ConvertType(info_it->type) && | 
 |           ArgInfo.getDirectOffset() == 0) { | 
 |         llvm::Value *V; | 
 |         if (RV.isScalar()) | 
 |           V = RV.getScalarVal(); | 
 |         else | 
 |           V = Builder.CreateLoad(RV.getAggregateAddr()); | 
 |          | 
 |         // If the argument doesn't match, perform a bitcast to coerce it.  This | 
 |         // can happen due to trivial type mismatches. | 
 |         if (IRArgNo < IRFuncTy->getNumParams() && | 
 |             V->getType() != IRFuncTy->getParamType(IRArgNo)) | 
 |           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); | 
 |         Args.push_back(V); | 
 |          | 
 |         checkArgMatches(V, IRArgNo, IRFuncTy); | 
 |         break; | 
 |       } | 
 |  | 
 |       // FIXME: Avoid the conversion through memory if possible. | 
 |       llvm::Value *SrcPtr; | 
 |       if (RV.isScalar()) { | 
 |         SrcPtr = CreateMemTemp(I->Ty, "coerce"); | 
 |         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); | 
 |       } else if (RV.isComplex()) { | 
 |         SrcPtr = CreateMemTemp(I->Ty, "coerce"); | 
 |         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); | 
 |       } else | 
 |         SrcPtr = RV.getAggregateAddr(); | 
 |  | 
 |       // If the value is offset in memory, apply the offset now. | 
 |       if (unsigned Offs = ArgInfo.getDirectOffset()) { | 
 |         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); | 
 |         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); | 
 |         SrcPtr = Builder.CreateBitCast(SrcPtr, | 
 |                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); | 
 |  | 
 |       } | 
 |  | 
 |       // If the coerce-to type is a first class aggregate, we flatten it and | 
 |       // pass the elements. Either way is semantically identical, but fast-isel | 
 |       // and the optimizer generally likes scalar values better than FCAs. | 
 |       if (llvm::StructType *STy = | 
 |             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { | 
 |         SrcPtr = Builder.CreateBitCast(SrcPtr, | 
 |                                        llvm::PointerType::getUnqual(STy)); | 
 |         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
 |           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); | 
 |           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); | 
 |           // We don't know what we're loading from. | 
 |           LI->setAlignment(1); | 
 |           Args.push_back(LI); | 
 |            | 
 |           // Validate argument match. | 
 |           checkArgMatches(LI, IRArgNo, IRFuncTy); | 
 |         } | 
 |       } else { | 
 |         // In the simple case, just pass the coerced loaded value. | 
 |         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), | 
 |                                          *this)); | 
 |          | 
 |         // Validate argument match. | 
 |         checkArgMatches(Args.back(), IRArgNo, IRFuncTy); | 
 |       } | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Expand: | 
 |       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); | 
 |       IRArgNo = Args.size(); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // If the callee is a bitcast of a function to a varargs pointer to function | 
 |   // type, check to see if we can remove the bitcast.  This handles some cases | 
 |   // with unprototyped functions. | 
 |   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) | 
 |     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { | 
 |       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); | 
 |       llvm::FunctionType *CurFT = | 
 |         cast<llvm::FunctionType>(CurPT->getElementType()); | 
 |       llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); | 
 |  | 
 |       if (CE->getOpcode() == llvm::Instruction::BitCast && | 
 |           ActualFT->getReturnType() == CurFT->getReturnType() && | 
 |           ActualFT->getNumParams() == CurFT->getNumParams() && | 
 |           ActualFT->getNumParams() == Args.size() && | 
 |           (CurFT->isVarArg() || !ActualFT->isVarArg())) { | 
 |         bool ArgsMatch = true; | 
 |         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) | 
 |           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { | 
 |             ArgsMatch = false; | 
 |             break; | 
 |           } | 
 |  | 
 |         // Strip the cast if we can get away with it.  This is a nice cleanup, | 
 |         // but also allows us to inline the function at -O0 if it is marked | 
 |         // always_inline. | 
 |         if (ArgsMatch) | 
 |           Callee = CalleeF; | 
 |       } | 
 |     } | 
 |  | 
 |   unsigned CallingConv; | 
 |   CodeGen::AttributeListType AttributeList; | 
 |   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); | 
 |   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), | 
 |                                                    AttributeList.end()); | 
 |  | 
 |   llvm::BasicBlock *InvokeDest = 0; | 
 |   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) | 
 |     InvokeDest = getInvokeDest(); | 
 |  | 
 |   llvm::CallSite CS; | 
 |   if (!InvokeDest) { | 
 |     CS = Builder.CreateCall(Callee, Args); | 
 |   } else { | 
 |     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); | 
 |     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); | 
 |     EmitBlock(Cont); | 
 |   } | 
 |   if (callOrInvoke) | 
 |     *callOrInvoke = CS.getInstruction(); | 
 |  | 
 |   CS.setAttributes(Attrs); | 
 |   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); | 
 |  | 
 |   // If the call doesn't return, finish the basic block and clear the | 
 |   // insertion point; this allows the rest of IRgen to discard | 
 |   // unreachable code. | 
 |   if (CS.doesNotReturn()) { | 
 |     Builder.CreateUnreachable(); | 
 |     Builder.ClearInsertionPoint(); | 
 |  | 
 |     // FIXME: For now, emit a dummy basic block because expr emitters in | 
 |     // generally are not ready to handle emitting expressions at unreachable | 
 |     // points. | 
 |     EnsureInsertPoint(); | 
 |  | 
 |     // Return a reasonable RValue. | 
 |     return GetUndefRValue(RetTy); | 
 |   } | 
 |  | 
 |   llvm::Instruction *CI = CS.getInstruction(); | 
 |   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) | 
 |     CI->setName("call"); | 
 |  | 
 |   // Emit any writebacks immediately.  Arguably this should happen | 
 |   // after any return-value munging. | 
 |   if (CallArgs.hasWritebacks()) | 
 |     emitWritebacks(*this, CallArgs); | 
 |  | 
 |   switch (RetAI.getKind()) { | 
 |   case ABIArgInfo::Indirect: { | 
 |     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); | 
 |     if (RetTy->isAnyComplexType()) | 
 |       return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); | 
 |     if (CodeGenFunction::hasAggregateLLVMType(RetTy)) | 
 |       return RValue::getAggregate(Args[0]); | 
 |     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); | 
 |   } | 
 |  | 
 |   case ABIArgInfo::Ignore: | 
 |     // If we are ignoring an argument that had a result, make sure to | 
 |     // construct the appropriate return value for our caller. | 
 |     return GetUndefRValue(RetTy); | 
 |  | 
 |   case ABIArgInfo::Extend: | 
 |   case ABIArgInfo::Direct: { | 
 |     llvm::Type *RetIRTy = ConvertType(RetTy); | 
 |     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { | 
 |       if (RetTy->isAnyComplexType()) { | 
 |         llvm::Value *Real = Builder.CreateExtractValue(CI, 0); | 
 |         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); | 
 |         return RValue::getComplex(std::make_pair(Real, Imag)); | 
 |       } | 
 |       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { | 
 |         llvm::Value *DestPtr = ReturnValue.getValue(); | 
 |         bool DestIsVolatile = ReturnValue.isVolatile(); | 
 |  | 
 |         if (!DestPtr) { | 
 |           DestPtr = CreateMemTemp(RetTy, "agg.tmp"); | 
 |           DestIsVolatile = false; | 
 |         } | 
 |         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); | 
 |         return RValue::getAggregate(DestPtr); | 
 |       } | 
 |        | 
 |       // If the argument doesn't match, perform a bitcast to coerce it.  This | 
 |       // can happen due to trivial type mismatches. | 
 |       llvm::Value *V = CI; | 
 |       if (V->getType() != RetIRTy) | 
 |         V = Builder.CreateBitCast(V, RetIRTy); | 
 |       return RValue::get(V); | 
 |     } | 
 |  | 
 |     llvm::Value *DestPtr = ReturnValue.getValue(); | 
 |     bool DestIsVolatile = ReturnValue.isVolatile(); | 
 |  | 
 |     if (!DestPtr) { | 
 |       DestPtr = CreateMemTemp(RetTy, "coerce"); | 
 |       DestIsVolatile = false; | 
 |     } | 
 |  | 
 |     // If the value is offset in memory, apply the offset now. | 
 |     llvm::Value *StorePtr = DestPtr; | 
 |     if (unsigned Offs = RetAI.getDirectOffset()) { | 
 |       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); | 
 |       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); | 
 |       StorePtr = Builder.CreateBitCast(StorePtr, | 
 |                          llvm::PointerType::getUnqual(RetAI.getCoerceToType())); | 
 |     } | 
 |     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); | 
 |  | 
 |     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); | 
 |     if (RetTy->isAnyComplexType()) | 
 |       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); | 
 |     if (CodeGenFunction::hasAggregateLLVMType(RetTy)) | 
 |       return RValue::getAggregate(DestPtr); | 
 |     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); | 
 |   } | 
 |  | 
 |   case ABIArgInfo::Expand: | 
 |     assert(0 && "Invalid ABI kind for return argument"); | 
 |   } | 
 |  | 
 |   assert(0 && "Unhandled ABIArgInfo::Kind"); | 
 |   return RValue::get(0); | 
 | } | 
 |  | 
 | /* VarArg handling */ | 
 |  | 
 | llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { | 
 |   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); | 
 | } |