blob: 1775b2f7bf4aab6aa2a839d763b704424e46f881 [file] [log] [blame]
//===--- Lexer.cpp - C Language Family Lexer ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Lexer and LexerToken interfaces.
//
//===----------------------------------------------------------------------===//
//
// TODO: GCC Diagnostics emitted by the lexer:
// PEDWARN: (form feed|vertical tab) in preprocessing directive
//
// Universal characters, unicode, char mapping:
// WARNING: `%.*s' is not in NFKC
// WARNING: `%.*s' is not in NFC
//
// Other:
// TODO: Options to support:
// -fexec-charset,-fwide-exec-charset
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cctype>
using namespace clang;
static void InitCharacterInfo();
Lexer::Lexer(const llvm::MemoryBuffer *File, unsigned fileid, Preprocessor &pp,
const char *BufStart, const char *BufEnd)
: BufferEnd(BufEnd ? BufEnd : File->getBufferEnd()),
InputFile(File), CurFileID(fileid), PP(pp), Features(PP.getLangOptions()) {
Is_PragmaLexer = false;
IsMainFile = false;
InitCharacterInfo();
assert(BufferEnd[0] == 0 &&
"We assume that the input buffer has a null character at the end"
" to simplify lexing!");
BufferPtr = BufStart ? BufStart : File->getBufferStart();
// Start of the file is a start of line.
IsAtStartOfLine = true;
// We are not after parsing a #.
ParsingPreprocessorDirective = false;
// We are not after parsing #include.
ParsingFilename = false;
// We are not in raw mode. Raw mode disables diagnostics and interpretation
// of tokens (e.g. identifiers, thus disabling macro expansion). It is used
// to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block
// or otherwise skipping over tokens.
LexingRawMode = false;
// Default to keeping comments if requested.
KeepCommentMode = PP.getCommentRetentionState();
}
/// Stringify - Convert the specified string into a C string, with surrounding
/// ""'s, and with escaped \ and " characters.
std::string Lexer::Stringify(const std::string &Str, bool Charify) {
std::string Result = Str;
char Quote = Charify ? '\'' : '"';
for (unsigned i = 0, e = Result.size(); i != e; ++i) {
if (Result[i] == '\\' || Result[i] == Quote) {
Result.insert(Result.begin()+i, '\\');
++i; ++e;
}
}
return Result;
}
//===----------------------------------------------------------------------===//
// Character information.
//===----------------------------------------------------------------------===//
static unsigned char CharInfo[256];
enum {
CHAR_HORZ_WS = 0x01, // ' ', '\t', '\f', '\v'. Note, no '\0'
CHAR_VERT_WS = 0x02, // '\r', '\n'
CHAR_LETTER = 0x04, // a-z,A-Z
CHAR_NUMBER = 0x08, // 0-9
CHAR_UNDER = 0x10, // _
CHAR_PERIOD = 0x20 // .
};
static void InitCharacterInfo() {
static bool isInited = false;
if (isInited) return;
isInited = true;
// Intiialize the CharInfo table.
// TODO: statically initialize this.
CharInfo[(int)' '] = CharInfo[(int)'\t'] =
CharInfo[(int)'\f'] = CharInfo[(int)'\v'] = CHAR_HORZ_WS;
CharInfo[(int)'\n'] = CharInfo[(int)'\r'] = CHAR_VERT_WS;
CharInfo[(int)'_'] = CHAR_UNDER;
CharInfo[(int)'.'] = CHAR_PERIOD;
for (unsigned i = 'a'; i <= 'z'; ++i)
CharInfo[i] = CharInfo[i+'A'-'a'] = CHAR_LETTER;
for (unsigned i = '0'; i <= '9'; ++i)
CharInfo[i] = CHAR_NUMBER;
}
/// isIdentifierBody - Return true if this is the body character of an
/// identifier, which is [a-zA-Z0-9_].
static inline bool isIdentifierBody(unsigned char c) {
return CharInfo[c] & (CHAR_LETTER|CHAR_NUMBER|CHAR_UNDER);
}
/// isHorizontalWhitespace - Return true if this character is horizontal
/// whitespace: ' ', '\t', '\f', '\v'. Note that this returns false for '\0'.
static inline bool isHorizontalWhitespace(unsigned char c) {
return CharInfo[c] & CHAR_HORZ_WS;
}
/// isWhitespace - Return true if this character is horizontal or vertical
/// whitespace: ' ', '\t', '\f', '\v', '\n', '\r'. Note that this returns false
/// for '\0'.
static inline bool isWhitespace(unsigned char c) {
return CharInfo[c] & (CHAR_HORZ_WS|CHAR_VERT_WS);
}
/// isNumberBody - Return true if this is the body character of an
/// preprocessing number, which is [a-zA-Z0-9_.].
static inline bool isNumberBody(unsigned char c) {
return CharInfo[c] & (CHAR_LETTER|CHAR_NUMBER|CHAR_UNDER|CHAR_PERIOD);
}
//===----------------------------------------------------------------------===//
// Diagnostics forwarding code.
//===----------------------------------------------------------------------===//
/// getSourceLocation - Return a source location identifier for the specified
/// offset in the current file.
SourceLocation Lexer::getSourceLocation(const char *Loc) const {
assert(Loc >= InputFile->getBufferStart() && Loc <= BufferEnd &&
"Location out of range for this buffer!");
return SourceLocation(CurFileID, Loc-InputFile->getBufferStart());
}
/// Diag - Forwarding function for diagnostics. This translate a source
/// position in the current buffer into a SourceLocation object for rendering.
void Lexer::Diag(const char *Loc, unsigned DiagID,
const std::string &Msg) const {
if (LexingRawMode && Diagnostic::isNoteWarningOrExtension(DiagID))
return;
PP.Diag(getSourceLocation(Loc), DiagID, Msg);
}
void Lexer::Diag(SourceLocation Loc, unsigned DiagID,
const std::string &Msg) const {
if (LexingRawMode && Diagnostic::isNoteWarningOrExtension(DiagID))
return;
PP.Diag(Loc, DiagID, Msg);
}
//===----------------------------------------------------------------------===//
// Trigraph and Escaped Newline Handling Code.
//===----------------------------------------------------------------------===//
/// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair,
/// return the decoded trigraph letter it corresponds to, or '\0' if nothing.
static char GetTrigraphCharForLetter(char Letter) {
switch (Letter) {
default: return 0;
case '=': return '#';
case ')': return ']';
case '(': return '[';
case '!': return '|';
case '\'': return '^';
case '>': return '}';
case '/': return '\\';
case '<': return '{';
case '-': return '~';
}
}
/// DecodeTrigraphChar - If the specified character is a legal trigraph when
/// prefixed with ??, emit a trigraph warning. If trigraphs are enabled,
/// return the result character. Finally, emit a warning about trigraph use
/// whether trigraphs are enabled or not.
static char DecodeTrigraphChar(const char *CP, Lexer *L) {
char Res = GetTrigraphCharForLetter(*CP);
if (Res && L) {
if (!L->getFeatures().Trigraphs) {
L->Diag(CP-2, diag::trigraph_ignored);
return 0;
} else {
L->Diag(CP-2, diag::trigraph_converted, std::string()+Res);
}
}
return Res;
}
/// getCharAndSizeSlow - Peek a single 'character' from the specified buffer,
/// get its size, and return it. This is tricky in several cases:
/// 1. If currently at the start of a trigraph, we warn about the trigraph,
/// then either return the trigraph (skipping 3 chars) or the '?',
/// depending on whether trigraphs are enabled or not.
/// 2. If this is an escaped newline (potentially with whitespace between
/// the backslash and newline), implicitly skip the newline and return
/// the char after it.
/// 3. If this is a UCN, return it. FIXME: C++ UCN's?
///
/// This handles the slow/uncommon case of the getCharAndSize method. Here we
/// know that we can accumulate into Size, and that we have already incremented
/// Ptr by Size bytes.
///
/// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should
/// be updated to match.
///
char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size,
LexerToken *Tok) {
// If we have a slash, look for an escaped newline.
if (Ptr[0] == '\\') {
++Size;
++Ptr;
Slash:
// Common case, backslash-char where the char is not whitespace.
if (!isWhitespace(Ptr[0])) return '\\';
// See if we have optional whitespace characters followed by a newline.
{
unsigned SizeTmp = 0;
do {
++SizeTmp;
if (Ptr[SizeTmp-1] == '\n' || Ptr[SizeTmp-1] == '\r') {
// Remember that this token needs to be cleaned.
if (Tok) Tok->setFlag(LexerToken::NeedsCleaning);
// Warn if there was whitespace between the backslash and newline.
if (SizeTmp != 1 && Tok)
Diag(Ptr, diag::backslash_newline_space);
// If this is a \r\n or \n\r, skip the newlines.
if ((Ptr[SizeTmp] == '\r' || Ptr[SizeTmp] == '\n') &&
Ptr[SizeTmp-1] != Ptr[SizeTmp])
++SizeTmp;
// Found backslash<whitespace><newline>. Parse the char after it.
Size += SizeTmp;
Ptr += SizeTmp;
// Use slow version to accumulate a correct size field.
return getCharAndSizeSlow(Ptr, Size, Tok);
}
} while (isWhitespace(Ptr[SizeTmp]));
}
// Otherwise, this is not an escaped newline, just return the slash.
return '\\';
}
// If this is a trigraph, process it.
if (Ptr[0] == '?' && Ptr[1] == '?') {
// If this is actually a legal trigraph (not something like "??x"), emit
// a trigraph warning. If so, and if trigraphs are enabled, return it.
if (char C = DecodeTrigraphChar(Ptr+2, Tok ? this : 0)) {
// Remember that this token needs to be cleaned.
if (Tok) Tok->setFlag(LexerToken::NeedsCleaning);
Ptr += 3;
Size += 3;
if (C == '\\') goto Slash;
return C;
}
}
// If this is neither, return a single character.
++Size;
return *Ptr;
}
/// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the
/// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size,
/// and that we have already incremented Ptr by Size bytes.
///
/// NOTE: When this method is updated, getCharAndSizeSlow (above) should
/// be updated to match.
char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size,
const LangOptions &Features) {
// If we have a slash, look for an escaped newline.
if (Ptr[0] == '\\') {
++Size;
++Ptr;
Slash:
// Common case, backslash-char where the char is not whitespace.
if (!isWhitespace(Ptr[0])) return '\\';
// See if we have optional whitespace characters followed by a newline.
{
unsigned SizeTmp = 0;
do {
++SizeTmp;
if (Ptr[SizeTmp-1] == '\n' || Ptr[SizeTmp-1] == '\r') {
// If this is a \r\n or \n\r, skip the newlines.
if ((Ptr[SizeTmp] == '\r' || Ptr[SizeTmp] == '\n') &&
Ptr[SizeTmp-1] != Ptr[SizeTmp])
++SizeTmp;
// Found backslash<whitespace><newline>. Parse the char after it.
Size += SizeTmp;
Ptr += SizeTmp;
// Use slow version to accumulate a correct size field.
return getCharAndSizeSlowNoWarn(Ptr, Size, Features);
}
} while (isWhitespace(Ptr[SizeTmp]));
}
// Otherwise, this is not an escaped newline, just return the slash.
return '\\';
}
// If this is a trigraph, process it.
if (Features.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') {
// If this is actually a legal trigraph (not something like "??x"), return
// it.
if (char C = GetTrigraphCharForLetter(Ptr[2])) {
Ptr += 3;
Size += 3;
if (C == '\\') goto Slash;
return C;
}
}
// If this is neither, return a single character.
++Size;
return *Ptr;
}
//===----------------------------------------------------------------------===//
// Helper methods for lexing.
//===----------------------------------------------------------------------===//
void Lexer::LexIdentifier(LexerToken &Result, const char *CurPtr) {
// Match [_A-Za-z0-9]*, we have already matched [_A-Za-z$]
unsigned Size;
unsigned char C = *CurPtr++;
while (isIdentifierBody(C)) {
C = *CurPtr++;
}
--CurPtr; // Back up over the skipped character.
// Fast path, no $,\,? in identifier found. '\' might be an escaped newline
// or UCN, and ? might be a trigraph for '\', an escaped newline or UCN.
// FIXME: UCNs.
if (C != '\\' && C != '?' && (C != '$' || !Features.DollarIdents)) {
FinishIdentifier:
const char *IdStart = BufferPtr;
FormTokenWithChars(Result, CurPtr);
Result.setKind(tok::identifier);
// If we are in raw mode, return this identifier raw. There is no need to
// look up identifier information or attempt to macro expand it.
if (LexingRawMode) return;
// Fill in Result.IdentifierInfo, looking up the identifier in the
// identifier table.
PP.LookUpIdentifierInfo(Result, IdStart);
// Finally, now that we know we have an identifier, pass this off to the
// preprocessor, which may macro expand it or something.
return PP.HandleIdentifier(Result);
}
// Otherwise, $,\,? in identifier found. Enter slower path.
C = getCharAndSize(CurPtr, Size);
while (1) {
if (C == '$') {
// If we hit a $ and they are not supported in identifiers, we are done.
if (!Features.DollarIdents) goto FinishIdentifier;
// Otherwise, emit a diagnostic and continue.
Diag(CurPtr, diag::ext_dollar_in_identifier);
CurPtr = ConsumeChar(CurPtr, Size, Result);
C = getCharAndSize(CurPtr, Size);
continue;
} else if (!isIdentifierBody(C)) { // FIXME: UCNs.
// Found end of identifier.
goto FinishIdentifier;
}
// Otherwise, this character is good, consume it.
CurPtr = ConsumeChar(CurPtr, Size, Result);
C = getCharAndSize(CurPtr, Size);
while (isIdentifierBody(C)) { // FIXME: UCNs.
CurPtr = ConsumeChar(CurPtr, Size, Result);
C = getCharAndSize(CurPtr, Size);
}
}
}
/// LexNumericConstant - Lex the remainer of a integer or floating point
/// constant. From[-1] is the first character lexed. Return the end of the
/// constant.
void Lexer::LexNumericConstant(LexerToken &Result, const char *CurPtr) {
unsigned Size;
char C = getCharAndSize(CurPtr, Size);
char PrevCh = 0;
while (isNumberBody(C)) { // FIXME: UCNs?
CurPtr = ConsumeChar(CurPtr, Size, Result);
PrevCh = C;
C = getCharAndSize(CurPtr, Size);
}
// If we fell out, check for a sign, due to 1e+12. If we have one, continue.
if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e'))
return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
// If we have a hex FP constant, continue.
if (Features.HexFloats &&
(C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p'))
return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
Result.setKind(tok::numeric_constant);
// Update the location of token as well as BufferPtr.
FormTokenWithChars(Result, CurPtr);
}
/// LexStringLiteral - Lex the remainder of a string literal, after having lexed
/// either " or L".
void Lexer::LexStringLiteral(LexerToken &Result, const char *CurPtr, bool Wide){
const char *NulCharacter = 0; // Does this string contain the \0 character?
char C = getAndAdvanceChar(CurPtr, Result);
while (C != '"') {
// Skip escaped characters.
if (C == '\\') {
// Skip the escaped character.
C = getAndAdvanceChar(CurPtr, Result);
} else if (C == '\n' || C == '\r' || // Newline.
(C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
if (!LexingRawMode) Diag(BufferPtr, diag::err_unterminated_string);
Result.setKind(tok::unknown);
FormTokenWithChars(Result, CurPtr-1);
return;
} else if (C == 0) {
NulCharacter = CurPtr-1;
}
C = getAndAdvanceChar(CurPtr, Result);
}
// If a nul character existed in the string, warn about it.
if (NulCharacter) Diag(NulCharacter, diag::null_in_string);
Result.setKind(Wide ? tok::wide_string_literal : tok::string_literal);
// Update the location of the token as well as the BufferPtr instance var.
FormTokenWithChars(Result, CurPtr);
}
/// LexAngledStringLiteral - Lex the remainder of an angled string literal,
/// after having lexed the '<' character. This is used for #include filenames.
void Lexer::LexAngledStringLiteral(LexerToken &Result, const char *CurPtr) {
const char *NulCharacter = 0; // Does this string contain the \0 character?
char C = getAndAdvanceChar(CurPtr, Result);
while (C != '>') {
// Skip escaped characters.
if (C == '\\') {
// Skip the escaped character.
C = getAndAdvanceChar(CurPtr, Result);
} else if (C == '\n' || C == '\r' || // Newline.
(C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
if (!LexingRawMode) Diag(BufferPtr, diag::err_unterminated_string);
Result.setKind(tok::unknown);
FormTokenWithChars(Result, CurPtr-1);
return;
} else if (C == 0) {
NulCharacter = CurPtr-1;
}
C = getAndAdvanceChar(CurPtr, Result);
}
// If a nul character existed in the string, warn about it.
if (NulCharacter) Diag(NulCharacter, diag::null_in_string);
Result.setKind(tok::angle_string_literal);
// Update the location of token as well as BufferPtr.
FormTokenWithChars(Result, CurPtr);
}
/// LexCharConstant - Lex the remainder of a character constant, after having
/// lexed either ' or L'.
void Lexer::LexCharConstant(LexerToken &Result, const char *CurPtr) {
const char *NulCharacter = 0; // Does this character contain the \0 character?
// Handle the common case of 'x' and '\y' efficiently.
char C = getAndAdvanceChar(CurPtr, Result);
if (C == '\'') {
if (!LexingRawMode) Diag(BufferPtr, diag::err_empty_character);
Result.setKind(tok::unknown);
FormTokenWithChars(Result, CurPtr);
return;
} else if (C == '\\') {
// Skip the escaped character.
// FIXME: UCN's.
C = getAndAdvanceChar(CurPtr, Result);
}
if (C && C != '\n' && C != '\r' && CurPtr[0] == '\'') {
++CurPtr;
} else {
// Fall back on generic code for embedded nulls, newlines, wide chars.
do {
// Skip escaped characters.
if (C == '\\') {
// Skip the escaped character.
C = getAndAdvanceChar(CurPtr, Result);
} else if (C == '\n' || C == '\r' || // Newline.
(C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
if (!LexingRawMode) Diag(BufferPtr, diag::err_unterminated_char);
Result.setKind(tok::unknown);
FormTokenWithChars(Result, CurPtr-1);
return;
} else if (C == 0) {
NulCharacter = CurPtr-1;
}
C = getAndAdvanceChar(CurPtr, Result);
} while (C != '\'');
}
if (NulCharacter) Diag(NulCharacter, diag::null_in_char);
Result.setKind(tok::char_constant);
// Update the location of token as well as BufferPtr.
FormTokenWithChars(Result, CurPtr);
}
/// SkipWhitespace - Efficiently skip over a series of whitespace characters.
/// Update BufferPtr to point to the next non-whitespace character and return.
void Lexer::SkipWhitespace(LexerToken &Result, const char *CurPtr) {
// Whitespace - Skip it, then return the token after the whitespace.
unsigned char Char = *CurPtr; // Skip consequtive spaces efficiently.
while (1) {
// Skip horizontal whitespace very aggressively.
while (isHorizontalWhitespace(Char))
Char = *++CurPtr;
// Otherwise if we something other than whitespace, we're done.
if (Char != '\n' && Char != '\r')
break;
if (ParsingPreprocessorDirective) {
// End of preprocessor directive line, let LexTokenInternal handle this.
BufferPtr = CurPtr;
return;
}
// ok, but handle newline.
// The returned token is at the start of the line.
Result.setFlag(LexerToken::StartOfLine);
// No leading whitespace seen so far.
Result.clearFlag(LexerToken::LeadingSpace);
Char = *++CurPtr;
}
// If this isn't immediately after a newline, there is leading space.
char PrevChar = CurPtr[-1];
if (PrevChar != '\n' && PrevChar != '\r')
Result.setFlag(LexerToken::LeadingSpace);
// If the next token is obviously a // or /* */ comment, skip it efficiently
// too (without going through the big switch stmt).
if (Char == '/' && CurPtr[1] == '/' && !KeepCommentMode) {
BufferPtr = CurPtr;
SkipBCPLComment(Result, CurPtr+1);
return;
}
if (Char == '/' && CurPtr[1] == '*' && !KeepCommentMode) {
BufferPtr = CurPtr;
SkipBlockComment(Result, CurPtr+2);
return;
}
BufferPtr = CurPtr;
}
// SkipBCPLComment - We have just read the // characters from input. Skip until
// we find the newline character thats terminate the comment. Then update
/// BufferPtr and return.
bool Lexer::SkipBCPLComment(LexerToken &Result, const char *CurPtr) {
// If BCPL comments aren't explicitly enabled for this language, emit an
// extension warning.
if (!Features.BCPLComment) {
Diag(BufferPtr, diag::ext_bcpl_comment);
// Mark them enabled so we only emit one warning for this translation
// unit.
Features.BCPLComment = true;
}
// Scan over the body of the comment. The common case, when scanning, is that
// the comment contains normal ascii characters with nothing interesting in
// them. As such, optimize for this case with the inner loop.
char C;
do {
C = *CurPtr;
// FIXME: Speedup BCPL comment lexing. Just scan for a \n or \r character.
// If we find a \n character, scan backwards, checking to see if it's an
// escaped newline, like we do for block comments.
// Skip over characters in the fast loop.
while (C != 0 && // Potentially EOF.
C != '\\' && // Potentially escaped newline.
C != '?' && // Potentially trigraph.
C != '\n' && C != '\r') // Newline or DOS-style newline.
C = *++CurPtr;
// If this is a newline, we're done.
if (C == '\n' || C == '\r')
break; // Found the newline? Break out!
// Otherwise, this is a hard case. Fall back on getAndAdvanceChar to
// properly decode the character.
const char *OldPtr = CurPtr;
C = getAndAdvanceChar(CurPtr, Result);
// If we read multiple characters, and one of those characters was a \r or
// \n, then we had an escaped newline within the comment. Emit diagnostic
// unless the next line is also a // comment.
if (CurPtr != OldPtr+1 && C != '/' && CurPtr[0] != '/') {
for (; OldPtr != CurPtr; ++OldPtr)
if (OldPtr[0] == '\n' || OldPtr[0] == '\r') {
// Okay, we found a // comment that ends in a newline, if the next
// line is also a // comment, but has spaces, don't emit a diagnostic.
if (isspace(C)) {
const char *ForwardPtr = CurPtr;
while (isspace(*ForwardPtr)) // Skip whitespace.
++ForwardPtr;
if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/')
break;
}
Diag(OldPtr-1, diag::ext_multi_line_bcpl_comment);
break;
}
}
if (CurPtr == BufferEnd+1) { --CurPtr; break; }
} while (C != '\n' && C != '\r');
// Found but did not consume the newline.
// If we are returning comments as tokens, return this comment as a token.
if (KeepCommentMode)
return SaveBCPLComment(Result, CurPtr);
// If we are inside a preprocessor directive and we see the end of line,
// return immediately, so that the lexer can return this as an EOM token.
if (ParsingPreprocessorDirective || CurPtr == BufferEnd) {
BufferPtr = CurPtr;
return true;
}
// Otherwise, eat the \n character. We don't care if this is a \n\r or
// \r\n sequence.
++CurPtr;
// The next returned token is at the start of the line.
Result.setFlag(LexerToken::StartOfLine);
// No leading whitespace seen so far.
Result.clearFlag(LexerToken::LeadingSpace);
// It is common for the tokens immediately after a // comment to be
// whitespace (indentation for the next line). Instead of going through the
// big switch, handle it efficiently now.
if (isWhitespace(*CurPtr)) {
Result.setFlag(LexerToken::LeadingSpace);
SkipWhitespace(Result, CurPtr+1);
return true;
}
BufferPtr = CurPtr;
return true;
}
/// SaveBCPLComment - If in save-comment mode, package up this BCPL comment in
/// an appropriate way and return it.
bool Lexer::SaveBCPLComment(LexerToken &Result, const char *CurPtr) {
Result.setKind(tok::comment);
FormTokenWithChars(Result, CurPtr);
// If this BCPL-style comment is in a macro definition, transmogrify it into
// a C-style block comment.
if (ParsingPreprocessorDirective) {
std::string Spelling = PP.getSpelling(Result);
assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not bcpl comment?");
Spelling[1] = '*'; // Change prefix to "/*".
Spelling += "*/"; // add suffix.
Result.setLocation(PP.CreateString(&Spelling[0], Spelling.size(),
Result.getLocation()));
Result.setLength(Spelling.size());
}
return false;
}
/// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline
/// character (either \n or \r) is part of an escaped newline sequence. Issue a
/// diagnostic if so. We know that the is inside of a block comment.
static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr,
Lexer *L) {
assert(CurPtr[0] == '\n' || CurPtr[0] == '\r');
// Back up off the newline.
--CurPtr;
// If this is a two-character newline sequence, skip the other character.
if (CurPtr[0] == '\n' || CurPtr[0] == '\r') {
// \n\n or \r\r -> not escaped newline.
if (CurPtr[0] == CurPtr[1])
return false;
// \n\r or \r\n -> skip the newline.
--CurPtr;
}
// If we have horizontal whitespace, skip over it. We allow whitespace
// between the slash and newline.
bool HasSpace = false;
while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) {
--CurPtr;
HasSpace = true;
}
// If we have a slash, we know this is an escaped newline.
if (*CurPtr == '\\') {
if (CurPtr[-1] != '*') return false;
} else {
// It isn't a slash, is it the ?? / trigraph?
if (CurPtr[0] != '/' || CurPtr[-1] != '?' || CurPtr[-2] != '?' ||
CurPtr[-3] != '*')
return false;
// This is the trigraph ending the comment. Emit a stern warning!
CurPtr -= 2;
// If no trigraphs are enabled, warn that we ignored this trigraph and
// ignore this * character.
if (!L->getFeatures().Trigraphs) {
L->Diag(CurPtr, diag::trigraph_ignored_block_comment);
return false;
}
L->Diag(CurPtr, diag::trigraph_ends_block_comment);
}
// Warn about having an escaped newline between the */ characters.
L->Diag(CurPtr, diag::escaped_newline_block_comment_end);
// If there was space between the backslash and newline, warn about it.
if (HasSpace) L->Diag(CurPtr, diag::backslash_newline_space);
return true;
}
#ifdef __SSE2__
#include <emmintrin.h>
#elif __ALTIVEC__
#include <altivec.h>
#undef bool
#endif
/// SkipBlockComment - We have just read the /* characters from input. Read
/// until we find the */ characters that terminate the comment. Note that we
/// don't bother decoding trigraphs or escaped newlines in block comments,
/// because they cannot cause the comment to end. The only thing that can
/// happen is the comment could end with an escaped newline between the */ end
/// of comment.
bool Lexer::SkipBlockComment(LexerToken &Result, const char *CurPtr) {
// Scan one character past where we should, looking for a '/' character. Once
// we find it, check to see if it was preceeded by a *. This common
// optimization helps people who like to put a lot of * characters in their
// comments.
unsigned char C = *CurPtr++;
if (C == 0 && CurPtr == BufferEnd+1) {
Diag(BufferPtr, diag::err_unterminated_block_comment);
BufferPtr = CurPtr-1;
return true;
}
while (1) {
// Skip over all non-interesting characters until we find end of buffer or a
// (probably ending) '/' character.
if (CurPtr + 24 < BufferEnd) {
// While not aligned to a 16-byte boundary.
while (C != '/' && ((intptr_t)CurPtr & 0x0F) != 0)
C = *CurPtr++;
if (C == '/') goto FoundSlash;
#ifdef __SSE2__
__m128i Slashes = _mm_set_epi8('/', '/', '/', '/', '/', '/', '/', '/',
'/', '/', '/', '/', '/', '/', '/', '/');
while (CurPtr+16 <= BufferEnd &&
_mm_movemask_epi8(_mm_cmpeq_epi8(*(__m128i*)CurPtr, Slashes)) == 0)
CurPtr += 16;
#elif __ALTIVEC__
__vector unsigned char Slashes = {
'/', '/', '/', '/', '/', '/', '/', '/',
'/', '/', '/', '/', '/', '/', '/', '/'
};
while (CurPtr+16 <= BufferEnd &&
!vec_any_eq(*(vector unsigned char*)CurPtr, Slashes))
CurPtr += 16;
#else
// Scan for '/' quickly. Many block comments are very large.
while (CurPtr[0] != '/' &&
CurPtr[1] != '/' &&
CurPtr[2] != '/' &&
CurPtr[3] != '/' &&
CurPtr+4 < BufferEnd) {
CurPtr += 4;
}
#endif
// It has to be one of the bytes scanned, increment to it and read one.
C = *CurPtr++;
}
// Loop to scan the remainder.
while (C != '/' && C != '\0')
C = *CurPtr++;
FoundSlash:
if (C == '/') {
if (CurPtr[-2] == '*') // We found the final */. We're done!
break;
if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) {
if (isEndOfBlockCommentWithEscapedNewLine(CurPtr-2, this)) {
// We found the final */, though it had an escaped newline between the
// * and /. We're done!
break;
}
}
if (CurPtr[0] == '*' && CurPtr[1] != '/') {
// If this is a /* inside of the comment, emit a warning. Don't do this
// if this is a /*/, which will end the comment. This misses cases with
// embedded escaped newlines, but oh well.
Diag(CurPtr-1, diag::nested_block_comment);
}
} else if (C == 0 && CurPtr == BufferEnd+1) {
Diag(BufferPtr, diag::err_unterminated_block_comment);
// Note: the user probably forgot a */. We could continue immediately
// after the /*, but this would involve lexing a lot of what really is the
// comment, which surely would confuse the parser.
BufferPtr = CurPtr-1;
return true;
}
C = *CurPtr++;
}
// If we are returning comments as tokens, return this comment as a token.
if (KeepCommentMode) {
Result.setKind(tok::comment);
FormTokenWithChars(Result, CurPtr);
return false;
}
// It is common for the tokens immediately after a /**/ comment to be
// whitespace. Instead of going through the big switch, handle it
// efficiently now.
if (isHorizontalWhitespace(*CurPtr)) {
Result.setFlag(LexerToken::LeadingSpace);
SkipWhitespace(Result, CurPtr+1);
return true;
}
// Otherwise, just return so that the next character will be lexed as a token.
BufferPtr = CurPtr;
Result.setFlag(LexerToken::LeadingSpace);
return true;
}
//===----------------------------------------------------------------------===//
// Primary Lexing Entry Points
//===----------------------------------------------------------------------===//
/// LexIncludeFilename - After the preprocessor has parsed a #include, lex and
/// (potentially) macro expand the filename.
void Lexer::LexIncludeFilename(LexerToken &FilenameTok) {
assert(ParsingPreprocessorDirective &&
ParsingFilename == false &&
"Must be in a preprocessing directive!");
// We are now parsing a filename!
ParsingFilename = true;
// Lex the filename.
Lex(FilenameTok);
// We should have obtained the filename now.
ParsingFilename = false;
// No filename?
if (FilenameTok.getKind() == tok::eom)
Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename);
}
/// ReadToEndOfLine - Read the rest of the current preprocessor line as an
/// uninterpreted string. This switches the lexer out of directive mode.
std::string Lexer::ReadToEndOfLine() {
assert(ParsingPreprocessorDirective && ParsingFilename == false &&
"Must be in a preprocessing directive!");
std::string Result;
LexerToken Tmp;
// CurPtr - Cache BufferPtr in an automatic variable.
const char *CurPtr = BufferPtr;
while (1) {
char Char = getAndAdvanceChar(CurPtr, Tmp);
switch (Char) {
default:
Result += Char;
break;
case 0: // Null.
// Found end of file?
if (CurPtr-1 != BufferEnd) {
// Nope, normal character, continue.
Result += Char;
break;
}
// FALL THROUGH.
case '\r':
case '\n':
// Okay, we found the end of the line. First, back up past the \0, \r, \n.
assert(CurPtr[-1] == Char && "Trigraphs for newline?");
BufferPtr = CurPtr-1;
// Next, lex the character, which should handle the EOM transition.
Lex(Tmp);
assert(Tmp.getKind() == tok::eom && "Unexpected token!");
// Finally, we're done, return the string we found.
return Result;
}
}
}
/// LexEndOfFile - CurPtr points to the end of this file. Handle this
/// condition, reporting diagnostics and handling other edge cases as required.
/// This returns true if Result contains a token, false if PP.Lex should be
/// called again.
bool Lexer::LexEndOfFile(LexerToken &Result, const char *CurPtr) {
// If we hit the end of the file while parsing a preprocessor directive,
// end the preprocessor directive first. The next token returned will
// then be the end of file.
if (ParsingPreprocessorDirective) {
// Done parsing the "line".
ParsingPreprocessorDirective = false;
Result.setKind(tok::eom);
// Update the location of token as well as BufferPtr.
FormTokenWithChars(Result, CurPtr);
// Restore comment saving mode, in case it was disabled for directive.
KeepCommentMode = PP.getCommentRetentionState();
return true; // Have a token.
}
// If we are in raw mode, return this event as an EOF token. Let the caller
// that put us in raw mode handle the event.
if (LexingRawMode) {
Result.startToken();
BufferPtr = BufferEnd;
FormTokenWithChars(Result, BufferEnd);
Result.setKind(tok::eof);
return true;
}
// Otherwise, issue diagnostics for unterminated #if and missing newline.
// If we are in a #if directive, emit an error.
while (!ConditionalStack.empty()) {
Diag(ConditionalStack.back().IfLoc, diag::err_pp_unterminated_conditional);
ConditionalStack.pop_back();
}
// If the file was empty or didn't end in a newline, issue a pedwarn.
if (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
Diag(BufferEnd, diag::ext_no_newline_eof);
BufferPtr = CurPtr;
// Finally, let the preprocessor handle this.
return PP.HandleEndOfFile(Result);
}
/// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from
/// the specified lexer will return a tok::l_paren token, 0 if it is something
/// else and 2 if there are no more tokens in the buffer controlled by the
/// lexer.
unsigned Lexer::isNextPPTokenLParen() {
assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?");
// Switch to 'skipping' mode. This will ensure that we can lex a token
// without emitting diagnostics, disables macro expansion, and will cause EOF
// to return an EOF token instead of popping the include stack.
LexingRawMode = true;
// Save state that can be changed while lexing so that we can restore it.
const char *TmpBufferPtr = BufferPtr;
LexerToken Tok;
Tok.startToken();
LexTokenInternal(Tok);
// Restore state that may have changed.
BufferPtr = TmpBufferPtr;
// Restore the lexer back to non-skipping mode.
LexingRawMode = false;
if (Tok.getKind() == tok::eof)
return 2;
return Tok.getKind() == tok::l_paren;
}
/// LexTokenInternal - This implements a simple C family lexer. It is an
/// extremely performance critical piece of code. This assumes that the buffer
/// has a null character at the end of the file. Return true if an error
/// occurred and compilation should terminate, false if normal. This returns a
/// preprocessing token, not a normal token, as such, it is an internal
/// interface. It assumes that the Flags of result have been cleared before
/// calling this.
void Lexer::LexTokenInternal(LexerToken &Result) {
LexNextToken:
// New token, can't need cleaning yet.
Result.clearFlag(LexerToken::NeedsCleaning);
Result.setIdentifierInfo(0);
// CurPtr - Cache BufferPtr in an automatic variable.
const char *CurPtr = BufferPtr;
// Small amounts of horizontal whitespace is very common between tokens.
if ((*CurPtr == ' ') || (*CurPtr == '\t')) {
++CurPtr;
while ((*CurPtr == ' ') || (*CurPtr == '\t'))
++CurPtr;
BufferPtr = CurPtr;
Result.setFlag(LexerToken::LeadingSpace);
}
unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below.
// Read a character, advancing over it.
char Char = getAndAdvanceChar(CurPtr, Result);
switch (Char) {
case 0: // Null.
// Found end of file?
if (CurPtr-1 == BufferEnd) {
// Read the PP instance variable into an automatic variable, because
// LexEndOfFile will often delete 'this'.
Preprocessor &PPCache = PP;
if (LexEndOfFile(Result, CurPtr-1)) // Retreat back into the file.
return; // Got a token to return.
return PPCache.Lex(Result);
}
Diag(CurPtr-1, diag::null_in_file);
Result.setFlag(LexerToken::LeadingSpace);
SkipWhitespace(Result, CurPtr);
goto LexNextToken; // GCC isn't tail call eliminating.
case '\n':
case '\r':
// If we are inside a preprocessor directive and we see the end of line,
// we know we are done with the directive, so return an EOM token.
if (ParsingPreprocessorDirective) {
// Done parsing the "line".
ParsingPreprocessorDirective = false;
// Restore comment saving mode, in case it was disabled for directive.
KeepCommentMode = PP.getCommentRetentionState();
// Since we consumed a newline, we are back at the start of a line.
IsAtStartOfLine = true;
Result.setKind(tok::eom);
break;
}
// The returned token is at the start of the line.
Result.setFlag(LexerToken::StartOfLine);
// No leading whitespace seen so far.
Result.clearFlag(LexerToken::LeadingSpace);
SkipWhitespace(Result, CurPtr);
goto LexNextToken; // GCC isn't tail call eliminating.
case ' ':
case '\t':
case '\f':
case '\v':
Result.setFlag(LexerToken::LeadingSpace);
SkipWhitespace(Result, CurPtr);
goto LexNextToken; // GCC isn't tail call eliminating.
case 'L':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
Char = getCharAndSize(CurPtr, SizeTmp);
// Wide string literal.
if (Char == '"')
return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
true);
// Wide character constant.
if (Char == '\'')
return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
// FALL THROUGH, treating L like the start of an identifier.
// C99 6.4.2: Identifiers.
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N':
case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U':
case 'V': case 'W': case 'X': case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
case 'v': case 'w': case 'x': case 'y': case 'z':
case '_':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexIdentifier(Result, CurPtr);
// C99 6.4.4.1: Integer Constants.
// C99 6.4.4.2: Floating Constants.
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexNumericConstant(Result, CurPtr);
// C99 6.4.4: Character Constants.
case '\'':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexCharConstant(Result, CurPtr);
// C99 6.4.5: String Literals.
case '"':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexStringLiteral(Result, CurPtr, false);
// C99 6.4.6: Punctuators.
case '?':
Result.setKind(tok::question);
break;
case '[':
Result.setKind(tok::l_square);
break;
case ']':
Result.setKind(tok::r_square);
break;
case '(':
Result.setKind(tok::l_paren);
break;
case ')':
Result.setKind(tok::r_paren);
break;
case '{':
Result.setKind(tok::l_brace);
break;
case '}':
Result.setKind(tok::r_brace);
break;
case '.':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char >= '0' && Char <= '9') {
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
} else if (Features.CPlusPlus && Char == '*') {
Result.setKind(tok::periodstar);
CurPtr += SizeTmp;
} else if (Char == '.' &&
getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') {
Result.setKind(tok::ellipsis);
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else {
Result.setKind(tok::period);
}
break;
case '&':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '&') {
Result.setKind(tok::ampamp);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '=') {
Result.setKind(tok::ampequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::amp);
}
break;
case '*':
if (getCharAndSize(CurPtr, SizeTmp) == '=') {
Result.setKind(tok::starequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::star);
}
break;
case '+':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '+') {
Result.setKind(tok::plusplus);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '=') {
Result.setKind(tok::plusequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::plus);
}
break;
case '-':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '-') {
Result.setKind(tok::minusminus);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '>' && Features.CPlusPlus &&
getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') {
Result.setKind(tok::arrowstar); // C++ ->*
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else if (Char == '>') {
Result.setKind(tok::arrow);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '=') {
Result.setKind(tok::minusequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::minus);
}
break;
case '~':
Result.setKind(tok::tilde);
break;
case '!':
if (getCharAndSize(CurPtr, SizeTmp) == '=') {
Result.setKind(tok::exclaimequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::exclaim);
}
break;
case '/':
// 6.4.9: Comments
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '/') { // BCPL comment.
if (SkipBCPLComment(Result, ConsumeChar(CurPtr, SizeTmp, Result)))
goto LexNextToken; // GCC isn't tail call eliminating.
return; // KeepCommentMode
} else if (Char == '*') { // /**/ comment.
if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result)))
goto LexNextToken; // GCC isn't tail call eliminating.
return; // KeepCommentMode
} else if (Char == '=') {
Result.setKind(tok::slashequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::slash);
}
break;
case '%':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
Result.setKind(tok::percentequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Features.Digraphs && Char == '>') {
Result.setKind(tok::r_brace); // '%>' -> '}'
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Features.Digraphs && Char == ':') {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') {
Result.setKind(tok::hashhash); // '%:%:' -> '##'
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else if (Char == '@' && Features.Microsoft) { // %:@ -> #@ -> Charize
Result.setKind(tok::hashat);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Diag(BufferPtr, diag::charize_microsoft_ext);
} else {
Result.setKind(tok::hash); // '%:' -> '#'
// We parsed a # character. If this occurs at the start of the line,
// it's actually the start of a preprocessing directive. Callback to
// the preprocessor to handle it.
// FIXME: -fpreprocessed mode??
if (Result.isAtStartOfLine() && !LexingRawMode) {
BufferPtr = CurPtr;
PP.HandleDirective(Result);
// As an optimization, if the preprocessor didn't switch lexers, tail
// recurse.
if (PP.isCurrentLexer(this)) {
// Start a new token. If this is a #include or something, the PP may
// want us starting at the beginning of the line again. If so, set
// the StartOfLine flag.
if (IsAtStartOfLine) {
Result.setFlag(LexerToken::StartOfLine);
IsAtStartOfLine = false;
}
goto LexNextToken; // GCC isn't tail call eliminating.
}
return PP.Lex(Result);
}
}
} else {
Result.setKind(tok::percent);
}
break;
case '<':
Char = getCharAndSize(CurPtr, SizeTmp);
if (ParsingFilename) {
return LexAngledStringLiteral(Result, CurPtr+SizeTmp);
} else if (Char == '<' &&
getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '=') {
Result.setKind(tok::lesslessequal);
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else if (Char == '<') {
Result.setKind(tok::lessless);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '=') {
Result.setKind(tok::lessequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Features.Digraphs && Char == ':') {
Result.setKind(tok::l_square); // '<:' -> '['
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Features.Digraphs && Char == '>') {
Result.setKind(tok::l_brace); // '<%' -> '{'
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::less);
}
break;
case '>':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
Result.setKind(tok::greaterequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '>' &&
getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '=') {
Result.setKind(tok::greatergreaterequal);
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else if (Char == '>') {
Result.setKind(tok::greatergreater);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::greater);
}
break;
case '^':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
Result.setKind(tok::caretequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::caret);
}
break;
case '|':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
Result.setKind(tok::pipeequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '|') {
Result.setKind(tok::pipepipe);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::pipe);
}
break;
case ':':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Features.Digraphs && Char == '>') {
Result.setKind(tok::r_square); // ':>' -> ']'
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Features.CPlusPlus && Char == ':') {
Result.setKind(tok::coloncolon);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::colon);
}
break;
case ';':
Result.setKind(tok::semi);
break;
case '=':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
Result.setKind(tok::equalequal);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::equal);
}
break;
case ',':
Result.setKind(tok::comma);
break;
case '#':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '#') {
Result.setKind(tok::hashhash);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '@' && Features.Microsoft) { // #@ -> Charize
Result.setKind(tok::hashat);
Diag(BufferPtr, diag::charize_microsoft_ext);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Result.setKind(tok::hash);
// We parsed a # character. If this occurs at the start of the line,
// it's actually the start of a preprocessing directive. Callback to
// the preprocessor to handle it.
// FIXME: -fpreprocessed mode??
if (Result.isAtStartOfLine() && !LexingRawMode) {
BufferPtr = CurPtr;
PP.HandleDirective(Result);
// As an optimization, if the preprocessor didn't switch lexers, tail
// recurse.
if (PP.isCurrentLexer(this)) {
// Start a new token. If this is a #include or something, the PP may
// want us starting at the beginning of the line again. If so, set
// the StartOfLine flag.
if (IsAtStartOfLine) {
Result.setFlag(LexerToken::StartOfLine);
IsAtStartOfLine = false;
}
goto LexNextToken; // GCC isn't tail call eliminating.
}
return PP.Lex(Result);
}
}
break;
case '\\':
// FIXME: UCN's.
// FALL THROUGH.
default:
// Objective C support.
if (CurPtr[-1] == '@' && Features.ObjC1) {
Result.setKind(tok::at);
break;
} else if (CurPtr[-1] == '$' && Features.DollarIdents) {// $ in identifiers.
Diag(CurPtr-1, diag::ext_dollar_in_identifier);
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexIdentifier(Result, CurPtr);
}
Result.setKind(tok::unknown);
break;
}
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
// Update the location of token as well as BufferPtr.
FormTokenWithChars(Result, CurPtr);
}