blob: f08499084a52c73c9c2ea0746ec0d7f406a24c42 [file] [log] [blame]
//===--- Expr.cpp - Expression Constant Evaluator -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/STmtVisitor.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
#define USE_NEW_EVALUATOR 0
static bool CalcFakeICEVal(const Expr* Expr,
llvm::APSInt& Result,
ASTContext& Context) {
// Calculate the value of an expression that has a calculatable
// value, but isn't an ICE. Currently, this only supports
// a very narrow set of extensions, but it can be expanded if needed.
if (const ParenExpr *PE = dyn_cast<ParenExpr>(Expr))
return CalcFakeICEVal(PE->getSubExpr(), Result, Context);
if (const CastExpr *CE = dyn_cast<CastExpr>(Expr)) {
QualType CETy = CE->getType();
if ((CETy->isIntegralType() && !CETy->isBooleanType()) ||
CETy->isPointerType()) {
if (CalcFakeICEVal(CE->getSubExpr(), Result, Context)) {
Result.extOrTrunc(Context.getTypeSize(CETy));
// FIXME: This assumes pointers are signed.
Result.setIsSigned(CETy->isSignedIntegerType() ||
CETy->isPointerType());
return true;
}
}
}
if (Expr->getType()->isIntegralType())
return Expr->isIntegerConstantExpr(Result, Context);
return false;
}
namespace {
class VISIBILITY_HIDDEN IntExprEvaluator
: public StmtVisitor<IntExprEvaluator, APValue> {
ASTContext &Ctx;
IntExprEvaluator(ASTContext &ctx)
: Ctx(ctx) {}
public:
static bool Evaluate(const Expr* E, llvm::APSInt& Result, ASTContext &Ctx) {
APValue Value = IntExprEvaluator(Ctx).Visit(const_cast<Expr*>(E));
if (!Value.isSInt())
return false;
Result = Value.getSInt();
return true;
}
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
APValue VisitStmt(Stmt *S) {
// FIXME: Remove this when we support more expressions.
printf("Unhandled statement\n");
S->dump();
return APValue();
}
APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
APValue VisitBinaryOperator(const BinaryOperator *E) {
// The LHS of a constant expr is always evaluated and needed.
llvm::APSInt Result(32);
if (!Evaluate(E->getRHS(), Result, Ctx))
return APValue();
llvm::APSInt RHS(32);
if (!Evaluate(E->getRHS(), RHS, Ctx))
return APValue();
switch (E->getOpcode()) {
default:
return APValue();
case BinaryOperator::Mul:
Result *= RHS;
break;
case BinaryOperator::Div:
if (RHS == 0)
return APValue();
Result /= RHS;
break;
case BinaryOperator::Rem:
if (RHS == 0)
return APValue();
Result %= RHS;
break;
case BinaryOperator::Add: Result += RHS; break;
case BinaryOperator::Sub: Result -= RHS; break;
case BinaryOperator::Shl:
Result <<=
static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
break;
case BinaryOperator::Shr:
Result >>=
static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
break;
case BinaryOperator::LT: Result = Result < RHS; break;
case BinaryOperator::GT: Result = Result > RHS; break;
case BinaryOperator::LE: Result = Result <= RHS; break;
case BinaryOperator::GE: Result = Result >= RHS; break;
case BinaryOperator::EQ: Result = Result == RHS; break;
case BinaryOperator::NE: Result = Result != RHS; break;
case BinaryOperator::And: Result &= RHS; break;
case BinaryOperator::Xor: Result ^= RHS; break;
case BinaryOperator::Or: Result |= RHS; break;
case BinaryOperator::Comma:
// C99 6.6p3: "shall not contain assignment, ..., or comma operators,
// *except* when they are contained within a subexpression that is not
// evaluated". Note that Assignment can never happen due to constraints
// on the LHS subexpr, so we don't need to check it here.
// FIXME: Need to come up with an efficient way to deal with the C99
// rules on evaluation while still evaluating this. Maybe a
// "evaluated comma" out parameter?
return APValue();
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return APValue(Result);
}
APValue VisitUnaryOperator(const UnaryOperator *E) {
llvm::APSInt Result(32);
if (E->isOffsetOfOp())
Result = E->evaluateOffsetOf(Ctx);
else if (E->isSizeOfAlignOfOp()) {
// Return the result in the right width.
Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(E->getType())));
// sizeof(void) and __alignof__(void) = 1 as a gcc extension.
if (E->getSubExpr()->getType()->isVoidType())
Result = 1;
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
if (!E->getSubExpr()->getType()->isConstantSizeType()) {
// FIXME: Should we attempt to evaluate this?
return APValue();
}
// Get information about the size or align.
if (E->getSubExpr()->getType()->isFunctionType()) {
// GCC extension: sizeof(function) = 1.
// FIXME: AlignOf shouldn't be unconditionally 4!
Result = E->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
} else {
unsigned CharSize = Ctx.Target.getCharWidth();
if (E->getOpcode() == UnaryOperator::AlignOf)
Result = Ctx.getTypeAlign(E->getSubExpr()->getType()) / CharSize;
else
Result = Ctx.getTypeSize(E->getSubExpr()->getType()) / CharSize;
}
} else {
// Get the operand value. If this is sizeof/alignof, do not evalute the
// operand. This affects C99 6.6p3.
if (!Evaluate(E->getSubExpr(), Result, Ctx))
return APValue();
switch (E->getOpcode()) {
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
// See C99 6.6p3.
default:
return APValue();
case UnaryOperator::Extension:
assert(0 && "Handle UnaryOperator::Extension");
return APValue();
case UnaryOperator::LNot: {
bool Val = Result == 0;
uint32_t typeSize = Ctx.getTypeSize(E->getType());
Result.zextOrTrunc(typeSize);
Result = Val;
break;
}
case UnaryOperator::Plus:
break;
case UnaryOperator::Minus:
Result = -Result;
break;
case UnaryOperator::Not:
Result = ~Result;
break;
}
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return APValue(Result);
}
};
}
bool Expr::tryEvaluate(APValue& Result, ASTContext &Ctx) const
{
llvm::APSInt sInt(1);
#if USE_NEW_EVALUATOR
if (getType()->isIntegerType()) {
if (IntExprEvaluator::Evaluate(this, sInt, Ctx)) {
Result = APValue(sInt);
return true;
}
} else
return false;
#else
if (CalcFakeICEVal(this, sInt, Ctx)) {
Result = APValue(sInt);
return true;
}
#endif
return false;
}